用户名: 密码: 验证码:
感应电机和风力机转矩控制理论研究与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以感应电机(IM)和风力机(WT)为研究对象,运用MatLab/SimuLink工具对控制系统进行了建模和仿真。针对感应电机的直接转矩控制(DTC)存在的缺点,利用空间电压矢量调制(SVPWM)和无差拍(Dead-beat)控制改善电压矢量实现和参考电压矢量获取环节,运用自校正速度PI环节完成了直接转矩控制的优化;针对大型风力机的控制方法,分析了风力机控制系统组成结构和控制方法以及对部分部件的载荷影响,建立了控制模型并采用滤波器控制得出了初步结果。
     论文首先分析和介绍了风能和交流调速系统的发展概况,找出直接转矩控制和风力机载荷控制的发展情况。对感应电机结构及特点进行了分析,继而给出了感应电机在任意坐标系下的数学模型;深入探讨了直接转矩控制在感应电机上应用的理论基础,分析了电压矢量对电磁转矩和电机磁链的控制作用,给出了感应电机直接转矩控制原理结构框图;对于经典直接转矩控制的缺陷和无差拍控制的异步电机应用,提出了一种改进无差拍直接转矩控制策略的方法,磁链环节电压矢量经过简单计算得出,转矩环节电压矢量被有效的分解后由转矩PI控制器和转子转速与定子磁链乘积给出,指出转速与定子磁链乘积是保持电机转速和磁链为给定值的基础;基于梯度下降法的速度PI环节的自校正控制的在线增益调节优化了系统响应和转矩脉动控制。借助MatLab/SimuLink工具,对感应电机直接转矩控制系统各环节、SVPWM和速度PI自校正控制进行了仿真建模,实现了经典直接转矩控制和无差拍直接转矩控制仿真实验,得到了与理论分析一致的仿真实验结果。理论分析和仿真实验结果表明,在不影响动态性能的情况下,提高了系统速度响应、磁链轨迹、磁链和转矩跟踪的控制精度,有效地减小了磁链和转矩脉动,保持了良好的转矩动态响应,速度PI环节的效果明显。为设计基于空间电压矢量调制的感应电机直接转矩控制实际系统提供了有效的方法和工具。
     然后论文分析了大型风力机控制方法,主要为变速风力机的转矩控制。随着风力机的大型化和柔性化,控制方法在变速风力机运行过程对载荷的影响逐渐引起大家的重视。本文分析了风力机运行过程中的各个子系统的联系,建立了统一的变速风力机的控制模型,以传动系统和塔架的左右振动为主要研究对象。从经典控制方法出发,在最大风能捕获状态下利用滤波器实现转矩控制对传动结构和塔架左右振动的抑制效果。借助MatLab/SimuLink工具,完成了连续系统下的仿真建模,利用信号处理工具箱和控制要求设计了相应的滤波器。理论和仿真结果表明,转矩控制能够起到抑制振动的作用。
The paper is subjected to induction motors (IMs) and wind turbines (WTs), implementing their control system models and simulation with Matlab/SimuLink. Aimed at drawbacks of direct torque control (DTC) for induction motors, it is considered that Space Vector Pulse Width Modulation (SVPWM) improve voltage vectors implementation, Dead-beat control strategy for reference voltage vectors and self-tuning PI controller for torque and flux ripple reduction. Then aimed at wind turbine control systems, the analysis of their structure and strategies and their influences on component mechanical loads is emphasized. We have basic simulation results for Control models and filter control theory applying on WTs.
     Firstly, wind energy and methods for speed control of induction motors is introduced, including DTC and wind turbine torque control typical approaches. Then IMs kinds and applications are presented. IMs dynamic model at any reference frame is obtained. Using the model, basics of DTC principle and IMs are considered. Voltage vectors influences on electronic torque and motors flux are showed. Classic DTC principle’s diagram is gained. To improve classic DTC drawbacks, the paper proposes an improved Dead-beat control strategy. Voltage vectors for torque are decomposed reasonably, while one for flux is implemented simply. Two parts of it are implemented by PI controller and the product of rotor speed and stator flux respectively. The product of motor speed and stator flux magnitude is essential for keeping motor speed and flux constant. Self-tuning PI speed controller reinforced responses deeply as gradient descent optimization to adjust gains automatically online. With Matlab/Simulink tools, it is modeled including every component of IMs DTC, SVPWM and self-tunging PI controller. As the simulation of classic DTC and New dead-beat control is finished, all results obtained prove above. Systems responses such as precision of speed, flux locus, flux or torque tracking and so on is improved. The reduction of torque and flux ripples presents clearly. The paper is good for designing actual IMs DTC application based on SVPWM.
     Secondly, control strategies for large wind turbine is introduced, most of them are variable speed WTs’torque control. As WTs’height and flexibility increase, studies on control strategies’affects on WTs mechanical loads become more and more important, especially for variable speed. According to the relations among all subsystems of WTs, a unified control model of variable speed WTs has been built including pitch control. The drive-train torsion and tower side-side vibration are main focus. Based on classic control strategy, filters are used for reduction while the rotor are tracking for optimal speed for energy capture. With Matlab/Simulink tools, the continuous model and filter design are completed simply. The theory and simulation results prove that WTs torque control can restrain vibration successfully.
引文
[1]胡崇岳主编,现代交流调速技术,北京:机械工业出版社, 1998
    [2]尔桂花,窦曰轩编著,运动控制系统[专著].北京:清华大学出版社, 2002.10
    [3] Bimal K.Bose著,现代电力电子学与交流传动,王聪等译,北京:机械工业出版社,2005.5
    [4]李颖等编著,Simulink动态系统建模与仿真基础,西安:西安电子科技大学出版社,2004
    [5]薛定宇著,控制系统计算机辅助设计-Matlab语言与应用(第二版).北京:清华大学出版社,2006
    [6] I.Takahashi, T.Noguchi, A quick-response and high efficiency control strategy of an induction machine, IEEE Trans. On IA,1986,22,pp.820-827
    [7] M.Depenbrock, Direct self-control(DSC) of inverter-fed induction machine, IEEE Trans. On PE,1988,3,pp.420-429
    [8]张春梅、尔桂花,直接转矩控制研究现状与前景,微电机,2000,33(6),pp.25-28
    [9]胡虎、李永东,交流电机直接转矩控制策略-现状与趋势[J],电气传动,2004,34(3),pp.3-8
    [10]陈伯时、杨耕,无速度传感器高性能交流调速控制的三条思路及其发展建议[J],电气传动,2006,36(1),pp.3-8
    [11]李永东,高性能大容量交流电机调速技术的现状及展望,电工技术学报,2005,20(2),pp.1-10
    [12] J.Holtz, The Representation of AC Machine Dynamics by Complex Signal Flow Graphs[J], IEEE Trans. On IE, 1995, 42(3),pp.263-271
    [13] J.Holtz, Sensorless Control of Induction Motor Drives, Proc. Of IEEE,2002,90(8),pp.1359-1394
    [14] D.Casadei, F.Profumo, G.Serra, FOC and DTC: Two Viable Schemes for induction Motors Torque Control, IEEE Trans. On PE, 2002,17(5),pp.779-787
    [15] D.Casadei, G.Serra, A.Tani and L.Zarri, Assessment of direct torque control for induction motor drives, Bulletin of Plish Academy ofSciences,2006,54(3),pp.237-254
    [16] B.P.Panigrahi, D.Prasad, S.SenGupta, A simple hardware realization of switching table based direct torque of induction motor,Electric Power Systems Research,2007,77,pp.181-190
    [17]田亚菲、何继爱、黄智武,电压空间矢量脉宽调制(SVPWM)算法仿真实现及分析,电力系统及其自动化学报,2004,(4),pp.68-71
    [18]王潞钢、陈林康,基于Matlab/Simulink的电压空间矢量脉宽调制(SVPWM)逆变器的仿真,电机电器技术,2001,(4),pp.32-35
    [19] T.G.Habetler, F.Profumo, M.Pastorelli, Direct torque control of induction machines using space vector modulation, IEEE Trans. On IA,1992,28(5),pp.1045-1053
    [20] B.H.Kenny, R.D.Lorenz, Stator and Rotor Flux Based Deadbeat Direct Torque Control of Induction Machines, NASA Center for Aerospace,2002.9
    [21] F.A.S.Neves, T.G.Habetler, G.G.Parma, An Evaluation of Sensorless Induction Motor Drives for Low Speed Operation, Congesso Brasileiro De Electr?nica De Potência, 1999
    [22] M.Vasudevan, R.Arumugam, S.Paramasivam, Development of torque and flux ripple minimization algorithm for direct torque control of induction motor drive, Electrical Engineering,2006,69,pp.41-51
    [23] Yen-Shin Lai, Jian-Ho Chen, A New Approach to Direct torque Control of Induction Motor Drives for Constant Inverter Switching Frequency and Torque Ripple Reduction, IEEE Trans. On Energy Conversion, 2001,16(3),pp.220-226
    [24]黄文新,李勇,胡育文.用空间矢量调制异步电动机的直接转矩控制[J].南京航空航天大学学报,2007,39(1),pp.129-132
    [25] Wang Huangang, Xu Wenli, Yang Geng, et al. Variable-structure Torque Control of Induction Motors Using Space Vector Modulation [J]. Electrical Engineering, 2005,87,pp.93-102
    [26] K.J.Astrom, T.Hagglund, The future of PID control, Control Engineering Practice, 2001,9,pp.1163-1175
    [27] Ziqian Liu, Self-tuning control of electrical machines using gradient descent optimization, optimal control applications and methods, 2007,28,pp.77-93
    [28]郑黎明、肖礼飞,基于区域电压矢量表的永磁同步电机新型直接转矩控制策略研究及仿真,中小型电机,2005,32(2),pp.22-26
    [29]肖礼飞,基于DSP及IPM的永磁同步电机直接转矩控制研究与实践,汕头大学硕士论文,2005
    [30]李国平,基于永磁同步电机的直接转矩控制系统的研究与应用,汕头大学硕士论文,2006
    [31] T.Burton, D.Sharpe, N. Jenkins, E.Bossanyi, Wind Energy Handbook, John Willy & Sons, 2001
    [32] F.D.Bianchi, H.D.Battista and R.J.Mantz, Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design, Springer, 2006
    [33] T. Burton等著,风能技术,武鑫等译,北京:科学出版社,2007
    [34] R.W.克拉夫J.彭津著,结构动力学,王光远等译,北京:高等教育出版社, 2006.11
    [35]胡寿松主编,自动控制原理(第四版),北京:科学出版社,2000.6
    [36] E.A.Bosssanyi, Wind Turbine Control for Load Reduction, Wind Energy, 2003,(6),pp.229-244
    [37] Kathryn E. Johnson, Lucy Y. Pao, Mark J. Balas and LEE J. Fingersh, Control of Variable-speed Wind Turbines: Standard and Adaptive Techniques for Maximizing Energy Capture, IEEE Control Systems Magazine, 2006, (6), pp.70-81
    [38] E.B. Muhando, T. Senjyu, N. Urassaki, A. Yona, H. Kinjo, T. Funabashi, Gain Scheduling Control of Variable speed WTG under widely varying turbulence loading, Renewable Energy, 2007,32,pp.2407-2423
    [39] E.B. Muhando, T. Senjyu, A. Yona, H. Kinjo, T. Funabashi, Regulation of WTG Dynamic Response to Parameter Variations of Analytic wind Stochasticity, Wind Energy, 2007.5
    [40] Alan D. Wright, Lee J. Finersh and Karl A. Stol, Designing and Testing Controls to Mitigate Tower Dynamic Loads in the Controls Advanced Research Turbine, NREL conference paper, 2007.1
    [41] K.A. Stol and L.J. Finersh, Wind Turbine Field Testing of State-Space Control Design, NREL Subcontractor Report, 2004.9
    [42] Keld Hammerum, A Fatigue Approach to Wind Turbine Control, master thesis,Technical University of Denmark, 2006
    [43] Mate Jelavic, N. Peric, Ivan Petrovic, Damping of Wind Turbine Tower Oscillations through Rotor Speed Control, International Conference On Ecologic Vehicles & Renewable Energy, 2007.3
    [44] P.J. Murtagh, A. Ghosh, B.Basu and B.M. Broderick, Passive Control of wind turbine Vibrations Including Blade/Tower Interaction and Rotationally Sampled Turbulence, Wind Energy, 2007
    [45] Dewey H. Hodges, Mayuresh Patil, Multi-Flexible-Body Analysis for Application to Wind-Turbine Control Design, The 19th ASME Wind Energy Symposium, Reno, Nevada, Jan. 10-13 2000
    [46] Alan D. Wright and Mark J. Balas, Design of Controls to Attenuate Loads in the Controls Advanced Research Turbine, 2004 ASME Wind Energy Symposium, Reno, Nevada, Jan. 5-8 2004
    [47]金鑫、何玉林、刘桦、何倩,风力发电机耦合振动分析,振动与冲击,2007,26(8),pp.144-147
    [48]郭晓锋,变转速风力发电机控制策略研究,汕头大学硕士论文,2004
    [49]许移庆,变速恒频风力机转速控制研究,汕头大学硕士论文,2005
    [50] Vestas V80-1.8MW使用手册

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700