用户名: 密码: 验证码:
小攻角钝锥高超声速边界层的扰动演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用数值模拟的方法,以小攻角钝锥边界层这一典型的三维高超声速边界层为研究对象,研究了高超声速流动中边界层内扰动的演化。
     在基本流计算方面,对传统抛物化N-S方程(PNS方程)求解过程中的流向压力梯度的处理方法进行了改进,用边界层上缘的压力流向梯度代替方程中的压力流向梯度项,使之提供的定常流可以做为基本流用于进行流动稳定性分析。分别对小幅值和有限幅值扰动的演化进行了研究。通过数值计算验证了线性稳定性理论在该类高超声速三维边界层中的适用性;对给定入口两组不同频率分布的扰动,研究了小攻角钝锥的周向非对称转捩的特征;研究了扰动在流场中的非线性演化特征;研究了小攻角钝锥边界层中有限幅值扰动的演化,并与零攻角钝锥、高超声速及不可压缩平板中波包型扰动的演化进行了对比。
     通过本文的研究所得结论如下:
     1.小攻角钝锥边界层的基本流可以按照三维性的强弱不同分成两个区域。在迎风面及侧面的部分(0-135度的区域),边界层沿周向变化不大,线性稳定性理论可以比较准确的预测扰动的增长;在背风面附近区域,边界层变化比较剧烈,扰动演化呈现明显的三维特征。但在考虑流场三维性的情况下,选取基本流周向变化剧烈区域长度的一半作为三维扰动的等效展向波长,线性稳定性理论也能够比较好的预测扰动的增长。
     2.当基本扰动波增长到一定幅值时,原本为衰减的扰动波在非线性的作用下会增长起来;而基本波还将在一段距离内保持线性增长,当基本扰动波的幅值增长到大约0.05-0.1左右时,其演化才明显地呈现非线性特征。这一规律在迎风面、侧面和背风面都存在。
     3.通过在计算域入口引入两种频率组分不同的扰动,得到了两种转捩位置的分布。这表明,转捩位置沿周向的分布与入口不稳定波的频率和幅值有很大的关系。某一子午面的转捩位置主要决定于该子午面附近最不稳定波的增长率及该扰动在入口处的幅值。根据这一特点,结合稳定性分析的结果及实验中背景扰动幅值分布的特点,可以解释大多数转捩实验中,背风面先转捩,迎风面后转捩的现象,还可以解释在150度子午面上出现的转捩位置“凹陷”的现象。
     4.数值模拟发现,在迎风面和侧面处,入口的等幅值的扰动波会在下游演化成波包型分布,随后在更下游的流场中激发出小尺度三维扰动。这种小尺度扰动的定常部分是一种流向条纹结构,其周向波长都在φ/π≈0.014-0.016之间。而非定常部分的快速增长的机理应该属于二次失稳理论中的基本模态失稳。
     5.在零攻角的钝锥边界层中,入口加入波包型扰动,也会在下游激发起与小攻角流动时迎风面类似的小尺度三维结构,其展向波长依然在φ/π≈0.014-0.016之间。入口扰动分布越集中,该结构越靠近上游出现。通过与高超声速及不可压缩平板的波包型扰动演化的对比,发现这种扰动的出现是高超声速边界层中的一种特殊现象。
     6.在背风面,基本流的三维性比较强,在其影响下基本扰动是三维的,当基本扰动的幅值增长到足够大时,将会激发起二次谐波及高次谐波,使得流场呈“胞格状”分布,随后将导致流场转捩。背风面三维波的展向尺度与基本流的三维性有关,比迎风面或侧面由于非线性激发的三维扰动展向尺度大的多。
By numerical simulation, the evolutions of the disturbances are investigated in hyersonic boundary layer on a blunt cone at a small angle of attack (AOA).
     By using the streamwise pressure gradient on the edge of the boundary layer instead of the one in the boundary layer, traditional technique for the one in parabolized Navier-Stokes (PNS) equation solution was improved, for the use of PNS as basic flows for stability analysis of hypersonic flows.
     We investigated the evolutions of the disturbances with small and finite amplitude, respectively. first,the linear stability theory (LST) is verified in the hypersonic 3-dimensional boundary layer; second, inducing two groups of disturbances with different frequencies at inlet, non-symmetrical transiton along the azimuthal direction on blunt cone at small AOA is investigated; third, the nonlinear characters of the second mode disturbances in the flow is studied; then, the evolutions of wave-packet disturbances with finite amplitude in blunt cone at zero-AOA are simulated, and the results are compared with the ones of the same kind disturbances in small AOA blunt cone, hyperconic and incompressible flat bounary layer. And the following conclusions can be drawn:
     1. The boundary layer on a blunt cone at small AOA can be seperated into two regions by different 3-dimensional feature. In the windward and side region (φ= 0 ~。-135~。), the boundary layer changes bluntly, and LST predicts the growth well; in the region near the leeward, the bounday layer changes shapely, with the evolution of the disturbance is 3-D, but LST can also provide a good prediction when the 3-D waves are considered which the spanwise wavelength is one half of the length of the region with a sharp variation in the flow field on the leeward.
     2. The waves which are linearly decaying can grow by the nonlinear effect when the main disturbance grow to a large enough amplitude, but the main wave can also grow linearly with a distance. When the amplitude of the main wave reached about 0.05-0.1, nonlinear feature can be seen obviously. The rule is in existance on the windray, sideray, and leeray.
     3. Transition onset distributions along the azimuthal direction are obtained. It shows that transition onset is relevant to frequencies and amplitudes of the disturbances at the inlet, and is decided by the amplitudes of the most unstable waves at the inlet. According to this, the phenomenon leeside-forward and windside-after over a circular cone at non-zero AOA in most experiments can be explained. Also, it can explain the indentation of transition curve in theφ=150 ? meridian plane.
     4. On the windray and sideray, disurbance with equal amplitude along azimuthal direction can become wave-pack distribution in the downstream, and then small scale 3-D disturbances can be excited. The stational parts of the disturbances are stationary streamwise streaky structures, which haveφ/π≈0.014-0.016 spanwise scale. And growth of the non-stational parts should connect with the secondary instability theory.
     5. At zero AOA, wave-pack disturbances at inlet also can excite small scale 3-D structures in the downstream and the spanwise wave length is same. The disturbances at inlet are more concentrated, and these structures exited earlier. Compared with the evolutions of the wave-packet waves in hypersonic and incompressible flat, the generation of this kind of disturbance is a special phenomenon in hypersonic boundary layer.
     6. The sharp 3-D basic flow leads to 3-D disturbances on the leeray. When the waves grow higher enough, higher harmonic waves will be excited and it makes the flow“cell-like”. Then, it will lead to a transition to turbulence. The scale of 3-D disturbances on the leeray is relevant to the 3-D feature of the basic leeward flow, which is larger than the one on the windray and sideray.
引文
[1] Bertin J. J., Cummings R. M., Critical Hypersonic Aerothermodynamic Phenomena, Annual Review Of Fluid Mechanics, 2006, 38: 129-157
    [2] Kursat K., Hypersonic Boundary Layer Receptivity to Acoustic Disturbances Over Cones, Ph.D thesis, Old Dominion University, 2008
    [3]周恒,赵耕夫,流动稳定性,北京:国防工业出版社,2004
    [4] Saric W. S., White E., Reed B., Boundary-Layer Receptivity to Freestream Disturbances and its Role in Transition , AIAA Paper 1999-3788, 1999
    [5] Saric W. S., Reed H. L., Boundary-Layer Receptivity to Freestream Disturbances, Annual Review Of Fluid Mechanics, 2002, 34: 291-319
    [6] Zhong X., Ma Y., Boundary-Layer Receptivity of Mach 7.99 Flow Over a Blunt Cone to Free-Stream Acoustic Waves, Journal Of Fluid Mechanics, 2006, 556: 55-103
    [7] Zhong X., Numerical Simulation of Surface Roughness Effects On Receptivity of Hypersonic Flow Over Blunt Cones, AIAA Paper 2007-944, 2007
    [8] Zhong X., Receptivity of Mach 6 Flow Over a Flared Cone to Freestream Disturbance, AIAA Paper 2004-253, 2004
    [9] Zhong X., Leading-Edge Receptivity to Free-Stream Disturbance Waves for Hypersonic Flow Over a Parabola, Journal Of Fluid Mechanics, 2001, 441: 315-367
    [10] Kara K., Balakumar P., Kandil O. A., Receptivity of Hypersonic Boundary Layers Due to Acoustic Disturbances Over Blunt Cone, AIAA Paper 2007-945, 2007
    [11] Kara K., Balakumar P., Kandil O. A., Effects of Nose Bluntness On Stability of Hypersonic Boundary Layers Over a Blunt Cone, AIAA Paper 2007-4492, 2007
    [12] Lees L., Lin C. C., Investigation of the Stability of the Laminar Boundary Layer in a Compressible Fluid, 1964
    [13] Mack L. M., Linear Stability Theory and the Problem of Supersonic Boundary-Layer Transition., AIAA Journal, 1975, 13 (3) : 278-289
    [14] Rosenboom I., Hein S., Dallmann U., Influence of Nose Bluntness On Boundary-Layer Instabilities in Hypersonic Cone Flows, AIAA Paper1999-3591, 1999
    [15] Mack L. M., Boundary Layer Stability Theory, Jet Propul. Lab. Rep. 900-277, Rev. A, 1969
    [16] Mack L. M., Boundary Layer Linear Stability Theory, AGARD 709-1984, 1984
    [17] Brown W. B., Exact Numerical Solutions of the Complete Linearized Equations for the Stability of Compressible Boundary Layers, NORAIR Division Rep. NOR-62-15, 1962
    [18] Malik M. R., Chuang S., Hussaini M. Y., Accurate Numerical Solution of Compressible, Linear Stability Equations, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 1982, 33 (2) : 189-201
    [19] Klebanoff P. S., Tidstrom K. D., Sargent L. M., The Three-Dimensional Nature of Boundary Layer Instability, Journal Of Fluid Mechanics, 1962, 12: 1-34
    [20] Husmeier F., Mayer C., Fasel S., Investigation of Transiton of Supersonic Boundary Layers at Mach 3 Using Dns, AIAA Paper 2005-0095, 2005
    [21] Kachanov Y. S., Levchenko V., Resonant Interaction of Disturbances at Laminar-Turbulent Transition in a Boundary Layer., Journal Of Fluid Mechanics, 1984, 138: 209-247
    [22] Herbert T., Analysis of the Subharmonic Route to Transition in Boundary Layers, AIAA Paper 1984-0009, 1984
    [23] Kosinov A., Seminonov N., Shevelkov S., Experiments On the Nonlinear Instability of Supersonic Boundary Layers, Flows, Nonlinear Instability Of Nonparallel, N.Y.: Springer, 1994
    [24] Craik A. D. D., Non-Linear Resonant Instability in Boundary Layers, Journal Of Fluid Mechanics, 1971, 50 (02) : 393-413
    [25] Thumm A., Numerische Untersuchungen Zum Laminar-Turbulenten Str?omungsumschlag in Transsonischen Grenzschichtstr?omungen, Ph.D thesis, Universit?at Stuttgart, 1991
    [26] Stuart J. T., On the Non-Linear Mechanics of Wave Disturbances in Stable and Unstable Parallel Flows Part 1. The Basic Behaviour in Plane Poiseuille Flow, Journal Of Fluid Mechanics, 1960, 9 (03) : 353-370
    [27]周恒,尤学一,流动稳定性弱非线性理论中的问题及其改进,力学学报,1993,25(05): 515-528
    [28]周恒,藤村薰,流动稳定性弱非线性理论的进一步改进,中国科学A辑,1997,40(12): 1111-1118
    [29] Herbert T., Parabolized Stability Equations, Annual Review Of Fluid Mechanics, 1997, 29: 245-283
    [30] Chang C., Langley Stability and Transition Analysis Code (Lastrac) Version 1.2 User Manual, NASA/TM-2004-213233, 2004
    [31] Chang C., Lastrac.3D: Transition Prediction in 3D Boundary Layers , AIAA Paper 2004-2542 , 2004
    [32] Chang C., The Langley Stability and Transition Analysis Code (Lastrac) : Lst, Linear and Nonlinear Pse for 2-D, Axisymmetric, and Infinite Swept Wing Boundary Layers, AIAA Paper 2003-0974, 2003
    [33] Chang C., Malik M. R., Oblique-Mode Breakdown and Secondary Instability in Supersonic Boundary Layers, Journal Of Fluid Mechanics, 1994, 273: 323-360
    [34]张永明,周恒,PSE在可压缩边界层转捩问题中的应用,应用数学和力学,2008,29(07): 757-763
    [35]张永明,周恒,PSE在超音速边界层二次失稳问题中的应用,应用数学和力学,2008,29(01): 1-7
    [36]张永明,周恒,抛物化稳定性方程在可压缩边界层中应用的检验,应用数学和力学,2007,28(08): 883-893
    [37]董明,张永明,周恒,计算可压缩边界层转捩及湍流的一种新方法——PSE+DNS,应用数学和力学,2008,29(12): 1527-1534
    [38]梁贤,高超声速钝锥边界层稳定性特性,博士毕业论文,上海,上海大学,2010
    [39] Cebeci T., Shao J. P., Chen H. H.et al., The Preferred Approach for Calculating Transition by Stability Theory, Proceeding of international conference on boundary and interior layers, ONERA, Toulouose France, 2004
    [40] Cebeci T., Stewartson K., On Stability and Transition in Three-Dimensional Flow., AIAA Journal, 1980, 18 (4) : 398-405
    [41] Crouch J. D., Kosorygin V. S., Ng L. L., Modeling the Effects of Steps On Boundary-Layer Transition, Proceedings of the sixth IUTAM Symposium on Laminar Turbulent Transition, Bangalore,India: Springer, 2004, 37-44
    [42] Malik M. R., Boundary-Layer Transition Prediction Toolkit, AIAA Paper 1997-1904, 1997
    [43]苏彩虹,周恒,小攻角高超音速尖锥边界层的转捩预测及E~N法的改进,中国科学(G辑:物理学力学天文学),2009,39(01): 123-130
    [44] Reshotko E., Is Reθ/Me a Meaningful Transition Criterion? , AIAA Paper 2007-0943, 2007
    [45] Zoby E. V., Comparisons of Free-Flight Experimental and Predicted Heating Rates for the Space Shuttle, AIAA Paper 1982-0002, 1982
    [46] Reshotko E., Tumin A., Spatial Theory of Optimal Disturbances in a Circular Pipe Flow, Physics Of Fluids, 2001, 13 (4) : 991-996
    [47] Reshotko E., Tumin A., Role of Transient Growth in Roughness-Induced Transition, AIAA Journal, 2004, 42 (4) : 766-770
    [48] Tumin A., Reshotko E., Optimal Disturbances in Compressible Boundary Layers, AIAA Journal, 2003, 41 (12) : 2357-2363
    [49] Tumin A., Reshotko E., Spatial Theory of Optimal Disturbances in Boundary Layers, Physics Of Fluids, 2001, 13 (7) : 2097-2104
    [50] Anderson J., Hypersonic and High Temperature Gas Dynamics, NewYork: McGraw-Hill, 1989
    [51] Stetson K. F., Mach 6 Experiments of Transition On a Cone at Angle of Attack, Journal Of Spacecraft And Rockets, 1982, 19 (5) : 397-403
    [52] Dicristina V., Three Dimensional Laminar Boundary Transition On a Sharp 8 Deg Cone at Mach 10, AIAA Journal, 1970, 8 (5) : 852-856
    [53] Ward L. K., Influence of Boundary Layer Transition On Dynamic Stability at Hypersonic Speeds, Transactions of the Second Technical Workshop on Dynamic Stability Testing,Vol. II, : AEDC, 1965, 1972-1973
    [54] Holden M. S., Studies of the Effects of Transitional and Turbulent Boundary Layers On the Aerodynamic Performance of Hypersonic Re-Entry Vehicles in High Reynolds Number Flows, AFOSR-TR-79-0125, 1978
    [55] Krogmann P., Experimental Study of Boundary Layer Transition On a Slender Cone at Mach 5., AGARD Conf Proc, 1977, (224) : 21-26
    [56] Stetson K., Rushton G. H., A Shock Tunnel Investigation of the Effects of Nose Bluntness Angle of Attack and Boundary Layer Cooling On Boundary Layer Transition at Mach Number of 5.5, AIAA Paper 1966-495, 1966
    [57] Martellucci A., Neff R. S., Truelll W. H., An Experimental Investigation of Boundary Layer Transition On a Cone at Angle of Attack, NASA TR-69-0383, 1969
    [58] Muir J. F., Trujillo A. A., Experimental Investigation of the Effects of Nose Bluntness, Free-Stream Unit Reynolds Number, and Angle of Attack On Cone Boundary Layer Transition at a Mach Number of 6, AIAA Paper 1972-216, 1972
    [59] Sakell L. E., An Experimental Investigation of Boundary Layer Transition Over Three Axially Symmetric Bodies at Mach 6, Ph.D thesis, New York, New York University, 1972
    [60] Schneider S. P., Hypersonic Laminar-Turbulent Transition On Circular Cones and Scramjet Forebodies, Progress In Aerospace Sciences, 2004, 40(1-2) : 1-50
    [61] Stetson K. F., Thompson E., Laminar Boundary Layer Stability Experiments On a Cone at Mach 8, Part 1: Sharp Cone, AIAA Paper 1983-1761, 1983
    [62] Stetson K. F., Thompson E., Laminar Boundary Layer Stability Experiments On a Cone at Mach 8, Part 2: Blunt Cone, AIAA Paper 1984-0006, 1984
    [63] Stetson K. F., Thompson E., Laminar Boundary Layer Stability Experiments On a Cone at Mach 8, Part 3: Sharp Cone at Angle of Attack, AIAA Paper 1985-0492, 1985
    [64] Stetson K. F., Thompson E., Laminar Boundary Layer Stability Experiments On a Cone at Mach 8, Part 4: On Unit Reynolds Number and Environmental Effects., AIAA Paper 1986-1087, 1986,
    [65] Stetson K., Kimmel R., On Hypersonic Boundary-Layer Stability, AIAA Paper 1992-0737, 1992
    [66] Lachowicz J. T., Chokani N., Wilkinson S. P., Boundary-Layer Stability Measurements in a Hypersonic Quiet Tunnel, AIAA Journal, 1996, 34 (12) : 2496-2500
    [67] Kimmel R. L., Demetriades A., Donaldson J. C., Space-Time Correlation Measurements in a Hypersonic Transitional Boundary Layer, AIAA Journal, 1996, 34 (12) : 2484-2489
    [68] Boutin D. A., Shiplyuk A., Experimental investigations of disturbance development in the hypersonic boundary layer on conical models, in: Proceedings of the IUTAM Symposium on Laminar-Turbulent Transition. Sedona, 1999
    [69] Steven P. S., Hypersonic Laminar Instability On Round Cones Near Zero Angle of Attack, AIAA Paper 2001-0206, 2001
    [70] Horvath T., Berry S., Hollis B.et al., Boundary Layer Transition On Slender Cones in Conventional and Low Disturbance Mach 6 Wind Tunnels, AIAA Paper 2002-2743, 2002
    [71] Doggett G. P., Chokani N., Hypersonic Boundary-Layer Stability Experiments On a Flared-Cone Model at Angle of Attack in a Quiet Wind Tunnel, NASA CR-201617, 1996
    [72] Schneider S. P., Development of Hypersonic Quiet Tunnels, Journal Of Spacecraft And Rockets, 2008, 45 (4) : 641-664
    [73] Ng L. L., Erlebacher G., Secondary Instabilities in Compressible Boundary Layers, Physics of Fluids A, 1992, 4 (4) : 710-726
    [74] Erlebacher G., Hussaini M. A., Numerical Experiments in Supersonic Boundary-Layer Stability, Physics of Fluids A, 1990, 2 (1) : 94-104
    [75] Thumm A., Wolz W., Fasel H., Numerical Simulation of Spatially GrowingThree-Dimensional Disturbance Waves in Compressible Boundary Layers, in: Laminar-turbulent transition Proceedings of the IUTAM Symposium, Toulouse, France: Springer, 1990, 303-308
    [76] Fasel H., Thumm A., Bestek H., Direct Numerical Simulation of Transition in Supersonic Boundary Layers: Oblique Breakdown, Washington, DC, USA: Publ by ASME, New York, NY, United States, 1993, 77-92
    [77] Ei(?)ler W., Bestek H., Spatial Numerical Simulations of Linear and Weakly Nonlinear Wave Instabilities in Supersonic Boundary Layers, Theoretical And Computational Fluid Dynamics, 1996, 8 (3) : 219-235
    [78] Eibler W., Bestek H., Spatial Numerical Simulations of Nonlinear Transition Phenomena in Supersonic Boundary Layers, Washington, DC, USA: Publ by ASME, New York, NY, United States, 1993, 69-76
    [79] Pruett C. D., Zang T. A., Chang C. L.et al., Spatial Direct Numerical Simulation of High-Speed Boundary-Layer Flows Part I: Algorithmic Considerations and Validation, Theoretical And Computational Fluid Dynamics, 1995, 7 (1) : 49-76
    [80] Pruett C. D., Chang C. L., Spatial Direct Numerical Simulation of High-Speed Boundary-Layer Flows Part Ii: Transition On a Cone in Mach 8 Flow, Theoretical And Computational Fluid Dynamics, 1995, 7 (5) : 397-424
    [81] Pruett C. D., Chang C. L., Direct Numerical Simulation of Hypersonic Boundary-Layer Flow On a Flared Cone, Theoretical And Computational Fluid Dynamics, 1998, 11 (1): 49-67
    [82] Zhong X., Direct Numerical Simulation of Hypersonic Boundary Layer Transition Over Blunt Leading Edges, Part I: New Numerical Methods and Validation, AIAA Paper 1997-0755, 1997
    [83] Zhong X., Direct Numerical Simulation of 3-D Hypersonic Boundary Layer Receptivity to Freestream Disturbances, AIAA Paper 1998-0533, 1998
    [84] Zhong X., High-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition, Journal Of Computational Physics, 1998, 144 (2): 662-709
    [85]黄章峰,曹伟,周恒,超音速平板边界层转捩中层流突变为湍流的机理——时间模式,中国科学G辑,2005,35(05):537-547
    [86]曹伟,黄章峰,周恒,超音速平板边界层转捩中层流突变为湍流的机理研究,应用数学和力学,2006,27(04): 379-386
    [87] Li X., Fu D., Ma Y., Direct Numerical Simulation of Hypersonic Boundary-Layer Transition Over a Blunt Cone, AIAA Journal, 2008, 46 (11) : 2899-2913
    [88] Li X., Fu D., Ma Y., Direct Numerical Simulation of Hypersonic BoundaryLayer Transition Over a Blunt Cone with a Small Angle of Attack, Physics Of Fluids, 2010, 22 (2) : 1-18
    [89]阎超,计算流体力学方法及应用,北京:北京航空航天大学出版社,2006
    [90] Malik M. R., Spall R. E., Chang C. L., Effect of Nose Bluntness On Boundary Layer Stability and Transition, AIAA Paper 1990-0112, 1990
    [91] Herbert T., Esfahanian V., Stability of Hypersonic Flow Over a Blunt Body, AGARD-CP-514, 1992
    [92] Kufner E., Dallmann U., Stilla J., Instability of Hypersonic Flow Past Blunt Cones-Effects of Mean Flow Variations, AIAA Paper 1993-2983, 1993
    [93]闫溟,罗纪生,超声速流中圆锥头部钝度对边界层稳定性的影响,空气动力学报,2008,26(4): 430-434
    [94]苏彩虹,周恒,零攻角小钝头钝锥高超音速绕流边界层的稳定性分析和转捩预报,应用数学和力学,2007,28(05): 505-513
    [95] Anderson D. A., Tannehill J. C., Pletcher R. H., Computational Fluid Mechanics and Heat Transfer, NewYork: Hemisphere, 1984
    [96]陈兵,徐旭,蔡国飙,一种求解抛物化Navier-Stokes方程的空间推进算法,力学学报,2008,40(02): 162-170
    [97] Lubard S. C., Helliwell W. S., Calculation of the Flow On a Cone at High Angle of Attack., AIAA Journal, 1974, 12 (7) : 965-74
    [98] Yoon S., Jameson A., Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier-Stokes Equations, AIAA Journal, 1988, 26 (9) : 1025-1026
    [99] Vigneron Y. C., Rakich J. V., Tannehill J. C., Calculation of Supersonic Viscous Flows Over Delta Wings with Sharp Subsonic Leading Edge, AIAA Paper 1978-1137, 1978
    [100] Thivet F., The Exact Jacobian Associated with Steady Pns Equations and its Use to Define New Numerical Schemes, in: Baines M J and Morton K W, Sixteenth International Conference on Numerical Methods in Fluid Dynamics, Arcachon, France:Springer, 1998, 320-325
    [101]闫溟,超声速小攻角钝锥边界层稳定性分析及转捩预测研究,博士毕业论文,天津,天津大学,2008
    [102]苏彩虹,高超音速圆锥边界层的转捩预测及e-N方法的改进,博士毕业论文,天津,天津大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700