用户名: 密码: 验证码:
环境磁学在加拿大伊利湖西盆地北岸Cedar滩的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们用环境磁学方法研究了加拿大伊利湖西盆地Cedar滩(41.68°N, 82.40°W)沉积物的运动过程,来评估他们在理解自然和人为的湖岸侵蚀和沉积方面的适用性。富含重矿物的暗红色沙的主要磁性矿物是低钛或无钛磁铁矿,主要磁颗粒是PSD-MD,并有一些SD-SP颗粒,这些沙的次要磁性矿物是硬磁矿物(即:磁赤铁矿、赤铁矿或针铁矿)。这项研究不仅揭示了Cedar滩沙的磁性浓度、沙粒大小(SGS)、磁性颗粒大小(MGS)、重矿物组合的空间变化,和暗示了它们之间的关系,而且观察了季节性变化对沙滩的影响,并突出显示了化学作用(包括生物化学作用)对滩沙(尤其是近湖水区的大粒沙)的可能影响。
     通过测量滩沙的表面磁化率,在横越沙滩方向上,我们把沙滩分成3个区:区1是指接近湖水的向湖区,区2是指冲刷区近陆的高处,区3是指位于冲刷区高处之外的向陆区。较高处或沙丘(UD)靠着沙滩、邻近区3并在区3的近陆一侧。选取3组横越沙滩的剖面(西部、中部和东部),来观察西部滩、中部滩和东部滩的剖面变化。
     在横越沙滩方向上,区2显示了最高的体积磁化率(κ)、较小粒度沙(<250μm;重矿物组合)占全沙的质量百分比、质量磁化率(χ)、质量饱和等温剩磁(SIRMmass)和质量非磁滞剩磁(ARM_(mass))。在西部和中部滩,所有磁性浓度参数值,由区2到区1 (向湖方向)降低,由区2到区3(向陆方向)升高,然而在东部滩,这些参数值由区1到区3一直缓缓升高。磁性浓度参数值的变化(即:κ,χ, SIRMmass和ARM_(mass))与重矿物组合和滩沙粒度大小(SGS)的分布有关。在西部和中部滩,由区1到区2,重矿物比例增加,沙粒变细,而由区2到区3,重矿物的比例降低,沙粒变粗。在东部滩,从区1到区3,重矿物的比例一直缓慢增加,沙粒稍微变细。然而,磁性粒度的变化与沙粒的变化相反,它由区1(主要含PSD-小MD和较多SD-SP)到区3 (主要含大PSD-MD和较少SD-SP)轻微变粗。在西部和中部滩,区1的沙样比区2和区3的含稍多的硬磁矿物;而在东部滩,区1和区2的沙样比区3的含稍多的硬磁矿物。高处(或沙丘)与相邻的区3的沙样表现相似的性质。
     在沿着沙滩方向上,西部滩有最高的磁性浓度(即:重矿物的比例)。从西到东,磁性浓度降低,由此,重矿物的比例降低,沙粒变粗。磁性粒度从西(PSD-MD和较少SD)到东(PSD-小MD和较多SD)轻微变细。西部剖面比东部和中部剖面含的硬磁矿物少。
     波浪和水流在沿着沙滩和横越沙滩的方向上,优先搬运和分选粒度大、比重较小的沙,导致了滩沙的这种空间变化。南西西(SWW)的主风引起了北东东(NEE)方向的波浪。由于波浪和水流把沿岸滩沙搬运到Cedar滩东部沉积下来,遭受剥蚀的西部滩比沉积扩张的东部分布有重矿物(包括磁铁矿)浓度更高的细粒滩沙。气候因素(例如:强风和暴风浪)引起的湖水面的变化,可能已经引起了沙滩剥蚀和扩张,进而间接影响了滩沙的分布和湖岸线的取向变化。在滩沙沿岸搬运和沉积过程中,次要沙滩过程(化学变化,包括生物化学)的影响会丰富磁性粒度种类、促进硬磁矿物产生,在波浪和水流进一步作用下,磁性颗粒和硬磁矿物会在沙滩上呈现更有规律的空间分布。这项研究不仅可以促进对沙滩动力学更好的理解,而且可以获得更多关于湖泊-沙滩这个环境生态系统研究的有用信息,有助于更好地管理Cedar滩这个娱乐性沙滩。
The use of magnetic methods to examine sediment transport and motion processes on beaches has been studied on Cedar Beach (Western Lake Erie), in order to evaluate their applicability in understanding natural and anthropogenic coastal erosion and accretion. Magnetic studies of the heavy mineral-enriched, dark-reddish sands present on Cedar Beach (41.68°N, 82.40°W) showed that (low-Ti) magnetite (dominant PSD-MD and some SD-SP) is the dominant magnetic mineral and the hard magnetic mineral (HM) (i.e. maghemite, hematite or goethite) is the secondary in these sands. This study reveals spatial variations in the concentration, sand grain size (SGS), magnetic grain size (MGS) and heavy mineral assemblages, on the beach, and indicates a correlation between them. It also examines the influence of seasonal changes on the beach, and hightlights chemical (biochemical) effects on the beach sand, especially on the larger size ones in the areas close to water.
     Surficial magnetic susceptibility values defined three zones: a lakeward region close to the water’s line (Zone 1), the upper swash zone (Zone 2) and the landward region beyond the upper swash zone (Zone 3). The slightly higher upland areas or sand dunes (UD) neighbour to Zone 3 and back the beach face. Three groups of cross-shore transects (West, Middle and East) were chosen to investigate the profile changes in the western, central and eastern sections of the beach.
     Across the shore, Zone 2 showed the highest bulk susceptibility (κ), mass percentage of smaller grain-size (<250μm) fractions (i.e. heavy mineral assemblage) in the bulk sand sample, mass-normalized susceptibility (χ), mass-normalized saturation isothermal remanent magnetization (SIRM_(mass)) and mass-normalized anhysteretic remanent magnetization (ARM_(mass)). All magnetic concentration values decrease both towards the lake (Zone 1) and towards the land (Zone 3) on the West and Middle, while these values are slowly increasing from Zone 1 to Zone 3 on the East. The variations of magnetic concentration parameters (i.e.κ,χ, SIRM_(mass) and ARM_(mass)) correlate with the distribution of the heavy mineral assemblage and the small SGS of the beach sand. From Zone 1 to Zone 2, the percentage of heavy minerals increased and SGS fined on three (West, Middle and East) sections. From Zone 2 to Zone 3, the percentage of heavy minerals decreased and SGS coarsened on the West and Middle, while the percentage of heavy minerals increased and SGS fined on the East. Contrary to the variability of SGS, MGS slightly increased from Zone 1 (PSD-small MD and more SD-SP) to Zone 3 (large PSD-MD and less SD-SP). Zone 1 had slightly more HM than Zone 2 and Zone 3 on the West and Middle, while Zone 1 and Zone 2 had more HM than Zone 3 on the East. UD showed similar features to their neighbouring Zone 3.
     Along the shore, the West showed the highest magnetic concentration (i.e. percentage of heavy minerals). From the West to East, magnetic concentration values decreased, and thus the percentage of heavy minerals decreased and SGS increased. MGS somewhat decreased from the West (large PSD-MD and less SD) to the East (PSD-small MD and more SD). The West showed less HM than the Middle and East transects.
     This spatial variation results from the preferential separation of large, less dense particles by waves and currents both along and across the beach. The prevailing strong west-southwest winds generated dominant east-northeastward directed waves. The eroded western section of Cedar Beach showed much higher concentrations of heavy minerals including magnetite, and finer sand grain sizes than the accreting eastern section, as the waves and longshore currents transported the eroded sand alongshore and deposited it in the east section. Lake-level changes induced by climate factors such as strong winds and storm waves, have probably influenced both the distribution of the beach sands and the orientation of the shoreline due to erosion and accretion. Effects of secondary beach processes (Chemical actions including biochemical actions) during sediment transport and deposit might be helpful for the enrichment of MGS ranges and creation of HMs, and grain-sorting processes by waves and currents can further promote the more regular distribution of MGSs and hard minerals on the beach. This study has led to a better understanding of the beach’s dynamics, thereby enabling more useful information for a lake-beach ecological system and better environmental management of this recreational region.
引文
[1] Andrew J, Coopera G, Pilkeyb OH. Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Global and Planetary Change, 2004, 43: 157–171
    [2] Baedke SJ, Thompson TA, Johnston JW, et al. Reconstructing paleo lake levels from relict shorelines along the Upper Great Lakes: Aquatic Ecosystem Health and Management. 2004, 7: 435-449.
    [3] Banerjee SK, King J, Marvin J. A rapid method for magnetic granulometry with applications to environmental studies. Geophys Res Lett, 1981, 8: 333– 336
    [4] Barnett PJ. Glacial retreat and lake levels, north central Lake Erie Basin, Ontario, in Karrow, PF and Calkin, PE (editors). Quaternary Evolution of the Great Lakes, Geological Association of Canada Special Paper, 1985, 30: 185-194
    [5] Barnett PJ. Quaternary Geology, Long Point - Port Burwell Area, Ontario. Geological Survey Report, 1998, 298:143 p., maps
    [6] Berg DW, Duane DB. Effect of particle size and distribution on stability of artificially filled beach, Presque'isle Peninsula, Peun. Proc. Eleventh Conf Great Lakes Res., pp. 161-178: Internat, Assoc, Great Lakes Res, 1968, Milwaukee
    [7] Berner RA. A new geochemical classification of sedimen-tary environments. J Sediment Petrol, 1981, 511: 359–365
    [8] Bjorck S, Dearing JA, Jonsson A. Magnetic susceptibility of the late Weichselian deposits in S. E. Sweden. Boreas, 1982, 11: 99-111
    [9] Blakemore RP. Magnetotactic bacteria. Science, 1975, 190: 377-379
    [10] Blakemore RP. Magnetotactic bacteria. Annual review of Microbiology, 1982, 36: 217-238
    [11] Bloemendal J, King JW, Hall FR, et al. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology. J Geophys Res, 1992, 97: 4361–4375
    [12] Bogg S. Principles of Sedimentology and Stratigraphy, Upper Saddle River. Prentice Hall, 2001, 726 p
    [13] Bolsenga SJ, Herdendorf, CE. Lake Erie and Lake St. Clair Handbook. Wayne State University Press, Detroit MI, 1993, 467 p
    [14] Booth CA, Walden J, Neal, A, et al. Use of mineral magnetic concentration data as a particle size proxy: a case study using marine, estuarine and fluvial sediments in the Carmarthen Bay area, South Wales, U.K. Science of the Total Environment, 2005, 347: 241-253
    [15] Bryan KR, Robinson A, Briggs RM. Spatial and temporal variability of titanomagnetite placer deposits on a predominantly black sand beach. Marine Geology, 2007, 236: 45–59
    [16] Caitcheon G. Sediment source tracing using environmental magnetism: a new approach with examples from Australia. Hydrological Processes, 1993, 7: 349-358
    [17] Caitcheon G. The significance of various sediment magnetic mineral fractions for tracing sediment sources in Killimicat Creek. Catena, 1998, 32: 131-142
    [18] Carling PA, Breakspear RMD. Placer formation in gravel-bedded rivers: A review. Ore Geology Reviews, 2006, 28: 377–401
    [19] Carter CH. The November 1972 storm on Lake Erie. Ohio Dept. Nat. Resourc., Div. Geological Survey Infor Circ, 1973, 39: 12 pp
    [20] Carter CH, Neal WJ, Haras WS, et al. Living with the Lake Erie shore, Duke University Press. Durham, North Carolina, 1987, 263 p
    [21] Chan LS, Ng SL, Davis AM. Magnetic properties and heavy-metal contents of contaminated seabed sediments of Penny's Bay, Hong Kong. Marine Pollution Bulletin, 2001, 42(7): 569-583
    [22] Cioppa MT, Kodama KP. Environmental magnetic and magnetic fabric studies in Lake Waynewood, northeastern Pennsylvania, USA: Evidence for changes in watershed dynamics. Journal of Paleolimnology, 2003, 29: 61–78
    [23] Cioppa MT, Porter N, Igbokwe B, Vickers J, Trenhaile A. Magnetic studies of coastal processes on the Northern Shoreline of Lake Erie, Ontario, Canada, Journal of Great Lakes Research, 2010 (in press)
    [24] Clark A. Lake Erie Holocene Coastal Evolution near the Portage River-Catawbaisland, Ohio. Unpublished MSc Thesis, Bowling Green State University, 2008
    [25] Coakley JP. Nearshore sediment studies in western Lake Erie. Proc. 15th Conf. Great Lakes Res, 1972, 330-343. Internat. Assoc. Great Lakes Res.
    [26] Coakley JP, Cho HK. Shore erosion in western Lake Erie. Proc. 15th Conf. Great Lakes Res, 1972, 330-343. Internat. Assoc. Great Lakes Res.
    [27] Coakley JP, Lewis CF. Postglacial lake levels in the Erie Basin, in Karrow, PF, Calkin, PE (eds,), Quaternary evolution of the Great Lakes: Geological Survey of Canada Special Paper 30, 1985, 195-212
    [28] Collinson DW. Methods in rock magnetism and paleomagnetism techniques and instrumentation, London New York, Chapman and Hall, 1983
    [29] Curtis C. Mineralogical consequences of organic matter degradation in sediments: Inorganicrorganic diagenesis, in: J.K. Legett Ed.., Marine Clastic Sedimentology, G.G.Z.Graham and Trotman, London, 1987 108–123
    [30] Cui Y, Verosub KL, Roberts AP. The effect of low-temperature oxidation on large multi-domain magnetite. Geophys Res Lett, 1994, 21, 757–760
    [31] Day R, Fuller M, Schmidt VA. Hysteresis properties of titanomagnetite: grain-sizes and compositional dependence. Physics of the Earth and Planetary Interiors, 1977, 7(13): 260-67
    [32] Dearing JA, Flower RJ. The magnetic susceptibility of sedimenting material trapped in Lough Neagh, Northern Ireland. Limnology and Oceanography, 1982, 27: 969-975
    [33] Dearing JA. Sediment yields and sources in a Welsh upland lake-catchment during the past 800 years. Earth Surface Processes and Landforms, 1992, 17: 1-22
    [34] Dearing JA, Dann RJL, Hay K, et al. Frequencydependent susceptibility measurements of environmental materials. Geophys J Int, 1996, 124: 228-40
    [35] Dearing JA, Hu Y, Doody P, et al. Preliminary reconstruction of sediment-source linkages for the past 6000 yrs at the Petit Lac d’Annecy, France, based on mineral magnetic data. Journal of Paleolimnology, 2001, 25: 245-258
    [36] Deng CL, Zhu RX, Jackson MJ, et al. Variability of the Temperature-Dependent Susceptibility of the Holocne Eolian Deposits in the Chinese Loess Plateau: A Pedogenesis Indicator. Phys Chem Earth (A), 2001, 26(11-12): 873-878
    [37] Deng CL, Zhu RX, Verosub KL, et al. Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. J Geophys Res, 2004, 109:B01103, doi: 01110.01029/02003JB002532
    [38] Dillenburg SR, Tomazelli LJ, Barboza EG. Barrier evolution and placer formation at Bujuru southern Brazil. Marine Geology, 2004, 203: 43-56
    [39] Dunlop DJ. Coercive forces and coercivity spectra of submicron magnetites, Earth Planet Sci Lett, 1986, 78: 288-295
    [40] Dunlop DJ. Theory and application of the Day plot (Mrs /Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J Geophys Res, 2002a, 107(B3), doi: 10.1029/2001JB000486
    [41] Dunlop DJ. Theory and application of the Day plot (Mrs /Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. J Geophys Res, 2002b, 107(B3), doi: 10.1029/2001JB000487
    [42] Dunlop DJ, Ozdemir O. Rock Magnetism: Fundamentals and Frontiers. Cambridge (UK): Cambridge University Press, 1997, 1-573 p
    [43] Dusini DS, Foster DL, Shore JA, et al. The effect of Lake Erie water level variations on sediment resuspension. Journal of Great Lakes Research, 2009, 35(1): 1-12
    [44] Environment Canada and U.S. Environmental Protection Agency (EC and USEPA). State of the Great Lakes, 2005, EPA 905-R-06-001. En161-3/0-2005E-PDF
    [45] Evans ME, Heller F. Environmental Magnetism: Principles and Applications of Enviromagnetics. Academic press, New York, 2003, 382 pp
    [46] Fuller JA. Storm-induced water-level changes in Lake Erie, Ohio Geology Newsletter, Ohio DNR, Division of Geologic Survey, 1988
    [47] Foster IDL, Albon AJ, Bardell KM, et al. High energy coastal sedimentary deposits; an evaluation of depositional processes in southwest England. Earth Surface Processes and Landforms, 1991, 16: 341-356
    [48] Foster IDL, Walling DE. Using reservoir deposits to reconstruct changing sediment yields and sources in the catchment of the Old Mill Reservoir, South Devon, UK, over the past 50 years. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 1994, 39: 347-368
    [49] Foster IDL, Charlesworth SM. Heavy metals in the hydrological cycle: trends and explanation. Hydrological Processes, 1996, 10: 227-261
    [50] Frihy OE, Khafagy AA. Climate and induced changes in relation to shoreline migration trends at the Nile Delta promontories, Egypt. Catena, 1991, 18: 197-211
    [51] Frihy OE. Sea-Level Rise and Shoreline Retreat of the Nile Delta Promontories, Egypt. Natural Hazards, 1992, 5: 65-81
    [52] Frihy OE. Discrimination of accreted and eroded coasts using heavy mineral compositions of the Nile Delta beach sands, Egypt. Sedimentology, 1994, 41: 905-912
    [53] Frihy OE, Lotfy MF. Shoreline changes and beach-sand sorting along the northern Sinai coast of Egypt. Geo-Marine Letters, 1997, 17: 140-146
    [54] Gedney RT, Lick W. Wind-Driven Currents in Lake Erie, J Geophys Res, 1972, 77(15): 2714-2723
    [55] Geiss CE, William Zanner C, Banerjee SK, et al. Signature of magnetic enhancement in a loessic soil in Nebraska, United States of America. Earth Planet Sci Lett, 2004, 228: 355-367
    [56] Geiss CE, Egli R, William Zanner C. Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils. J Geophys Res, 2008, 113: B11102, doi:10.1029/2008JB005669
    [57] Grand River Conservation Authority (CRCA). Lake Erie Shoreline Protection Policy, 2006
    [58] Hands EB. A geomorphic map of Lake Michigan shoreline. Proc. Thirteenth Conference on Great Lakes Research, 1970, 250-265: Internat. Assoc. Great Lakes Research, Buffalo
    [59] Hatfield RG, Maher BA. Suspended sediment characterization and tracing using a magnetic fingerprinting technique: Bassenthwaite Lake, Cumbria, UK. The Holocene, 2008, 18(1): 105–115
    [60] Hatfield RG, Cioppa MT, Trenhaile AS. Sediment sorting and beach erosion along a coastal foreland: Magnetic measurements in Point Pelee National Park, Ontario, Canada. Sedimentary Geology, 2010, 231: 63–73
    [61] Hawley N, Eadie BJ. Observations of Sediment Transport in Lake Erie during the Winter of 2004–2005. J. Great Lakes Res, 2007, 33: 816–827. Internat. Assoc. Great Lakes Res
    [62] Hesse P, Stolz JF. Bacterial magnetite and the Quaternary climate record. In: Maher, B.A. and Thompson, R. (eds.) Quaternary Climates, Environments and Magnetism, Cambridge University Press, Cambridge, 1999
    [63] Herdendorf CE, Bailey ML. Evidence for an Early Delta of the Detroit River in Western Lake Erie. OHIO J SCI, 1989, 89 (1): 16-22
    [64] Herdendorf CE. Great Lakes estuaries. Estuaries, 1990, 13: 493-503
    [65] Herdendorf CE. Lake Erie Coastal Wetlands: An Overview. Journal of GreatLakes Research, 1992, 18: 533-551
    [66] Hilton J. Greigite and the magnetic properties of sediments. Limnology and Oceanography, 1990, 35: 497-508
    [67] Hodgkins GA, Dudley RW, Aichele SS. Historical Changes in Precipitation and Streamflow in the U.S. Great Lakes Basin, 1915-2004: U.S Geological Survey Scientific Investigations Report, 2007, 5118, 31 p
    [68] Holcombe TL, Warren JS, Taylor LA, et al. Lakefloor Geomorphology of Western Lake Erie, Journal of Great Lakes Research, 1997, 23: 190-201
    [69] Holcombe TL, Taylor, LA, Reid DF, et al. Revised Lake Erie postglacial lake level history based on new detailed bathymetry. Journal of Great Lakes Research, 2003, 29(4): 681-704
    [70] Holcombe TL, Taylor LA, Warren JS, et al. Lake-floor Geomorphology of Lake Erie. National Environmental Satellite, Data, and information Service, National Geophysical Data Center, World Data Center A for Marine Geology and Geophysics research publication RP-3, 2005 http://www.glerl.noaa.gov/pubs/fulltext/2005/20050001/
    [71] Horning Geosciences. Illustration showing principal geologic hazards acting along typical sea cliff in Oregon, 1998
    [72] Hou B, Frakes LA, Alley NF, et al. Evolution of beach placer shorelines and heavy-mineral deposition in the eastern Eucla Basin, South Australia. Australian Journal of Earth Sciences, 2003, 50: 955–965
    [73] Hughes MG, Keene JB, Joseph RG. Hydraulic sorting of heavy-mineral grains by swash on a medium-sand beach. Journal of Sedimentary Research, 2000, 70(5): 994–1004
    [74] Hutchinson DR, Lewis CFM, Hund GE. Regional Stratigraphic Framework of Surficial Sediments and Bedrock Beneath Lake Ontario. Geographie Physique et Quaternaire, 1993, 47(3): 337-352
    [75] Isla FI. Spatial and temporal distribution of beach heavy minerals: Mar Chiquita, Argentina. Ocean and Shoreline Management, 1991, 16: 161-173
    [76] Isla FI, Aliotta S. Storm Dispersal of Volcanogenic Sands from Buenos Aires, Where Heavy-Metal Concentrations Are Heavy-Mineral Segregations. Marine Georesources and Geotechnology, 1999, 17: 357-370
    [77] Jackson M, Gruber W, Marvin J, et al. Partial anhsyteretic remanence and its anisotropy: applications and grainsize-dependence. Geophys Res Lett, 1988, 14:440-443
    [78] Kapicka A, Petrovsky E, Ustjak S, et al. Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic. Journal of Geochemical Exploration, 1999, 66: 291-297
    [79] Kean WF. Distribution of magnetic sands on Lake Michigan beaches near Milwaukee, Wisconsin. Michigan Academician, 2004, 35: 479–92
    [80] Kirk RM, Komar PD, Allan JC, et al. Shoreline erosion on Lake Hawea, New Zealand, caused by high lake levels and storm-wave runup. Journal of Coastal Research, 2000, 16(2): 346-356
    [81] Komar PD, Wang C. Processes of selective grain transport and the formation of placers on beaches. The Journal of Geology, 1984, 92: 637-655
    [82] Komar PD, Li Z. Pivoting analyses of the selective entrainment of sediments by shape and size with application to gravel threshold. Sedimentology, 1986, 33: 425-436
    [83] Komar PD, Clemens KE, Li Z, Shih SM. The effects of selective sorting on factor analyses of heavy mineral assemblages. Journal of Sedimentary Petrology, 1989, 59: 590-596
    [84] Kodirov O, Shukurov N. Heavy Metal Distribution in Soils near the Almalyk Mining and Smelting Industrial Area, Uzbekista. Acta Geologica Sinica (English edition), 2008, 83(5): 985-990
    [85] Kruiver PP, Dekkers MJ, Heslop D. Quanti¢cation of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet Sci Lett, 2001, 189: 269-276
    [86] Larson G, Schaetzl R. Origin and Evolution of the Great Lakes. Journal of Great Lakes Research, 2001, 27: 518-546
    [87] Lees JA, Pethick JS. Problems associated with quantitative magnetic sourcing of the Scarborough to Mablethorpe coast, northeast England, U.K. Earth Surface Processes and Landforms, 1995, 20: 795-806
    [88] Leonhart R. Program for analyzing VFTB data. VFTB Analyzer 2.0, 2002
    [89] Lichtkoppler FR. Beaches are shore protection. Ohio Sea Grant College Program, Ohio State, US, 2002, OHSU-FS-020, 1989
    [90] Liu P, Jin CS, Zhang S, et al. Magnetic fabric of early Quaternary loess-paleosols of Longdan Profile in Gansu Province and the reconstruction of the paleowind directions. Chinese Sciense Bulletin, 2008, 53(9): 1450-1452
    [91] Liu QS, Banerjee SK, Jackson MJ, et al. A new method in mineral magnetism for the separation of weak antiferromagnetic signal from a strong ferrimagnetic background. Geophys Res Lett, 2002, 29: 1-4
    [92] Liu QS, Banerjee SK, Jackson MJ, et al. New insights into partial oxidation model of magnetites and thermal alteration of magnetic mineralogy of the Chinese loess in air. Geophys J Int, 2004, 158: 506-514
    [93] Liu QS, Yu YJ. Multi-cycle low-temperature demagnetization (LTD) of multidomain Fe3O4 (magnetite). Journal of magnetism and magnetic materials, 2004, 283: 150-156
    [94] Liu QS, Deng CL, Yu YJ, et al. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols. Geophys J Int, 2005, 161(1): 102-112
    [95] Liu QS, Deng CL. Chinese Journal of Geophysics (in Chinese), 2009, 52(4): 1041-1048
    [96] Lowrie W, Fuller M. On the alternating field demagnetization characteristics of multidomain thermoremanent magnetization in magnetite. J Geophys Res, 1971, 76: 6339-6349
    [97] Maher BA. Characterisation of soils by mineral magnetic measurements. Physics of the Earth and Planetary Interiors, 1986, 42: 76-92
    [98] Maher, BA. Magnetic properties of modern soils and loessic paleosols: implications for paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 137: 25-54
    [99] Maher BA, Karloukovski VV, Mutch TJ. High-field remanence properties of synthetic and natural submicrometre haematites and goethites: significance for environmental contexts. Earth Planet Sci Lett, 2004, 226: 491-505
    [100] Maher BA, Watkins SJ, Brunskill G, et al. Sediment provenance in a tropical fluvial and marine context by magnetic‘fingerprinting’of transportable sand fractions. Sedimentology, 2008, 5: 841-861
    [101] McDonald WE. Variation in Great Lakes levels in relation to engineering problems. Proc. Fourth Conference on Coastal Engineering, 1954, 249-257: Council on Wave Research, Univ. California, Berkley
    [102] Middleton GV. Encyclopedia of sediments and sedimentary rocks. Springer Netherlands, 2003, ISBN-10: 1402008724
    [103] Mooney SD, Geiss C, Smith MA. The Use of Mineral Magnetic Parameters toCharacterize Archaeological Ochres. Journal of Archaeological Science, 2002, 29:000–000, doi:10.1006/jasc.0856
    [104] Nagamalleswara Rao B, Deva Varma D, Satyanarayana G, et al. Suitability of coastal magnetite for ferrite preparation. Current Science, 2003, 84(7): 936-938
    [105] NOAA. National Data Buoy Center. http://www.ndbc.noaa.gov/station_page. phtml?station=45005, 2004
    [106] Nordstrom KF. Beaches and dunes of human-altered coasts. Progress in Physical Geography, 1994, 18(4): 497-516
    [107] Nummedal D, Sonnenfeld DL, Taylor K. Sediment transport and morphology at the surf zone of Presque Isle, Lake Erie, Pennsylvania. Marine Geology, 1984, 60: 99-122
    [108] Ontario Geological Survey (OGS). Surficial Geology of Southern Ontario, Miscellaneous Release Data, 2003, 128
    [109] Oldfield F, Rummery TA, Thompson R, et al. Identification of suspended sediment sources by means of magnetic measurements– some preliminary results. Water Resources Research, 1979, 15: 211-218
    [110] Oldfield F, Maher BA, Donoghue J, et al. Particle-size related, mineral magnetic source sediment linkages in the Rhode River catchment, Maryland, USA. Journal of the Geological Society, 1985, 142: 1035-1046
    [111] Oldfield F, Yu LH. The influence of particle size variations on the magnetic properties from the Northeasten Irish Sea. Sedimentology, 1994, 41: 1093-1108
    [112] Oldfield F, Wake R, Boyle J, et al. The late-Holocene history of Gormire Lake (NE England) and its catchment: a multiproxy reconstruction of past human impact. Holocene, 2003, 13: 677-690
    [113] ?zdemir ?, Dunlop DJ, Moskowitz BM. The Effect of Oxidation on the Verwey Transition in Magnetite. Geophys Res Lett, 1993, 20(16): 1671-1674
    [114] Paaschea ?, L?vlie R, Dahl SO, et al. Bacterial magnetite in lake sediments: late glacial to Holocene climate and sedimentary changes in northern Norway. Earth Planet Sci Lett, 2004, 22: 319– 333
    [115] Paaschea ?, Dahl SO, L?vlie R, et al. Rockglacier activity during the Last Glacial–Interglacial transition and Holocene spring snowmelting. Quaternary Science Reviews, 2007, 26: 793–807
    [116] Pan YX, Zhu RX, Banerjee SK, et al. Rock magnetic properties releated to thermal treatment of siderite: Behavior and interpretation. J Geophys Res, 2000,105(B1): 783-794
    [117] Pan YX, Zhu RX, Liu QS, et al. Low-temperature magnetic behavior related to thermal alteration of siderite. Geophys Res Lett, 2002, 29(23): 2087, doi:10.1029/2002GL016021
    [118] Pan YX, Deng CL, Liu QS, et al. Biomineralization and magnetism of bacterial magnetosomes, Chinese Science Bulletin, 2004, 49(24): 2563-2568
    [119] Pan YX, Petersen N, Winklhofer M, et al. Rock magnetic properties of uncultured magnetotactic bacteria. Earth Planet Sci Lett, 2005, 237: 311– 325
    [120] Peterson CD, Komar PD, Scheidegger KF. Distribution, geometry, and origin of heavy mineral placer deposits on Oregon beaches. Journal of Sedimentary Petrology, 1986, 56: 67–77
    [121] Petti M, Longo S. Hydrodynamics in the Swash Zone. International Journal of Offshore and Polar Engineering, 2001, 11(3): ISSN 1053-5381
    [122] Pick T & Tauxe L. Characteristics of magnetite in submarine basaltic glass, Geophys J Int, 1994, 119: 116-128
    [123] Razjigaeva NG, Naumova VV. Trace element composition of detrital magnetite from coastal sediments of northwestern Japan Sea for provenance study. Journal of Sedimentary Research, 1992, 62: 802-809
    [124] Roberts AP, Turner GM. Diagenetic Formation of Ferrimagnetic Iron Sulfide Minerals in Rapidly Deposited Marine-Sediments, South-Island, New-Zealand. Earth Planet Sci Lett, 1993, 115(1-4): 257-273
    [125] Roberts AP, Cui YL, Verosub KL. Wasp-waisted hysteresis loops: Mineral magnetics and discrimination of components in mixed magnetic systems. J Geophys Res, 1995, 100(B9): 17909-17924
    [126] Robertson DJ, Taylor KG, Hoon SR. Geochemical and mineral magnetic characterisation of urban sediment particulates, Manchester, UK. Applied Geochemistry, 2003, 18: 269-282
    [127] Rotman R, Naylor L, McDonnell R, MacNiocaill C. Sediment transport on the Freiston Shore managed realignment site: An investigation using environmental magnetism. Geomorphology, 2008, 100: 241–255
    [128] Rukavtna NA. Nearshore sediment survey of western Lake Ontario, methods and preliminary results. Proc. Twelfth Conference on Great Lakes Research, 1969, 317-324. internat. Assoc. Great Lakes Research, Ann Arbor.
    [129] Rukavina NA. Lake Ontario nearshore sediments, Whitby to Wellington,Ontario. Proc. Thirteen Conference on Great Lakes Research, 1970, 266-273, Internal, Assoc. Great Lakes Research, Buffalo
    [130] Schwab DJ, Beletsky D, DePinto J, et al. A hydrodynamic approach to modeling phosphorus distribution in Lake Erie. Journal of Great Lakes Research, 2009, 35: 50–60
    [131] Shi RP, Cioppa MT. Magnetic survey of topsoils in Windsor–Essex County, Canada. Journal of Applied Geophysics, 2006, 60:201–212
    [132] Snowball IF, Thompson R. The occurrence of greigite in sediments from Loch Lomond, Journal of Quaternary Science, 1988, 3: 121-125
    [133] Slingerland R. The effects of entrainment on the hydraulic equivalence relationships of light and heavy minerals in sands. Journal of Sedimentary Petrology, 1977, 47: 753-70
    [134] Slingerland R, Smith ND. Occurrence and formation of water-laid placers. Annual Review of Earth and Planetary Sciences, 1986, 14: 113–147
    [135] Stacey FD, Banerjee SK. The physical principles of rock magnetism. Elsevier, Amsterdam: 1974, 195 pp.
    [136] Symons DTA, Cioppa MT. Crossover plots: a useful method for plotting SIRM data in paleomagnetism. Geophys Res Lett, 2000, 27: 1779-1782
    [137] Tauxe L, Mullender TAT, Pick T. Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis. J. Geophys Res, 1996, 101(B1): 571–583
    [138] Thomas RL, Kemp ALW, Lewis CFM. Distribution composition and characteristics of the surficial sediments of Lake Ontario. Journal of Sedimentary Petrology, 1972, 42 (1): 66-84
    [139] Thompson R, Battarbee RW, O’Sullivan PE, et al. Magnetic-susceptibility of lake sediments. Limnology and Oceanography, 1975, 20: 687-698
    [140] Thompson R, Morton DJ. Magnetic susceptibility and particle size distribution in recent sediments of the Loch Lomond drainage basin, Scotland. Journal of Sedimentary Petrology, 1979, 49: 801-811
    [141] Thompson R, Oldfield F. Environmental Magnetism, Allen & Unwin, London, 1986
    [142] Thurman HV. Introductory oceanography. Prentice Hall, Simon and Schuster/A Viacom Company, New Jersey, 1997
    [143] Trenhaile AS. Geomorphology: A Canadian Perspective. Oxford UniversityPress, Canada, 2004
    [144] Trenhaile AS. Modelling the effect of waves, weathering and beach development on shore platform development. Earth Surface Processes and Landforms, 2005, 30: 613-634
    [145] U.S. Army Corps of Engineers (USACE). Report on the National Shoreline Study, 1971
    [146] U.S. Army Corps of Engineers (USACE). Shore Protection Manual, 1984
    [147] U.S. Army Corps of Engineers (USACE). Great Lakes Update, Detroit District, 2006 http://www.lre.usace.army.mil/_kd/go.cfm?destination=ShowItem&Item_ID
    [148] USEPA. Lake Erie Lakewide Management Plan, 2000 http://www.epa.gov/glnpo/lakeerie/lamp2000/frontend.pdf
    [149] van der post KD, Oldfield F, Haworth EY, et al. A record of accelerated erosion in the recent sediments of Blelham Tarn in the English Lake District. J. Paleolimnolimnology, 1997, 18: 103-120
    [150] Verosub KL, Roberts AP. Environmental magnetism: Past, present, and future. J Geophys Res, 1995, 100(B2): 2175–2192
    [151] Verwey EJ. Electric conduction of magnetite Fe3O4 and its transition points at low temperature. Nature, 1939, 144: 327-8
    [152] Walling DE, Peart MR, Oldfield F, et al. Suspended sediment sources identified by magnetic measurements. Nature, 1979, 281: 110-113
    [153] Walden J, Slattery MC, Burt TP. Use of mineral magnetic measurements to fingerprint suspended sediment sources: approaches and techniques for data analysis. Journal of Hydrology, 1997, 202: 353-372
    [154] Wang HQ, Zhang SH, Li HY. Magnetic properties of surface sediments at Beianhe, Beijing, and its environmental significance. Chinese Science Bulletin, 2008, 53(16): 2536-2546
    [155] Wang XS, L?vlie R, Su P. Rock magnetic properties of Nihewan sediments at Xujiayao. Science in China (Series D), 2002, 45(10): 939-948
    [156] Wang XS, Yang ZY, L?vlie R, et al. High-resolution magnetic stratigraphy of fluvio-lacustrine succession in the Nihewan Basin, China. Quaternary Science Reviews, 2004, 23: 1187-1198
    [157] Wang XS, Yang ZY, L?vlie R, et al. Environmental magnetism and paleoclimatic interpretation of the Sanmenxia loess-paleosol sequence in thesoutheastern extremity of the Chinese Loess Plateau. Chinese Science Bulletin, 2006, 55(22): 2755-2762
    [158] Wang XS, Yang ZY, L?vlie R, et al. A magnetostratigraphic reassessment of correlation between Chinese loess and marine oxygen isotope records over the last 1.1 Ma. Physics of the Earth and Planetary Interiors, 2006, 159:109–117
    [159] Wheeler AJ, Oldfield F, Orford JD. Depositional and post-depositional controls on magnetic signals from saltmarshes on the northwest coast of Ireland. Sedimentology, 1999, 46: 545-558
    [160] Williams EHJ, Goenagaa C, Vicente V. Mass beaching on Atlantic coral reefs. Science, 1987, 238(4830): 877-878
    [161] Williamson D, Jelinowska A, Kissel C, et al. Mineral-magnetic proxies of erosionroxidation cycles in tropical maar-lake sediments (Lake Tritrivakely, Madagascar): paleoenvironmental implications. Earth Planet Sci Lett, 1998, 155: 205–219
    [162] Wold RJ, Paul RA, Wolosin CA, et al. Geology of central Lake Michigan: American Association Petroleum Geology, 1981, 65: 1621-162
    [163] Wu HC, Zhang SH, Jiang GQ, et al. Chinese Journal of Oceanology and Limnology, 2005, 23(3): 291-298
    [164] Wu HC, Zhang SH, Jiang GQ, et al. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications. Earth Planet Sci Lett, 2009, 278: 308-323
    [165] Yang TS, Hyodo M, Yang ZY, et al. Evidence for the Kamikatsura and Santa Rosa excursions recorded in eolian deposits from the southern Chinese Loess Plateau. J Geophys Res, 2004, 109, B12105, doi:10.1029/2004JB002966
    [166] Yang TS, Hyodo M, Yang ZY, et al. A first paleomagnetic and rock magnetic investigation of calcareous nodules from the Chinese Loess Plateau. Earth Planets Space, 2005, 57: 29–34
    [167] Yang TS, Hyodo M, Yang ZY, et al. Latest Olduvai short-lived reversal episodes recorded in Chinese loess. J Geophys Res, , 2008, 113, B05103, doi:10.1029/2007JB005264
    [168] Yu LZ, Oldfield F. A multivariate model for identifying sediment source from magnetic measurements. Quaternary Research, 1989, 32: 168-181
    [169] Yu LZ, Oldfield F. Quantitative sediment source ascription using magneticmeasurements in a reservoir-catchment system near Nijar, SE Spain. Earth Surface Processes and Landforms, 1993, 18: 441–54
    [170] Zhang CX, Huang BC, Liu QS. Magnetic properties of different pollution receptor around steel plants and their environmental significance. Chinese Journal of Geophysics, 2009, 51(11): 2826-2839
    [171] Zhang SW, Walderhaug HJ. Rock Magnetic and Magnetic Anisotropy of Igneous Rocks from Taimyr Peninsula, Arctic Russia. Proceedings of IAMG’07 Geomathematics and GIS, Analysis of Resources, Environment and Hazards. First Edition, 2007, 411-414
    [172] Zhang SW, Walderhaug HJ, Yang YJ. Rock magnetism and magnetic fabrics in folded sills and basaltic flows: A case study of volcanics from the Taimyr Peninsula, Northern Russia. Chinese Science Bulletin, 2008, 53(5): 759-767
    [173] Zhang SW, Cioppa MT, Zhang SH. Magnetic Parameter Analysis in Studies of Holiday Beach, Western Lake Erie, Ontario, Canada. Fall Meeting-American Geophysical Union, Dec. 2008, Abstract No. GP11A-0706
    [174] Zhang SW, Cioppa MT, Zhang SH. Geochemical and Rock Magnetic Properties of a Purple Sand Belt on Cedar Beach, Western Lake Erie, Ontario, Canada. Joint Assembly, 2009, Abstract No. GP11H-02
    [175] Zhang SW, Cioppa MT, Zhang SH. Spatial Variability in Magnetic Properties of Sands on Cedar Beach, Western Lake Erie, Ontario, Canada. Fall Meeting-American Geophysical Union, Dec. 2009, Abstract No. GP43B-0862
    [176] Zhang SW, Cioppa MT, Zhang SH. Spatial variations in particle size and magnetite concentration on Cedar Beach: implications for grain-sorting processes, Western Lake Erie, Canada, Acta Geologica Sinica (English Edition), 2010, 84(6): 1520-1532
    [177] Zhang SW, Canon-Tapia E, Walderhaug HJ, 2010. Magnetic Fabric and Its Significance in the Sills and Lava Flows from Taimyr Fold-belt, Arctic Siberia. Tectonophysics (Under review)
    [178] Zhang WG, Yu LZ, Lu M, et al. Magnetic approach to normalizing heavy metal concentrations for particle size effects in intertidal sediments in the Yangtze Estuary, China. Environmental Pollution, 2007, 147: 238-244
    [179] Zhang WG, Yun M, Yu LZ, et al. Distinguishing sediments from the Yangtze and Yellow Rivers, China: a mineral magnetic approach, The Holocene, 2008,18(7): 1139–1145
    [180] Zhang WG, Feng H, Chang JN, et al. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes. Environmental Pollution, 2009, 147: 1-11
    [181] Zhou LP, Oldfield F, Wintle AG, et al. Partly pedogenic origin of magnetic variations in Chinese loess. Nature, 1990, 346: 737-739
    [182] Zhu RX, Matasova G, Kazansky A, et al. Rock magnetic record of the last glacial-interglacial cycle from the Kurtak loess section, southern Siberia. Geophys J Int, 2003b, 152(2): 335-343
    [183] Zhu RX, Liu QS, Jackson MJ. Paleoenvironmental significance of the magnetic fabrics in Chinese loess-paleosols since the last interglacial (<130 ka). Earth Planet Sci Lett, 2004a, 221: 55-69
    [184] Zhu RX, Zhang R, Deng CL, et al. Are Chinese loess deposits essentially continuous? Geophys Res Lett, 2007, 34: L17306, doi:10.1029/2007GL030591
    [185] Zolitschka B. A 14,000 year sediment yield record from western Germany based on annually laminated lake sediments. Geomorphology, 1998, 22: 1-17
    [186]李海燕,张世红,方念乔,等.孟加拉湾MD77-181岩芯磁学记录及其古环境意义.科学通报, 2006, 51(18): 2166-2174
    [187]李海燕.还原成岩作用对海洋沉积物磁记录的影响及其环境学意义:[博士学位论文].北京:中国地质大学(北京),2006
    [188]刘青松,邓成龙.磁化率及其环境意义.地球物理学报, 2009, 52(4): 1041-1048
    [189]潘永信,朱日祥.环境磁学研究现状和进展.地球物理学进展, 1996, 11(4): 87-99
    [190]王红强,张世红,李海燕.北京北安河地表沉积物的岩石磁学特征及环境意义.科学通报, 2008, 53(13): 1589-1597
    [191]张春霞,黄宝春,李震宇,等.高速公路附近树叶的磁学性质及其对环境污染的指示意义.科学通报, 2006, 51(12): 1459-1468
    [192]张春霞,黄宝春,刘青松.钢铁厂周围不同污染介质的磁学性质及环境意义.地球物理学报, 2009, 52(11): 2826-2839
    [193]曾允孚,夏文杰.沉积岩石学.北京:地质出版社,1986
    [194]张淑伟, Walderhaug HJ,杨跃俊.俄罗斯北部泰米尔半岛褶皱带岩床和玄武岩岩石磁学和磁各向异性.科学通报, 2008, 53(2): 229-237
    [195]张世红,李海燕.地磁学、古地磁学和环境磁学研究新进展:第32届国际地质大会学科总结和评述.现代地质, 2004, 10(4): 415-422
    [196]朱筱敏.沉积岩石学.北京:石油工业出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700