用户名: 密码: 验证码:
肺气肿大鼠全病程中膈肌功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     本研究应用被动吸烟复制大鼠肺气肿模型,采用酶组织化学、免疫印记技术等不同的检测方法,检测肺气肿大鼠全病程中的膈肌纤维类型和mTor蛋白的变化,探讨肺气肿全病程中膈肌功能异常的分子生物学机制。
     实验材料及方法
     一、实验动物和分组
     选取7周龄健康雄性Wistar大鼠120只,体重250—280g,由中国医科大学实验动物中心提供,清洁度Ⅰ级,常规饲料自由饮水,温度22±1℃,湿度50%左右,明/暗周期为12h。随机被分为3组,分别为对照组(C)、肺气肿吸烟组(E)、肺气肿戒烟组(N),分别在肺气肿形成0天、3月、6月、12月取材,每组10只。
     二、被动吸烟复制大鼠肺气肿模型
     将肺气肿大鼠每天放入自制的烟熏舱(体积为0.25 m3),暴露于10支黄果树牌香烟,每次被动吸烟1小时5天/周,持续75天。
     三、主要实验方法
     (一)肺组织病理:HE染色
     (二)膈肌纤维检测:采用琥珀酸脱氢酶方法,将肌纤维分为氧化型和酵解型,其中染色深的是氧化型纤维,染色浅的酵解型纤维。
     (三)mTOR蛋白测定:Western Blotting
     四、统计学分析
     所有数据用均数±标准差(x±s)表示,采用完全随机设计资料单因素方差分析进行显著性检验,若P<0.05,再进行q检验,比较任意两组间的差异有无统计学意义。采用单因素直线回归分析,比较干预因素与测量因素有无相关性。所有分析用SPSS13.0软件进行。
     结果
     1、在肺气肿形成0天和3个月时,E组、N组的氧化型纤维比例高于对照组(P<0.05)。在肺气肿形成6个月时,N组的氧化型纤维比例高于对照组(P<0.05),E组的氧化型纤维比例与对照组比较无显著差异(P>0.05)。在肺气肿形成12个月时,E组、N组的氧化型纤维比例低于对照组(P<0.05)。
     2、年龄与氧化型纤维比例的相关分析结果显示正相关(P<0.05)。
     3、在肺气肿形成0天和3个月时,E组、N组的mTOR蛋白高于对照组(P<0.05)。在肺气肿形成6个月时,N组的mTOR蛋白高于对照组(P<0.05),E组的mTOR蛋白与对照组比较无显著差异(P>0.05)。在肺气肿形成12个月时,E组、N组的mTOR低于对照组(P<0.05)。
     结论
     1、肺气肿大鼠膈肌氧化型纤维比例随疾病进展先增加后下降,说明膈肌出现代偿和失代偿过程。
     2、随着年龄的增加,膈肌氧化型纤维比例逐渐升高。
     3、肺气肿早期调节骨骼肌增生的信号蛋白mTOR蛋白表达高于对照组,肺气肿晚期mTOR蛋白表达低于对照组。
Purpose
     The passive smoking was used to duplicate rat emphysema model. To detect the diaphragm fiber types in the whole course of emphysema with enzyme histochemistry. The mTor protein was detected by Western blotting techniques, which in order to explore the mechanism of diaphragmatic dysfunction in the molecular biological level.
     Experimental materials and methods
     One hundred and twenty healthy seven-week-old male Wistar rats were selected for study, weighting 250-280g, which came from the Experimental Animal Center of China Medical University. They were randomly divided into 3 groups:control group (C), emphysema and smoking group (E) and emphysema and smoking cessation group (N). On the very day of emphysema formation, and after 3 months,6 months and 12 months, we will randomly choose 10 rats for experiment. The rats were put into the home-made smoking capsule (volume 0.25 m3), exposure to 10 Huangguoshu cigarettes,1 hour each day,5 days/week, continued to 75 days. The main experimental methods including lung pathology with HE staining, detection of diaphragm muscle fiber with succinic acid dehydrogenase method and mTOR protein detection with Western Blotting. SPSS13.0 software was used for all data analysis. If P<0.05, statistics is of significance.
     Results
     1.In 3 months of pulmonary emphysema, and on the day of emphysema, oxidized fibers in E group and N group were significantly higher than that in C group(P<0.05). In 6 months of emphysema, oxidized fibers of N group were significantly higher than that of C group (P<0.05), the proportion of oxidized fibers in E group compared with the control group, there is no significant difference (P> 0.05). In emphysema of 12 months, E group, N group the proportion of oxidized fibers were higher than the control group (P<0.05).
     2. The age and the proportion of oxidized fiber correlation analysis showed a positive correlation (P<0.05).
     3. In 3 months of pulmonary emphysema, and on the day of emphysema, mTOR protein in E group and N group were significantly higher than that in C group(P<0.05). In 6 months of emphysema, mTOR protein of N group were significantly higher than that of C group (P<0.05), mTOR protein in E group compared with the control group, there is no significant difference (P> 0.05). In emphysema of 12 months, mTOR protein of E group and N group were higher than the control group (P<0.05).
     Conclusions
     1. The ratio of oxidized fibers in the emphysema rat diaphragm with disease progression first increased and then decreased, indicating compensation and decompensation occurred.
     2. Increasing with age, the proportion of oxidized fibers gradually increased.
     3. At early stage of emphysema, signaling protein mTOR protein in emphysema group were higher than that in control group.
引文
1 Manning HL, Schwartzstern RM. Pathophysiology of dyspnea. N Engl J Med.1995; 333: 1547-1553.
    2 Begin P, Grassino A. Inspiratory muscle dysfunction and chronic hypercapnia in chronic obstructive pulmonary disease. Am Rev Respir Dis.1991; 143:905-912.
    3 Celli B. The diaphragm and respiratory muscles. Chest Surg Clin N Am.1998; 8:207-224.
    4 Similowiski T, Yan S, Gauthier P, et al. Contractile properties of the humnan diaphragm during chronic hyperinflation. N Engl J Med.1991; 325:917-923.
    5 Ottenheijm CA, Heunks LMA, Hafmans T, et al. Titin and diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2006; 173:527-534.
    6 Doucet M, Debigare R, Joanisse DR, et al. Adaptation of the diaphragm and the vastus lateralis in mild-to-moderate COPD. Eur Respir J.2004; 24:971-979.
    7 Agusti A G, Noguera A, Sauleda J, et al. Systemic effects of chronic obstructive pulmonary disease. Eur Respir J.2003; 21:347-360.
    8 Debigare R, Marquis K, Cote CH, et al. Catabolic/anabolic balance and muscle wasting in patients with COPD. Chest.2003; 124:83-89.
    9 Robert W, Jackman SC, Kandarian. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol.2004; 287:C834-C843.
    10 Ottenheijm CA, Heunks LM, Li YP, et al. Activation of ubiquitin-proteasome pathway in the diaphragm in chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2006; 174: 997-1002.
    11 Glass D J, Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol.2003;5:87-90.
    12 Bodine SC, Stitt T N, Gonzalez M, et al. Akt/mTOR pathway is crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol.2001; 285: R1086-R1090.
    13 李红梅,崔德健,佟欣,等熏香烟加气管注内毒素和单纯熏香烟法建立大鼠COPD模型.中国病理生理杂志.2002;18(7):808-812.
    14 Nachlas MM, Tsou KC, DE Souza E, et al. Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J Histochem Cytochem.1957; 5(4):420-436.
    15 Polla B, D'Antona G, Bottinelli, et al. Respiratory muscle fibers:specialization and plasticity. 2004; 59:808-817.
    16 Barreiro E, de la Puenta B, Minguella J, et al. Oxidative stress and respiratory muscle dysfunction in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;171:1116-1124.
    17 Levine S, Kaiser L, Leferovich J, et al. Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease. N Engl J Med.1997;337:1799-1806.
    18 Levine S, Gregory C, Nguyen T, et al. Bioenergetic adaptation of individual human diaphragmatic myofibers to severe COPD. J Appl Physiol.2002; 92:1205-1213.
    19 Nguyen T, Shrager J, Kaiser L, et al. Developmental myosin heavy chains in the adult human diaphragm:coexpression patterns and effect of COPD. J Appl Physiol.2000; 88:1446-1456.
    20 Nakatani T, Nakashima T, Kita T, et al. Effects of exposure to cigarette smoke at different dose levels on extensor digitorum longus muscle fibres in Wistar-Kyoto and spontaneously hypertensive rats. Clin Exp Pharmacol Physiol.2003; 30:671-677.
    21 Nakatani T, Nakashima T, Kita T, et al. Responses of exposure to cigarette smoke at three dosage levels on soleus muscle fibers in Wistar-Kyoto and spontaneously hypertensive rats. Jpn J Pharmacol.2002; 90:157-163.
    22 Maria M, Eduardo L, Sonia H T, et al. Peripheral Muscle Alterations in Non-COPD Smokers. Chest.2008;133(1):13-18.
    23 Ottenheijm CA, Heunks LM, Sieck GC, et al. Diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2005; 172:200-205.
    24 Schmelzie T, Hall M N, TOR, a central controller of cell growth. Cell.2000; 103:253-262.
    25 Glass D J, Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol.2003;5:87-90.
    26 Bodine SC, Stitt T N, Gonzalez M, et al. Akt/mTOR pathway is crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol.2001; 285: R1086-R1090.
    27 Sakamoto K, Hirshaman M F, Aschenbach W G, et al. Contraction regulation of Akt in rat skeletal muscle. J Biol Chem.2002;27:11910-11917.
    28 Scot R. Interaction between the AMP-activated protein kinase and mTOR signaling Pathways. J Med Sci Sports & Exerc.2006;38(11):1958-1964.
    29 Herbert T P, Tee A R, Proud C G. The extracellular signal regulated kinase pathway regulates the phosphorylation of 4E2-BP1 at multiple sites. J Biol Chem.2002;277:11591-11596.
    30 Cheng S W, Fryer L G, Carling D, et al. Thr 2446 is a novel mammamlian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J Biol Chem.2004;279: 15719-15722.
    31 Inoki K, Zhu T, Guan K L. TSC mediates cellular energy response to control cell growth and surviva.Cell.2003;115:577-590.
    1 Bodine S C, Stitt T N, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol.2001;3:1014-1019.
    2 Rommel C, Bodine S C, Clarke B, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTORand PI(3)K/Akt/GSK3 pathways. Nat Cell Biol.200; 13: 109-113.
    3 DeVol D L, Rotwein P, Sadow J L, et al. Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol.1990; 259:E89-E95.
    4 Vandenburgh H H, Karlisch P, Shansky J, et al. Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture. Am J Physiol.1991; 260:C475-C484.
    5 Coleman M E, DeMayo F, Yin K C, et al. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem.1995; 270:12109-12116.
    6 Musaro A, McCullagh K, Paul A, et al. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet.2001; 27:195-200.
    7 Lai K-M, Gonzalez M, Poueymirou W T, et al. Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol.2004; 24:9295-9304.
    8 Sugita H, Kaneki M, Sugita M, et al, Burn injury impairs insulinstimulated Akt/PKB activation in skeletal muscle. Am J Physiol Endocrinol Metab.2005; 288:E585-E591.
    9 Svanberg E, Frost R A, Lang C H, et al. IGF-I/IGFBP-3 binary complex modulates sepsis-induced inhibition of protein synthesis in skeletal muscle. Am J Physiol Endocrinol Metab.2000; 279:E1145-E1158.
    10 Bohni R, Riesgo-Escovar J, Oldham S, et al. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS 1-4. Cell.1999; 97:865-875.
    11 Leevers SJ, Weinkove D, MacDougall L, et al. The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. EMBO J.1996; 15:6584-6594.
    12 Zhang H, Stallock JP, Ng JC, et al. Regulation of cellular growth by the drosophila target of rapamycin dTOR. Genes Dev.2000;14:2712-2724.
    13 Montagne J, Stewart M J, Stocker H, et al. Drosophila S6 kinase:A regulator of cell size [see comments]. Science.1999; 285:2126-2129.
    14 Burnett P E, Barrow R K, Cohen N A, et al. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci.1998; 95:1432-1437.
    15 Hara K, Yonezawa K, Weng QP, et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem.1998; 273: 14484-14494.
    16 Pallafacchina G, Calabria E, Serrano A L. et al. A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci.2002; 265:2525.
    17 Rommel C, Clarke B A, Zimmermann S, et al. Differentiation stage-specific inhibition of the raf-MEK-ERK pathway by Akt. Science.1999; 286:1738-1741.
    18 Miyazaki M, McCarthy JJ, Esser KA. Insulin like growth factor-1-induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C 12 myotubes. FEBS.2010; 277(9):2180-2190.
    19 Tee AR, Fingar DC, Manning BD, et al. Tuberous sclerosis complex-1 and-2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signalling. Proc Natl Acad Sci.2002; 99:13571-13576.
    20 Pullen N, Dennis PB, Andjelkovic M, et al. Phosphorylation and activation of p70s6k by PDK1. Science.1998; 279:707-710.
    21 Hannan KM, Thomas G,Pearson RB. Activation of S6K1 (p70 ribosomal protein S6 kinase 1) requires an initial calcium-dependent priming event involving formation of a highmolecular-mass signalling complex. Biochem J.2003; 370:469-477.
    22 Saitoh M, Pullen N, Brennan P, et al. Regulation of an activated S6 kinase 1 variant reveals a novel mammalian target of rapamycin phosphorylation site. J Biol Chem.2002; 277: 20104-20112.
    23 Ohanna M, Sobering A K, Lapointe T, et al. Atrophy of S6K1-/-skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol.2005; 7:286.
    24 Hara K, Yonezawa K, Kozlowski M, et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem.1997; 272:26457-26463.
    25 Proud C G. mTOR-mediated regulation of translation factors by amino acids. Biochem Biophys Res Commun.2004; 313:429-436.
    26 Hara K, Maruki Y, Long X, et al. Raptor a binding partner of target of rapamycin (TOR), mediates TOR action. Cell.2002; 110:177-189.
    27 Kimdo H, Sarbassov dos D, Ali S M, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell.2002; 110:163-175.
    28 Choi KM, McMahon LP, & Lawrence JC. Two motifs in the translational repressor PHAS-Ⅰ required for efficient phosphorylation by mTOR and recognition by raptor. J Biol Chem.2003; 301:142-200.
    29 Schalm SS, Fingar DC, Sabatini DM, et al. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol.2003;13:797-806.
    30 Kubica N, Bolster D R, Farrell P A, et al. Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2B{epsilon} mRNA in a mammalian target of rapamycin-dependent manner. J Biol Chem.2005; 280:7570-7580.
    31 Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature.1995; 378:785-789.
    32 Vyas D R, Spangenburg EE, Abraha TW, et al. GSK-3beta negatively regulates skeletal myotube hypertrophy. Am J Physiol Cell Physiol.2002;283:C545-C551.
    33 Hardt S E, Sadoshima J. Glycogen synthase kinase-3beta:A novel regulator of cardiac hypertrophy and development. Circ Res.2002; 90:155-163.
    34 Haq S, Choukroun G, Kang Z, et al. Glycogen synthase kinase-3{beta} is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol.2000; 151:117-130.
    35 Kawano Y, & Kypta R, Secreted antagonists of the Wnt signalling pathway. J Cell Sci.2003; 116:2627-2634.
    36 Veeman M T, Axelrod J D, & Moon R T. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signalling. Dev Cell.2003; 5:367-377.
    37 Beals CR, Sheridan CM, Turck CW, et al. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science.1997; 275:1930-1934.
    38 Diaz-Benjumea FJ, Cohen SM. Wingless acts through the shaggy/zeste-white 3 kinase to direct dorsal-ventral axis formation in the Drosophila leg. Development.1994;120:1661-1670.
    39 Rochat A, Fernandez A, Vandromme M, et al. Insulin and wntl pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy. Mol Biol Cell.2004; 15: 4544-4555.
    40 Gavel S, Coldefy A S, Kurkdjian E, et al. Atrophy-related ubiquitin Iigases. atrogin— 1 and MuRF1 are up-regulated in aged rat Tibialis Antedor muscle. Mech Ageing Dev.2006; 127(10):794-801.
    41 Morris CA. Morris LD, Kennedy AR,et al. Attenuation of skeletal muscle atrophy via protease inhibition. J Appl Physiol.2005;99(5):1719-1727.
    42 Haddad F, Roy RR, Zhong H, et al. Atrophy responses to muscle inactivity Ⅱ Molecular markers of protein deficits. J Appl Physiol.2003; 95(2):791-780.
    43 Ottenheijm CA, Heunks LM, Li YP, et al. Activation of ubiquitin-proteasome pathway in the diaphragm in chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2006; 174: 997-1002.
    44 Doucet M, Russell A P,Bertrand L, et al. Muscle atrophy and hypertrophy signaling in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2007; 176:261-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700