用户名: 密码: 验证码:
溶液法化学合成微纳米结构金属氧化物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,金属氧化物微纳米结构材料由于在电学、催化、光学、气体传感器等方面的广泛应用而倍受关注。合成新颖的金属氧化物微纳米结构、探索其生长过程,进而实现对尺寸、结构及物性的调控,对于深入研究结构与物性的联系、最终实现按照人们的意愿去设计合成材料具有重要意义。本论文以金属氧化物微纳米材料为研究主体,以液相化学合成为手段,从材料新结构和新方法的探索出发,致力于液相合成微纳米结构金属氧化物过程中形成规律的研究。实现了对金属氧化物微纳结构的控制合成,并建立了一些微纳米结构体系的化学合成新途径。本论文的主要内容包括以下几个方面:
     1.以纳米结构器件和量子器件为背景的纳米阵列组装体系已成为纳米材料研究的热点,论文提出了以同步自组装路线制备金属氧化物纳米阵列结构的方法。具体内容是:基于原电池的原理,采用氯离子溶液腐蚀法合成了ZnO纳米棒阵列。并通过研究纳米棒阵列结构的形成机制,揭示了通过腐蚀法合成金属氧化物纳米阵列的一般性规律;采用准六方结构的Nb_2O_5纳米棒阵列为前驱物,通过相转移合成了单斜结构的Nb_2O_5纳米管阵列。
     2.人们对于中空结构的合成有浓厚的兴趣是因为它们在很多领域都有潜在的应用价值,论文分别采用自牺牲模板法和原位模板法合成了金属氧化物中空微米球和中空管状材料。具体内容是:基于对反应物和生成物之间离子溶度积竞争规律的认识,提出了中空结构微米球的自牺牲模板合成法。以微溶性Zn_5(CO_3)_2(OH)_6微米球作为自牺牲模板,成功合成了ZnO中空结构材料,中空结构的形成过程可以用克肯达耳空位效应来解释:依据ZnO晶体结构极性生长的特征,提出了以醋酸为化学刻蚀剂制备中空ZnO管的原位模板法,中空管是通过醋酸在ZnO模板表面发生逐步刻蚀而形成的。
     3.金属氧化物材料具有非常优异的特性及广阔的应用前景,系统地研究和开发新型微纳米结构金属氧化物具有重要的意义,论文提出了以碱式碳酸镁为反应前驱物通过溶液化学路线制备多种金属氧化物微纳米材料的方法。具体内容是:依据碱式碳酸镁的片状生长特征,以碱式碳酸镁作为前驱体合成了由纳米片构成的等级结构氧化镁,碱式碳酸镁是在均匀成核溶液体系下制备的;依据碱式碳酸镁在溶液中的微溶解特性,以碱式碳酸镁为反应物,提出了一种制备多种金属氧化物微纳米材料的普适性方法,成功地合成了各种金属氧化物微纳米结构材料,包括Mn_2O_3、ZnO、CuO、CdO、CaO和Al_2O_3,并实现了微结构的有效调控。
In recent years,metal oxide micro/nano structures have stimulated much scientific and technological interest because of their promising applications in electronics,catalyst,optics, gas sensors,etc.Chemical preparation of novel micro/nanostructures and the investigation of their general formation processes may be a solution to the precise control of their sizes, structures and properties.It is of great significance to tailor the property of materials in a controllable way by altering their structure,morphology,or composition.In this dissertation, systematic explorations have been carried out on new synthetic strategies of metal oxides based on the chemical solution method.We have realized the control of micro/nano structures of materials during the synthesis process,and established some new routes to fabricate metal oxide materials.The main points can be summarized as follows:
     1.Nanoarrays based on nanodevice and quantum device have been a hot research topic, solution-based routes were developed to the chemical synthesis and simultaneous assembly of nanostructures into metal oxide nanoarrays.Specifically,a corrosion-based strategy has been successfully designed to synthesize ZnO nanorod arrays in the Cl~- anion solution by employing cell reaction.The gerenal principle for the synthesis of nanorod arrays materials has been discovered by exploring their formation processes.In particular,a phase transformation has been discovered for the preparation of monoclinic Nb_2O_5 nanotube arrays through using pseudo-hexagonal Nb_2O_5 nanorod arrays as the precursor.
     2.Hollow structured materials have attracted much attention because of their great potential applicatios in many fields,hollow metal oxide microspheres and tubes were prepared through the sacrificial template and in situ template method,respectively. Specifically,based on the solubility difference between reactant and production,hollow ZnO microspheres were fabricatred by the sacrificial template route.ZnO hollow microspheres were prepared by employing Zn_5(CO_3)_2(OH)_6 as the in situ sacrificial template at room temperature.The Kirkendall vacancy effect was used to interpret the formation process of hollow ZnO microspheres.According to ZnO characteristics of surface polarity and chemical activities,the hollow ZnO tubes were prepared through in situ template method based on acetic acid etching strategy.The etching of ZnO template with acetic acid results in the formation of tubular structures.
     3.Meal oxide micro/nano structured materials have a variety of special properties,hence it is very important in both fundamental research and commercial applications,several metal oxide materials were fabricated by employintg Mg_5(CO_3)_4(OH)_2·4H_2O as the reaction precursors through chemical solution method.Specifically,according to the growth habit of Mg_5(CO_3)_4(OH)_2·4H_2O sheet-like structures,MgO hierachical structures consisted of nanosheets were fabricated by using Mg_5(CO_3)_4(OH)_2·4H_2O as the precursors,which were prepared by a homogeneous reaction.Based on the fact that Mg_5(CO_3)_4(OH)_2·4H_2O is a slightly soluble salt,a spontaneous ion replacement route by employing Mg_5(CO_3)_4(OH)_2·4H_2O as the reagent to synthesize a number of metal oxides has been established.We present a comprehensive study on the ion replacement reaction for the chemical control synthesis of micro/nano structured Mn_2O_3,ZnO,CuO,CdO,Al_2O_3,and CaO samples.
引文
[1] Friedman R S, McAlpine M C, Ricketts D S et al. High-speed integrated nanowire circuits. Nature, 2005, 434 (7037):1085-1085.
    
    [2] Tian B Z, Zheng X L, Kempa T J et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449 (7164):885-893.
    [3] Hu Y J, Churchill H, Reilly D J et al. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nat. Nanotechol., 2007, 2 (10):622-625.
    [4] Tian N, Zhou Z Y, Sun S G et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316 (5825):732-735.
    [5] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312 (5771):242-246.
    [6] Hochbaum A I, Chen R K, Delgado R D et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451 (7175):163-167.
    [7] Boukai A I, Bunimovich Y, Tahir-Kheli J et al. Silicon nanowires as efficient thermoelectric materials. Nature, 2008, 451 (7175):168-171.
    [8] Bao Z H, Weatherspoon M R, Shian S et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature, 2007, 446 (7132):172-175.
    [9] Alayoglu S, Nilekar A U, Mavrikakis M et al. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater., 2008, 7 (4) :333—338.
    [10] Xia Y N, Yang P D, Sun Y G et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater., 2003, 15 (5):353—389.
    [11] Burda C, Chen X B, Narayanan R et al. Chemistry and properties of nanocrystals of different shapes. Chem. Rev., 2005, 105 (4):1025-1102.
    [12] Tang L, Kocabas S E, Latif S et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat. Photonics, 2008, 2 (4):226-229.
    [13] Law M, Luther J M, Song O et al. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. J. Am. Chem. Soc., 2008, 130 (18):5974-5985.
    [14] Lucas B D, Kim J S, Chin C et al. Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays. Adv. Mater., 2008, 20 (6): 1129-1134.
    [15] Song B S, Noda S, Asano T et al. Ultra-high-Q photonic double-heterostructure nanocavity, Nat. Mater., 2005, 4 (3):207-210.
    [16]Li Z Y,Zhang H N,Zheng W et al.Highly sensitive and stable humidity nanosensors based on LiCl doped TiO_2 electrospun nanofibers.J.Am.Chem.Soc.,2008,130(15):5036-5037.
    [17]Tong L M,Lou J Y,Gattass R R et al.Assembly of silica nanowires on silica aerogels for microphotonic devices.Nano lett.,2005,5(2):259-262.
    [18]Wang H J,Zhou W H,Yin X F et al.Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations.J.Am.Chem.Soc.,2006,128(50):15954-15955.
    [19]Ramsey C M,Del Barco E,Hill S et al.Quantum interference of tunnel trajectories between states of different spin length in a dimeric molecular nanomagnet.Nat.Phys.,2008,4(4):277-281.
    [20]Soppimath K S,Tan D C W,Yang Y Y.pH-triggered thermally responsive polymer core-shell nanoparticles for drug delivery,Adv.Mater.,2005,17(3):318-323.
    [21]Lee H J,Habas S E,Somorjai G A et al.Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid.J.Am.Chem.Soc.,2008,130(16):5406-5407.
    [22]Lu W,Lieber C M.Nanoelectronics from the bottom up.Nat.Mater.,2007,6(11):841-850.
    [23]Bruce P G,Scrosati B,Tarascon J M Nanomaterials for rechargeable lithium batteries.Angew.Chem.Int.Ed.,2008,47(16):2930-2946.
    [24]Javey A,Nam S,Friedman R S et al.Layer-by-layer assembly of nanowires for three-dimensional,multifunctional electronics.Nano lett.,2007,7(3):773-777.
    [25]Si R,Flytzani-Stephanopoulos M.Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO_2 catalysts for the water-gas shift reaction.Angew.Chem.Int.Ed.,2008,47(15):2884-2887.
    [26]王训.过渡金属氧化物一维纳米结构液相合成、表征与性能研究:(博士学位论文).北京:清华大学,2004.
    [27]李晓林.金属氧化物和硫化物一维纳米材料的合成表征和性能研究:(博士学位论文).北京:清华大学,2005.
    [28]Puntes V F,Krishnan K M,Alivisatos A P.Colloidal nanocrystal shape and size control:The case of cobalt.Science,2001,291(5511):2115-2117.
    [29]Yin Y D,Rioux R M,Erdonmez C K et al.Formation of hollow nanocrystals through the nanoscale Kirkendall Effect.Science,2004,304(5671):711-714.
    [30]Gur I,Fromer N A,Geier M L et al.Air-stable all-inorganic nanocrystal solar cells processed from solution.Science,2005,310(5747):462-465.
    [31]natakeyama Y,Umetsu M,Ohara S et al.Homogenous spherical mosslike assembly of Pd nanoparticles by using DNA compaction:Application of Pd-DNA hybrid materials to volume-expansion hydrogen switches,Adv.Mater.,2008,20(6):1122-1128.
    [32] Liu J S, Tanaka T, Sivula K et al. Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. J. Am. Chem. Soc., 2004, 126 (21):6550-6551.
    [33] Hu Y J, Xiang J, Liang G C et al. Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. Nano lett., 2008, 8 (3):925-930.
    [34] Jun Y, Choi J, Cheon J. Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes. Angew. Chem. Int. Ed., 2006, 45 (5):3414-3439.
    [35] Yang C, Zhong Z H, Lieber C M. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science, 2005, 310 (5752):1304-1307.
    [36] Rogers J A. Optoelectronic tweezers-Organizing nanowires. Nat. Photonics, 2008, 2 (2): 69-70.
    [37] Huang M H, Mao S, Feick H et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292 (5523):1897-1899.
    [38] Han W Q, Fan S S, Li Q Q et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science, 1997, 277 (5330):1287-1289.
    [39] Talapatra S, Kar S, Pal S K, et al. Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 2006, 1 (2):112-116.
    [40] Cen C, Thiel S, Hammerl G et al. Nanoscale control of an interfacial metal-insulator transition at room temperature. Nat. Mater., 2008, 7 (4):298-302.
    [41] Levard C, Rose J, Masion A et al. Synthesis of large quantities of single-walled aluminogermanate nanotube. J. Am. Chem. Soc, 2008, 130 (18): 5862-5863.
    [42] Suzuki N, Tanaka H, Kawai T. Epitaxial transition metal oxide nanostructures fabricated by a combination of AFM lithography and molybdenum lift-off. Adv. Mater., 2008, 20 (5): 909-913.
    [43] Tanaka H, Yajima T, Matsumoto T et al. Porphyrin molecular nanodevices wired using single-walled carbon nanotubes. Adv. Mater., 2006, 18 (11):1411—1415.
    [44] Lin Y C, Lu K C, Wu W W et al. Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. Nano lett., 2008, 8 (3):913-918.
    [45] Yang X Y, Dou X, Rouhanipour A et al. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc, 2008, 130 (13): 4216-4217.
    [46] Li X L, Wang X R, Zhang L et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319 (5867):1229-1232.
    [47] Lee W, Schwirn K, Steinhart M et al. Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat. Nanotechnol., 2008, 3 (4):234-239.
    [48] Fan H, Lee W, Scholz et al. Arrays of vertically aligned and hexagoanlly arranged ZnO nanowires: a new template-drirected approach. Nanotechnology, 2005, 16 (3):913—917.
    [49]Lee W,Ji R,Gosele U et al.Fast fabrication of long-range ordered porous alumina membranes by hard anodization.Nat.Mater.,2006,5(9):741-747.
    [50]Barreiro A,Rurali R,Hernandez E R et al.Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes.Science,2008,320(5877):775-778.
    [51]Trancik J E,Barton S C,Hone J.Transparent and catalytic carbon nanotube films,Nano lett.,2008,8(4):982-987.
    [52]Suenaga K,Wakabayashi H,Koshino M et al.Imaging active topological defects in carbon nanotubes.Nat.Nanotechnol.,2007,2(6):358-360.
    [53]Klinke C,Hannon J B,Afzali A et al.Field-effect transistors assembled from functionalized carbon nanotubes.Nano lett.,2006,6(5):906-910.
    [54]孙晓明.低维功能纳米材料的液相合成、表征与,性能研究:(博士学位论文).北京:清华大学,2005.
    [55]Acharya S,Gautam U K,Sasaki T et al.Ultra narrow PbS nanorods with lntense fluorescence.J.Am.Chem.Soc.,2008,130(14):4594-4595.
    [56]Li L,Tsung C K,Yang Z et al.Rare-earth-doped nanocrystalline Titania microspheres emitting luminescence via energy transfer.Adv.Mater.,2008,20(5):903-908.
    [57]Chaudhary S,Lu H W,Muller A M et al.Hierarchical placement and associated optoelectronic impact of carbon nanotubes in polymer-fullerene solar cells.Nano lett.,2007,7(7):1973-1979.
    [58]Pan X L,Fan Z L,Chen W et al.Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles.Nat.Mater.,2007,6(7):507-511.
    [59]Piao Y,Kim J,Na H B et al Wrap-bake-peel process for nanostructural transformation from beta-FeOOH nanorods to biocompatible iron oxide nanocapsules.Nat.Mater.,2008,7(3):242-248.
    [60]钱逸泰.结晶化学导论,中国科技大学出版社,2002.
    [61]薛冬峰.晶体的化学键和非线性光学效应:(博士学位论文).长春:中国科学院长春应用化学研究所,1998.
    [62]张克从,张乐德.晶体生长科学与技术,科学出版社,1997.
    [63]Siegfried M J,Choi K S.Electrochemical crystallization of cuprous oxide with systematic shape evolution.Adv.Mater.,2004,16(19):1743-1746.
    [64]Yin Y,Alivisatos A P.Colloidal nanocrystal synthesis and the organic-inorganic interface.Nature,2005,437(7059):664-670.
    [65]Park J,An K,Hwang et al.Ultra-large-scale syntheses of monodisperse nanocrystals.Nat.Mater.2004,3(12):891-895.
    [66]Habas S,Lee H,Radmilovic V et al.Shaping binary metal nanocrystals through epitaxial seeded growth.Nat.Mater.2007.6(9):692-697.
    [67] Shevchenko E V, Ringler M, Schwemer A et al. Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties. J. Am. Chem. Soc., 2008, 130 (11):3274-3278.
    [68] Robinson R D, Sadtler B, Demchenko D O et al. Spontaneous superlattice formation in nanorods through partial cation exchange. Science, 2007, 317 (5836):355-358.
    [69] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc, 1993, 115 (19):8706-8715.
    [70] Peng X G, Wilson T E, Alivisatos A P et al. Synthesis and isolation of a homodimer of cadmium selenide nanocrystals. Angew. Chem. Int. Ed., 1997, 36 (1-2):145-147.
    [71] Manna L, Scher E C, Alivisatos A P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc., 2000, 122 (51):12700-12706.
    [72] Stuczynski S M, Brennan J G, Steigerwald M L. Formation of metal-chalcogen bonds by the reaction of metal-alkyls with silyl chalcogenides. Inorg. Chem., 1989, 28 (25):4431-4432.
    [73] Steigerwald M L. Clusters as small solids. Polyhedron, 1994, 13 (8):1245-1252.
    [74] Joo J, Yu T, Kim Y W, et al. Multigrarn scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J. Am. Chem. Soc, 2003, 125 (21):6553-6557.
    [75] Shevchenko E V, Kortright J B, Talapin D V et al. Quasi-ternary nanoparticle superlattices through nanoparticle design. Adv. Mater., 2007, 19 (23):4183-4188.
    [76] Ji X H, Copenhaver D, Sichmeller C et al. Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals. J. Am. Chem. Soc, 2008, 130 (17):5726-5735.
    [77] Reiss H. The growth of uniform colloidal dispersions. J. Chem. Phys., 1951, 19 (1):482-487.
    [78] Pradhan N, Reifsnyder D, Xie R G et al. Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc., 2007, 129 (30):9500-9509.
    [79] Lee S M, Cho S N, Cheon J. Anisotropic shape control of colloidal inorganic nanocrystals. Adv. Mater., 2003, 15 (5):441-444.
    [80] Xu J, Xue D. Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals. Acta Mater., 2007, 55 (7):2397-2406.
    [81] Ren X, Xu D, Xue D. Crystal growth of KDP, ADP, and KADP. J. Cryst. Growth, 2008, 310 (7-9):2005-2009.
    [82] 许东利, 薛冬峰.结晶生长的化学键合理论.人工晶体学报, 2006, 35(3):598-603.
    [83] Zhang X, Xue D, Liu M et al. Microscopically structural studies of lithium niobate powders. J. Mol. Struct., 2005, 754 (1-3):25-30.
    [84] Xu D, Xue D. Chemical bond analysis of the crystal growth of KDP and ADP. J. Cryst. Growth, 2006, 286 (1):108-113.
    [85] Xu D, Xue D. Computational study of crystal growth habit and cleavage. J. Alloys Compd., 2008, 449 (1-2):353-356.
    [86] Yan C, Sun C, Shi Y et al. Surface fabrication of oxides via solution chemistry. J. Cryst. Growth, 2008, 310 (7-9):1708-1712.
    [87] Yan X, Xu D, Xue D. SO_4~(2-)ions direct the one-dimensional growth of 5Mg(OH)_2 center dot MgSO_4 center dot 2H_2O. Acta Mater., 2007, 55 (17):5747-5757.
    [88] Yan C, Xue D. Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy. J. Phys. Chem. B, 2006, 110 (51):25850-25855.
    [89] Zhu Y, Bando Y, Xue D et al. Nanocable-aligned ZnS tetrapod nanocrystals. J. Am. Chem. Soc., 2003, 125 (52):16196-16197.
    [90] Zhu Y, Bando Y, Xue D. Spontaneous growth and luminescence of zinc sulf ide nanobelts. Appl. Phys. Lett., 2003, 82 (11):1769-1771.
    [91] Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298 (5601):2176-2179.
    [92] Liu B, Zeng H C. Fabrication of ZnO dandelions via a modified kirkendall process. J. Am. Chem. Soc, 2004, 126 (51): 16744-16746.
    [93] Wang Y, Cai L, Xia Y. Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Adv. Mater. 2005, 17 (4):473-477.
    [94] Yang J H, Qi L M, Lu C H, et al. Morphosynthesis of rhombododecahedral silver cages by self-assembly coupled with precursor crystal templating. Angew. Chem. Int. Ed., 2005, 44 (4):598-603.
    [95] Lu C H, Qi L M, Yang J H, et al. One-pot synthesis of octahedral Cu_2O nanocages via a catalytic solution route. Adv. Mater. 2005, 17 (21):2562-2562.
    [96] Li L S, Sun N J, Huang Y Y, et al. Topotactic transformation of single-crystalline precursor discs into disc-like Bi_2S_3 nanorod networks. Adv. Funct. Mater. 2008, 18 (8):1194-1201.
    [97] Wang H L, Qi L M. Controlled synthesis of Ag_2S, Ag_2Se, and Ag nanof ibers using a general sacrificial template and their application in electronic device fabrication. Adv. Funct. Mater. 2008, 18 (8):1249-1256.
    [98] Yan C, Xue D. Room temperature fabrication of hollow ZnS and ZnO architectures by a sacrificial template route. J. Phys. Chem. B, 2006, 110 (14):7102-7106.
    [99] Yan C, Xue D. General, spontaneous ion replacement reaction for the synthesis of micro-and nanostructured metal oxides. J. Phys. Chem. B, 2006, 110 (4):1581-1586.
    [100] Yang Y, Meng G, Liu X, et al. Converting free-standing porous silicon into related porous membranes. Angew. Chem. Int. Ed., 2008, 47 (2):365-367.
    [101] Tenne R, Margulis L, Genut M et al. Polyhedral and cylindrical structures of tungsten disulphide, Nature, 1992, 360 (6403):444-446
    [102] Margulis L, SalitraG, Tenne R et al., Nested fullerene-like structures, Nature, 1993, 365 (6442):113-114
    [103] Tenne R. Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol., 2006, 1 (2): 103-111.
    [104] Chianelli R R, Prestridge E, Pecorano T et al. Molybdenum disulfide in the poorly. Crystalline rag structure. Science, 1979, 203 (4385):1105-1007.
    [105] Rothschild A, Cohen S R, Tenne R WS_2 nanotubes as tips in scanning probe microscopy. Appl. Phys. Lett., 1999, 75 (25):4025-4027.
    [106] Malliakas C D, Kanatzidis M G. Inorganic single wall nanotubes of SbPS_(4-x)Se_x with tunable band gap. J. Am. Chem. Soc., 2006, 128 (20): 6538-6539.
    [107] Xiao K, Liu Y Q, Hu P A et al. n-Type field-effect transistors made of an individual nitrogen-doped multiwalled carbon nanotube. J. Am. Chem. Soc, 2005, 127 (24):8614-8617.
    [108] Shen G Z, Bando Y, Ye C H et al. Single-crystal nanotubes of II_3-V_2 semiconductors. Angew. Chem. Int. Ed., 2006, 45 (45):7568-7572.
    [109] Hacohen Y R, Grunbaum E, Tenne R et al. Cage structures and nanotubes of NiCl_2. Nature, 1998, 395 (6700):336-337.
    [110] Fan H J, Knez M, Scholz R et al. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater., 2006, 5 (8):627-631.
    [111] Papadopoulos C, Omrane B. Nanometer-scale catalyst patterning for controlled growth of individual single-walled carbon nanotubes. Adv. Mater., 2008, 20 (7):1344-1347.
    [112] Schmidt O G, Eberl K. Nanotechnology-thin solid films roll up into nanotubes. Nature, 2001, 410 (6825):168-168.
    [113] Remskar M, Skraba Z, Cleton F et al. MoS_2 as microtubes. Appl. Phys. Lett., 1996, 69, 351-353.
    [114] Ye C H, Bando Y, Shen G Z et al. Formation of crystalline SrAl_2O_4 nanotubes by a roll-up and post-annealing approach. Angew. Chem. Int. Ed., 2006, 45 (30):4922-4926.
    [115] Wirtz M, Martin C R. Template-fabricated gold nanowires and nanotubes. Adv. Mater., 2003, 15 (5):455-458.
    [116] Martin C R. Nanomaterials: a membrane-based systhetic approach. Science, 1994, 266 (5193): 1961-1966
    [117] Mayers B, Jiang X C, Sunderland D et al. Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids. J. Am. Chem. Soc, 2003, 125 (44): 13364-13365.
    [118] Goldberger J, He R R, Zhang Y Fetal. Single-crystal gallium nitride nanotubes. Nature, 2003, 422 (6932):599-602.
    [119] Fan R, Wu Y Y, Li D Y et al. Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J. Am. Chem. Soc., 2003, 125 (18):5254-5255.
    [120] Corr S A, Byrne S J, Tekoriute R et al. Linear assemblies of magnetic nanoparticles as MRI contrast agents. J. Am. Chem. Soc., 2008, 130 (13): 4214-4215.
    [121] Fei J B, Cui Y, Yan X H et al. Controlled preparation of MnO_2 hierarchical hollow nanostructures and their application in water treatment. Adv. Mater., 2008, 20 (3):452-456.
    [122] Teng X W, Wang Q, Liu P et al. Formation of Pd/Au nanostructures from Pd nanowires via galvanic replacement reaction. J. Am. Chem. Soc, 2008, 130 (3): 1093-1101.
    [1] Qin Y, Wang X D, Wang Z L. Microf ibre-nanowire hybrid structure for energy scavenging. Nature, 2008, 451 (7180):809-813.
    [2] Patolsky F, Timko B P, Yu G H et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science, 2006, 313 (5790): 1100-1104.
    [3] Zheng G F, Patolsky F, Cui Y et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol., 2005, 23 (10):1294-1301.
    [4] Zheng Q, Zhou B X, Bai J et al. Self-organized TiO_2 nanotube array sensor for the determination of chemical oxygen demand. Adv. Mater., 2008, 20 (5):1044-1049.
    [5] Lee E P, Peng Z M, Cate D M et al. Growing Pt nanowires as a densely packed array on metal gauze. J. Am. Chem. Soc., 2007, 129 (35):10634-10635.
    [6] Mor G K, Prakasam H E, Varghese O K et al. Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett., 2007, 7 (8):2356-2364.
    [7] Liu K, Sun Y H, Chen L et al. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett., 2008, 8 (2):700-705.
    [8] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312 (5771):242-246.
    [9] Goodey A P, Eichfeld S M, Lew K K et al. Silicon nanowire array photoelectrochemical cells. J. Am. Chem. Soc, 2007, 129 (41): 12344-12345.
    [10] Dong W, Dong H, Wang Z L et al. Ordered array of gold nanoshells interconnected with gold nanotubes fabricated by double templating. Adv. Mater., 2006, 18 (6):755-759.
    [11] Rzayev J, Hillmyer M A. Nanochannel array plastics with tailored surface chemistry. J. Am. Chem. Soc, 2005, 127 (38): 13373-13379.
    [12] Tao F F, Guan M Y, Jiang Y et al. An easy way to construct an ordered array of nickel nanotubes: the triblock-copolymer-assisted hard-template method. Adv. Mater., 2006, 18 (16):2161-2164.
    [13] Matsumoto F, Harada M, Nishio K et al. Nanometer-scale patterning of DNA in controlled intervals on a gold-disk array fabricated using ideally ordered anodic porous alumina. Adv. Mater., 2005, 17 (13):1609-1612.
    [14] Min Y S, Bae E J, Jeong K S et al. Ruthenium oxide nanotube arrays fabricated by atomic layer deposition using a carbon nanotube template. Adv. Mater., 2003, 15 (12):1019-1022.
    [15] Li Y G, Tan B, Wu Y Y. Freestanding mesoporous quasi-single-crystalline Co_3O_4 nanowire arrays. J. Am. Chem. Soc, 2006, 128 (44): 14258-14259.
    [16] Liu C H, Zapien J A, Yao Y et al. High-density, ordered ultraviolet light-emitting ZnO nanowire arrays. Adv. Mater., 2003, 15 (10):838-841.
    [17] Fan R, Wu Y Y, Li D Y et al. Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J. Am. Chem. Soc., 2003, 125 (18):5254-5255.
    [18] Li J Z, Kamata K, Watanabe S et al. Template-and vacuum-ultraviolet-assisted fabrication of a Ag-nanoparticle array on flexible and rigid substrates. Adv. Mater., 2007, 19 (9):1267-1271.
    [19] Huang M H, Wu Y Y, Feick H et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater., 2001, 13 (2):113-116.
    [20] Jeong M C, Oh B Y, Lee W et al. Optoelectronic properties of three-dimensional ZnO hybrid structure. Appl. Phys. Lett., 2005, 86 (10):103105.
    [21] Tian Z R R, Voigt J A, Liu J et al. Complex and oriented ZnO nanostructures. Nat. Mater., 2003, 2 (12):821-826.
    [22] Yan C, Xue D. Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy. J. Phys. Chem. B, 2006, 110 (51):25850-25855.
    [23] Jeong M C, Oh B Y, Lee W et al. Comparative study on the growth characteristics of ZnO nanowires and thin films by metalorganic chemical vapor deposition (MOCVD). J. Cryst. Growth, 2004, 268 (1-2):149-154.
    [24] Wang Z L. Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter, 2004, 16 (25):R829-R858.
    [25] Yan C, Xue D. Formation of Nb_2O_5 nanotube arrays through phase transformation. Adv. Mater. 2008, 20 (5):1055-1058.
    [26] Yan C, Xue D. Electroless deposition of aligned ZnO taper-tubes in a strong acidic medium. Electrochem. Commun., 2007, 9 (6):1247-1251.
    [27] Yin Y D, Rioux R M, Erdonmez C K, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science, 2004, 304 (5671):711-714.
    [28] Liu B, Zeng H C. Fabrication of ZnO dandelions via a modified kirkendall process. J. Am. Chem. Soc, 2004, 126 (51): 16744-16746.
    [29] Sun T, Ying J Y. Synthesis of microporous transition-metal-oxide molecular sieves by a supramolecular templating mechanism. Nature, 1997, 389 (6652):704-706.
    [1] Weissleder R, Kelly K, Sun E Y et al. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol., 2005, 23 (11):1418-1423.
    [2] Lee I S, Lee N, Park J et al. Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. Am. Chem. Soc., 2006, 128 (33):10658-10659.
    [3] Lee J H, Huh Y M, Jun Y et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med., 2007, 13 (1):95-99.
    [4] Son S J, Reichel J, He B et al. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J. Am. Chem. Soc, 2005, 127 (20): 7316-7317.
    [5] Peng S, Sun S H. Synthesis and characterization of monodisperse hollow Fe_3O_4 nanoparticles. Angew. Chem. Int. Ed., 2007, 46 (22):4155-4158.
    [6] Bang J H, SuslickKS. Sonochemical synthesis of nanosized hollow hematite. J. Am. Chem. Soc, 2007, 129 (8):2242-2243.
    [7] Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev., 1997, 97 (6):2373-2419.
    [8] Davis ME. Ordered porous materials for emerging applications. Nature, 2002, 417 (6891): 813-821.
    [9] Yu M H, Wang H N, Zhou X F et al. One template synthesis of raspberry-like hierarchical siliceous hollow spheres. J. Am. Chem. Soc, 2007, 129 (47): 14576-14581.
    [10] Khanal A, Inoue Y, Yada M et al. Synthesis of silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure. J. Am. Chem. Soc., 2007, 129 (6):1534-1538.
    [11] Zhang Z M, Sui J, Zhang L J et al. Synthesis of polyaniline with a hollow, octahedral morphology by using a cuprous oxide template. Adv. Mater., 2005, 17 (23):2854-2857.
    [12] Obare S O, Jana N R, Murphy C J. Preparation of polystyrene-and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Lett., 2001, 1 (11):601-603.
    [13] Piao Y, Kim J, Na H B et al Wrap-bake-peel process for nanostructural transformation from beta-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat. Mater., 2008, 7 (3):242-248.
    [14] Peng Q, Dong Y J, Li Y D. ZnSe semiconductor hollow microspheres. Angew. Chem. Int. Ed., 2003, 42 (26):3027-3030.
    [15] Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 1998, 282 (5391):1111-1114.
    [16] Luo C, Xue D. Mild, quasireverse emulsion route to submicrometer lithium niobate hollow spheres. Langmuir, 2006, 22 (24):9914-9918.
    [17] Xu H L, Wang W Z. Template synthesis of multishelled Cu_2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed., 2007, 46 (9):1489-1492.
    [18] Fu Y S, Du X W, Kulinich S A et al. Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route. J. Am. Chem. Soc., 2007, 129 (51):16029-16033.
    [19] Morin S A, Amos F F, Jin S. Biomimetic assembly of zinc oxide nanorods onto flexible polymers. J. Am. Chem. Soc, 2007, 129 (45): 13776-13777.
    [20] Lao C S, Park M C, Kuang Q et al. Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization. J. Am. Chem. Soc, 2007, 129 (40):12096-12102.
    [21] Ruhle S, van Vugt L K, Li H Y et al. Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire. Nano Lett., 2008, 8 (1):119-123.
    [22] Huang M H, Mao S, Feick H et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292 (5523):1897-1899.
    [23] Yi J B, Pan H, Lin J Y et al. Ferromagnetism in ZnO nanowires derived from electro-deposition on AAO template and subsequent oxidation. Adv. Mater., 2008, 20 (6): 1170-1174.
    [24] Zhang Q F, Chou T R, Russo B et al. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew. Chem. Int. Ed., 2008, 47 (13): 2402-2406.
    [25] Hong W K, Sohn J I, Hwang D K et al. Tunable electronic transport characteristics of surface-architecture-controlled ZnO nanowire field effect transistors. Nano Lett., 2008, 8 (3): 950-956.
    [26] Zhang Z X, Sun L F, Zhao Y C et al. ZnO tetrapods designed as multiterminal sensors to distinguish false responses and increase sensitivity. Nano Lett., 2008, 8 (2):652-655.
    [27] Gao P X, Wang Z L, Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals. J. Am. Chem. Soc, 2003, 125 (37): 11299-11305.
    [28] Li Z H, Gessner A, Richters J P et al. Hollow zinc oxide mesocrystals from an ionic liquid precursor (ILP). Adv. Mater., 2008, 20 (7):1279-1285.
    [29] Jiang Z, Xie Z, Zhang X et al. Synthesis of single-crystalline ZnO polyhedral submicrometer-sized hollow beads using laser-assisted growth with ethanol droplets as soft templates. Adv. Mater., 2005, 16 (11):9047-907.
    [30] Shen G, Bando Y, Lee C, Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process. J. Phys. Chem. B, 2005, 109 (21):10578-10583.
    [31] Liu J, Xue D. Thermal Oxidation Strategy towards Porous Metal Oxide Hollow Architectures. Adv. Mater. 2008, 20 (13):2622-2627.
    [32] Yan C, Xue D. Polyhedral construction of hollow ZnO microspheres by CO_2 bubble templates. J. Alloys Compd., 2007, 431 (1-2):241-245.
    [33] Yin Y D, Rioux R M, Erdonmez C K, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science, 2004, 304 (5671):711-714.
    [34] Yin Y D, Alivisatos A P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature, 2005, 437 (7059):664-670.
    [35] Kong X Y, Ding Y, Yang R et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, 303 (5662):1348-1351.
    [36]Oskam G, Long J G, Natarajan A et al. Electrochemical deposition of metals onto silicon. J. Phys. D: Appl. Phys. 1998, 31 (16):1927-1949.
    [37] Sun Y G, Xia Y N. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc., 2004, 126 (12):3892-3901.
    [38] Petrova H, Lin C H, Hu M et al. Vibrational response of Au-Ag nanoboxes and nanocages to ultrafast laser-induced heating. Nano lett., 2007, 7 (4):1059-1063.
    [39] Aizawa M, Buriak J M. Nanoscale patterning of two metals on silicon surfaces using an ABC triblock copolymer template. J. Am. Chem. Soc., 2006, 128 (17): 5877-5886.
    [40] Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298 (5601):2176-2179.
    [41] Liang H P, Zhang H M, Hu J S et al. Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts. Angew. Chem. Int. Ed., 2004, 43 (12):1540-1543.
    [42] Chen J Y, Wiley B, McLellan J et al. Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 2005, 5 (10):2058-2062.
    [43] Skrabalak S E, Chen J, Au L et al. Gold nanocages for biomedical applications. Adv. Mater., 2007, 19 (20):3177-3184.
    [44] Bansal V, Jani H, Du Plessis J et al. Galvanic replacement reaction on metal films: A one-step approach to create nanoporous surfaces for catalysis. Adv. Mater., 2008, 20 (4): 717-723.
    [45] Skrabalak S E, Au L, Li X D et al. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protocol., 2007, 2 (9):2182-2190.
    [46] Teng X W, Wang Q, Liu P et al. Formation of Pd/Au nanostructures from Pd nanowires via galvanic replacement reaction. J. Am. Chem. Soc., 2008, 130 (3): 1093-1101.
    [47] Wang Y H, Chen P L, Liu M H. Synthesis of hollow silver nanostructures by a simple strategy. Nanotechnology, 2008, 19 (4):045607.
    [48] Lu X M, Au L, McLellan J et al. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO_3)_3 or NH_4OH. Nano Lett., 2007, 7 (6):1764-1769.
    [49] Chopra N G, Luyken R J, Cherrey K et al. Boron nitride nanotubes. Science, 1995, 269 (5226):966-967.
    [50] Ajayan P M, Redlich P H, Redlich P H et al. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature, 1995, 375 (6532):564-567.
    [51] Hacohen Y R, Grunbaum E, Tenne R et al. Cage structures and nanotubes of NiCl_2. Nature, 1998, 395 (6700):336-337.
    [52] Iijima S. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354 (6348):56-58.
    [53] Wang X D, Gao P X, Li J et al. Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes. Adv. Mater., 2002, 14 (23):1732-1735.
    [54] Kong X Y, Ding Y, Yang R et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, 303 (5662):1348-1351.
    [55] Gao P X, Ding Y, Mai W J et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science, 2005, 309 (5741):1700-1704.
    [56] Li F, Ding Y, Gao P X et al. Single-cystal hexagonal disks and rings of ZnO: Low-temperature, large-scale synthesis and growth mechanism. Angew. Chem. Int. Ed., 2004, 43 (39):5238-5242.
    [57] Cao M H, Liu T F, Gao S et al. Single-crystal dendritic micro-pines of magnetic alpha-Fe_2O_3: Large-scale synthesis, formation mechanism, and properties. Angew. Chem. Int. Ed., 2005, 44 (27):4197-4201.
    [1] Zarur A J, Ying J Y. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature, 2000, 403 (6765):65-67.
    [2] Majetich S A, Jin Y. Magnetization directions of individual nanoparticles. Science, 1999, 284 (5413):470-473.
    [3] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291 (5510):1947-1949.
    [4] Cole J J, Wang X Y, Knuesel R J, et al. Patterned growth and transfer of ZnO micro-and nanocrystals with size and location control. Adv. Mater. 2008, 20 (8):1474-1478.
    [5] Rauwel E, Clavel G, Willinger M G et al. Non-aqueous routes to metal oxide thin films by atomic layer deposition. Angew. Chem. Int. Ed., 2008, 47 (19):3592-3595.
    [6] Xu J, Xue D. Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals. Acta Mater., 2007, 55 (7):2397-2406.
    [7] Yin M, Wu C K, Lou Y B et al. Copper oxide nanocrystals. J. Am. Chem. Soc., 2005, 127 (26):9506-9511.
    [8] Seo W S, Jo H H, Lee K et al. Size-dependent magnetic properties of colloidal Mn_3O_4 and MnO nanoparticles. Angew. Chem. Int. Ed., 2004, 43 (9):1115-1117.
    [9] Seo W S, Jo H H, Lee K et al. Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles. Adv. Mater., 2003, 15 (10): 795-797.
    [10] Nagarajan L, De Souza R A, Samuelis D et al. A chemically driven insulator-metal transition in non-stoichiometric and amorphous gallium oxide. Nat. Mater., 2008, 7 (5):391-398.
    [11] Liu X, Li C, Han S et al. Synthesis and electronic transport studies of CdO nanoneedles. Appl. Phys. Lett., 2003, 82 (12):1950-1952.
    [12] Fleming C, Long D L, Mcmillan N et al. Reversible electron-transfer reactions within a nanoscale metal oxide cage mediated by metallic substrates. Nat. Nanotechnol., 2008, 3 (4): 229-233.
    [13] Chen C H, Abbas S F, Morey A et al. Controlled synthesis of self-assembled metal oxide hollow spheres via tuning redox potentials: Versatile nanostructured cobalt oxides. Adv. Mater., 2008, 20 (6):1205-1209.
    [14] Nguyen P, Ng H T, Yamada T et al. Direct integration of metal oxide nanowire in vertical field-effect transistor. Nano Lett., 2004, 4 (4):651-657.
    [15] Mostovoy M. Transition metal oxides-Mult iferroics go high-T-C. Nat. Mater., 2008, 7 (4):269-270.
    [16] Rodriguez J A, Ma S, Liu P et al. Activity of CeO_x and TiO_x nanoparticles grown on Au(111) in the water-gas shift reaction. Science, 2007, 318 (5857):1757-1760.
    
    [17] Sietsma J R A, Meeldijk J D, den Breejen J P et al. The preparation of supported NiO and Co_3O_4 nanoparticles by the nitric oxide controlled thermal decomposition of nitrates. Angew. Chem. Int. Ed., 2007, 46 (24):4547-4549.
    
    [18] Zhang Y, Kolmakov A, Chretien S et al. Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it. Nano Lett., 2004, 4 (3):403-407.
    [19] Martinson A B F, Elam J W, Hupp J T et al. ZnO nanotube based dye-sensitized solar cells ZnO nanotube based dye-sensitized solar cells. Nano Lett., 2007, 7 (8) :2183-2187.
    [20] olesinger T G, Jia Q X, Maiorov B et al. Ultrafine multilayers of complex metal oxide films. Adv. Mater., 2007, 19 (15):1917-1920.
    [21] Clifford J N, Palomares E, Nazeeruddin M K et al. Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO_2 films: free energy vs distance dependence. J. Am. Chem. Soc., 2004, 126 (16):5225-5233.
    [22] Verziu M, Cojocaru B, Hu J C et al. Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts. Green Chem., 2008, 10 (4):373-381.
    [23] Muller M, Stankic S, Diwald O et al. Effect of protons on the optical properties of oxide nanostructures. J. Am. Chem. Soc., 2007, 129 (41):12491-12496.
    [24] Choudary B M, Mulukutla R S, Klabunde K J et al. Benzylation of aromatic compounds with different crystallites of MgO. J. Am. Chem. Soc., 2003, 125 (8):2020-2021.
    [25] Yanagida T, Nagashima K, Tanaka H et al. Mechanism of catalyst diffusion on magnesium oxide nanowire growth. Appl. Phys. Lett., 2007, 91 (6):061502.
    [26] Zhang Z P, Zheng Y J, Chen J P et al. Facile synthesis of monodisperse magnesium oxide microspheres via seed-induced precipitation and their applications in high-performance liquid chromatography. Adv. Funct. Mater., 2007, 17 (14):2447-2454.
    [27] Yan C, Xue D. Novel self-assembled MgO nanosheet and its precursors. J. Phys. Chem. B, 2005, 109 (25):12358-12361.
    [28] Copp A N. Magnesia/magnesite. Am. Ceram. Soc. Bull, 1995, 74 (6):135-137.
    [29] Nagashima K, Yanagida T, Tanaka H et al. Effect of the heterointerface on transport properties of in situ formed MgO/titanate heterostructured nanowires. J. Am. Chem. Soc., 2008, 130 (15):5378-5382.
    [30] Jiao F, Bruce P G. Mesoporous crystalline beta-MnO_2- a reversible positive electrode for rechargeable lithium batteries. Adv. Mater., 2007, 19 (5):657-660.
    [31] Hadarajah A, Word R C, Meiss J et al. Flexible inorganic nanowire light-emitting diode. Nano Lett., 2008, 8 (2):534-537.
    [32] Zhang Z X, Sun L F, Zhao Y C et al. ZnO tetrapods designed as multiterminal sensors to distinguish false responses and increase sensitivity. Nano Lett., 2008, 8 (2):652-655.
    [33] Song J H, Wang X D, Liu J et al. Piezoelectric potential output from ZnO nanowire functionalized with p-type oligomer. Nano Lett., 2008, 8 (1):203-207.
    [34] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312 (5771):242-246.
    [35] Jiang X C, Herricks T, Xia Y N. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett., 2002, 2 (12):1333-1338.
    [36] Ye X R, Jia D Z, Yu J Q et al. One-step solid-state reactions at ambient temperatures-a novel approach to nanocrystal synthesis. Adv. Mater., 1999, 11 (11):941—943.
    [37] Wang C, Daimon H, Onodera T et al. A general approach to the size-and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem. Int. Ed., 2008, 47 (19):3588-3591.
    [38] Zhao J M, Har-E1 Y E, McMahon M T et al. Size-induced enhancement of chemical exchange saturation transfer (CEST) contrast in liposomes. J. Am. Chem. Soc., 2008, 130 (15):5178-5184.
    
    [39] Richards R, Li W F, Decker S et al. Consolidation of metal oxide nanocrystals. Reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials. J. Am. Chem. Soc., 2000, 122 (20) :4921-4925.
    
    [40] Velev O. Self-assembly of unusual nanoparticle crystals. Science 2006, 312 (5772):376-377.
    
    [41] Choi S, Suh K, Lee H. Direct UV-Replica molding of biomimetic hierarchical structure for selective wetting. J. Am. Chem. Soc., 2008, 130 (20):6312-6313.
    [42] Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons: Formation of dandelions. J. Am. Chem. Soc., 2004, 126 (26):8124-8125.
    [43] Tang Z Y, Zhang Z L, Wang Y et al. Self-assembly of CdTe nanocrystals into free-floating sheets. Science, 2006, 314 (5797):274-278.
    [44] Yan X, Xu D, Xue D. SO_4~(2-) ions direct the one-dimensional growth of 5Mg(OH)_2 center dot MgSO_4 center dot 2H_2O. Acta Mater., 2007, 55 (17):5747-5757.
    [45] Xu D, Xue D. Chemical bond analysis of the crystal growth of KDP and ADP. J. Cryst. Growth, 2006, 286 (1):108-113.
    [46] Xu J, Xue D. Fabrication of malachite with a hierarchical sphere-like architecture. J. Phys. Chem. B, 2005, 109 (36):17157-17161.
    [47] Burda C, Chen X B, Narayanan R et al. Chemistry and properties of nanocrystals of different shapes. Chem. Rev., 2005, 105 (4):1025-1102.
    [48] Pettigrew K A, Long J W, Carpenter E E et al. Nickel ferrite aerogels with monodisperse nanoscale building blocks-the importance of processing temperature and atmosphere. ACS Nano, 2008, 2 (4):784-790.
    
    [49] Tian Z R, Tong W, Wang J Y et al. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts. Science, 1997, 276 (5314):926-930.
    
    [50] Jiao F, Harrison A, Hill A H et al. Mesoporous Mn_2O_3 and Mn_3O_4 with crystalline walls.Adv. Mater. 2007, 19 (22):4063-4066.
    [51] Yan C, Xue D. General, spontaneous ion replacement reaction for the synthesis of micro-and nanostructured metal oxides. J. Phys. Chem. B, 2006, 110 (4):1581-1586.
    [52] Yin Y, Alivisatos A P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature, 2005, 437 (7059):664-670.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700