用户名: 密码: 验证码:
多股簧冲击特性与损伤机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多股螺旋弹簧(简称多股簧)通常是由2 ~ 7股0.5 ~ 3mm的碳素弹簧钢丝拧成钢索冷绕而成,分为有中心股和无中心股两种结构形式,其中压缩弹簧的钢索的旋向与弹簧的旋向相反,拉伸弹簧的旋向与弹簧的旋向相同。与普通单股螺旋弹簧相比,多股簧具有强度条件好、吸振减振性能优越等独特性能,因而它是航空发动机和自动武器等产品的关键零件。另外,多股簧还可广泛应用于振动设备(如振动筛、振动粉碎设备等)、高精度台面和要求很平稳的运输车辆等,以取代传统的单股弹簧和橡胶弹簧。
     到目前为止,已有文献对多股簧的静态响应和成形方法进行了相关研究。而多股簧在工作过程中主要承受冲击载荷,其优越性能在于弹簧变形时钢丝之间的接触摩擦所产生的阻尼效果,因此多股簧承受冲击载荷时的动力学响应以及钢丝间的磨损机理分析应成为研究的重中之重,但还未有针对此方面的研究工作。本文旨在通过对多股簧冲击特性和损伤机理的研究,深入多股簧的相关理论研究基础,重点在于多股簧承受冲击载荷时的有限元数值计算及其相应的几何模型理论基础、冲击试验检测设备的研制、钢丝间的扭动微动磨损机理试验研究及有限元分析。
     本文主要从以下五个方面对多股簧的冲击特性及损伤机理进行了深入、细致的研究和探讨工作:
     首先,多股簧的钢索拧角和钢索直径大小从根本上决定了多股簧的性能。现有文献提出的“相邻两根钢丝中心线的最短距离等于钢丝直径”和“钢索横截面为椭圆相切”的计算方法均有局限性。因此,本文通过新建立的多股簧钢索横截面的精确数学模型,利用MATLAB软件开发了应用软件来直接精确求得任意股数的多股簧钢索拧角和直径。同时,在现有多股簧各股钢丝中心线数学模型基础上,基于连续多段函数和指数方程方法,分别采用CATIA和PRO/E软件的螺旋扫描功能,建立了两段并圈多股簧的三维实体模型,为后续多股簧的动态设计理论、冲击特性的有限元计算提供了重要的理论基础和计算模型。
     第二,多股簧的冲击特性是研究的热点。在两段并圈多股簧的三维实体模型基础上,通过对多股簧运动工况的分析,建立了受阻尼影响的多股簧动态模型振动方程。同时,利用ABAQUS软件的显式动态功能进行高速冲击响应分析,为多股簧的结构优化设计提供了依据。
     第三,研发了多股簧动态参数非接触高速多通道检测系统的结构、电气硬件及控制算法,该系统可用于检测多股簧在冲击振动状态下,簧杆上各质点的运动位移、速度、加速度,从而获得多股簧簧圈各质点的动态参数,为多股簧在高速冲击载荷作用下其内部的变形过程研究提供试验检测平台。
     第四,针对扭动微动是导致多股簧钢丝表面局部区域磨损的重要原因之一,通过各股钢丝间法向接触力及角位移的数学模型所得到的试验参数,在新型试验装置上真实模拟了多股簧工作过程中钢丝间发生的柱-柱接触扭动微动;系统研究了不同试验工况及循环次数的变化对多股簧钢丝扭动微动运行行为和损伤机理的影响。
     最后,在试验研究的基础上,对多股簧钢丝扭动微动进行数值模拟,研究不同试验工况、循环次数和接触面摩擦系数条件下,接触界面应力、相对滑移的分布和变化情况;通过修正的Archard方程建立多股簧钢丝扭动微动工况下的磨损模型,采用与数值模拟相结合的方法计算不同试验工况及循环次数下钢丝的磨损深度;并结合与前面试验结果的对比分析,对多股簧扭动微动磨损损伤机理的深入认识提供参考。
Stranded-wire helical spring is a cylindrical helical spring rolled by a strand, which usually consists of 2 to 7 carbon steel wires of 0.4 to 3 mm in radius. The spring has two kinds of structures in accordance with whether it has central wire or not. The helical direction of the compression spring is opposite to that of the strand, while it has the same direction for the extension spring. Compared with conventional single helical springs, it has the unique characteristic of better damping and vibration reduction. Therefore, it is a critical part in aero engines and automatic weapons. In addition, the spring is widely used in vibratory equipments, such as vibration sieves and vibration breaking plants, high precision table-boards and steady transport vehicles, substituting traditional single springs or rubber springs.
     So far, the static response and formation of stranded-wire helical spring have been widely researched. However, researchers seldom cover the impact performance and wear mechanism, so the analysis of dynamic response and wear mechanism among spring wires is the most important aspect for the study of the spring. The super performance of stranded-wire helical spring mainly results from the damping effect generated by frictions of the strand and the wire when the spring mainly bears impact load during to-and-fro movement. The present thesis further perfects correlation theory of stranded-wire helical spring through the study of impact performance and wear mechanism of the spring, and concentrates on the theory of theoretical geometric model and corresponding numerical simulation when stranded-wire helical spring mainly bears impact load, the development of testing device, torsional fretting wear mechanism and FEM numerical calculation among spring wires.
     The present thesis makes efforts to detailed studies on the impact performance and wear mechanism of the spring from the following aspects:
     Firstly, the performance of stranded-wire helical spring is basically determined by its twist angle and wire diameter. The numerical methods raised in the existing simplified theory that the minimum distance between two adjacent wires is equal to wire diameter and the strand cross-section is elliptical tangent are not sufficient. An application software adapting newly established mathematic model about the strand cross-section is developed to calculate the precise twist angel and diameter of strands of arbitrary wires. Meanwhile, based on the mathematical model of curve for centre line of spring wire, the present thesis establishes the three dimensional entity model of stranded-wire helical spring of closed ends, adapting helical scan function of CATIA and PRO/E respectively, which provides the significant theoretical principle and calculation model for following dynamic design theory and numerical impact simulation.
     Secondly, the dynamic performance of stranded-wire spring is hot issue for study. Based on the three dimensional entity model of stranded-wire spring of closed ends and the motion analysis of the spring, this paper sets up a dynamic vibration equation considering the damping effect. The high-speed impact response analysis by using the implicit dynamic function of ABAQUS gives a significant reference for the optimum structure design of stranded-wire spring.
     Thirdly, a high-speed, non-contact and multi-channels device for testing the dynamic parameters of the spring is developed. The displacement, velocity and acceleration of every particle in the spring can be directly calculated with high precise by using the mentioned testing system, which offers a detection platform for the analysis of internal modification of stranded-wire spring under high-speed impact.
     Fourthly, the wear on the local area of the steel wires’surface is due to the torsional fretting on the working process of the stranded-wire helical spring. Two mathematical models to calculate the normal contact force among the wires and the angular displacement respectively are established at first when the stranded spring bore impact load. With the experimental parameters obtained from the models, the torsional fretting test adopting cylinder - cylinder contact mode, which authentically stimulates the torsional fretting among the wires on the working process of the spring, is realized successfully on a newly developed fretting tester. The running behavior and the failure mechanism of the spring wires under the torsional fretting conditions are systematically researched.
     At last, based on the experimental research, the distribution of stress and relative slip in the contact area through the torsional fretting numerical calculation of spring wires under different test conditions, cycles and friction coefficients is obtained. Combining the mathematical wear model adapting the modified Archard equation and the numerical simulation, the wear depth is able to be accurately calculated under different work conditions and cycles. Comparison the numerical simulation with the experimental results can provide significant reference for the further study of wear mechanism of stranded-wire helical spring under torsional fretting condition.
引文
[1]张英会,刘辉航,王德成.弹簧手册[M].北京:机械工业出版社,2008.
    [2]殷仁龙.机械弹簧设计理论及应用[M].北京:兵器工业出版社,1993.
    [3]张东文.弹簧设计与制造工艺新技术及质量监控实用手册[M].北京:中国科学文化音像出版社,2003.
    [4] H Carlson,Spring Manufacturing Handbook[M].USA:New York,1982.
    [5] H.Carlson,Spring Designer’s Handbook[M].USA:New York,1978.
    [6] The Spring Research Association,Springs Materials/Design/Manufacture[M],UK:Sheffield,1968.
    [7]罗辉.机械弹簧制造技术[M].北京:机械工业出版社,1987.
    [8]成大先.机械设计手册[M].北京:化学工业出版社,2004.
    [9]谭惠民.机械弹簧[M].北京:国防工业出版社,1981.
    [10]闵建军.多股螺旋弹簧动态参数分析研究[D].重庆大学博士学位论文,2007.
    [11] H H Clark.Stranded wire helical spring-spring design and application[M].New York:McGrao-Hill Book Company,1961.
    [12]项忠霞,黄田,张洁.自行车用多股弹簧减振器[P].中国,ZL 200520131013.9,2005.12.30:5.
    [13]黄之初,王军,李子成.变激励振动磨粉磨机理分析及实验研究[J].武汉工业大学学报,1994,16(4):95-99.
    [14]宋方臻,宋波,孙淑娟.非线性弹簧支承转子系统的动力性能分析[J].机械科学与技术,1999,18(4):587-591.
    [15]宋方臻,宋波,马玉真.含立方非线性非对称钢缆弹簧支承转子系统的动力特性研究[J].振动与冲击,2000,19(4):22-24.
    [16]田正东,姚雄亮,沈志华等.基于MR的船用减振抗冲隔离器力学特性研究[J].哈尔滨工程大学学报,2008,29(8):783-788.
    [17]李志远,陆益民,陈品.钢缆弹簧式汽车后桥减振器[P].中国,ZL 200520075608.7,2005.9.15:4.
    [18] J W Philips , G A Costello . General axial response of stranded wire helical springs[J].Non-Linear Mechanics.1979,14:247-257.
    [19] G A Costello,J W Philips.Static response of stranded wire helical springs[J].International Journal of Mechanical Sciences,1979,21:171-178.
    [20]钱学毅.多股螺旋弹簧优化设计.机械研究与应用[J],2005,18(4):80-81.
    [21]王茂林.具有多中心的多股螺旋压缩弹簧的分析计算[J].兵工学报,1995(1):60-65.
    [22] S Sathikh,M B K Moorthy and M Krishnan,A symmetric linear elastic model for helical wire strands under axisymmetric Loads[J].Journal of Strain Analysis,1996,31(5):389-399.
    [23]王时龙,萧红,周杰等.多股螺旋弹簧的微分几何研究[J].中国机械工程,2009,20(17):2089-2099.
    [24]王时龙,周杰,康玲.多股螺旋弹簧绕制中的动态张力[J].机械工程学报,2008,44(6):36-42.
    [25]王时龙,任伟军,周杰等.多股螺旋弹簧的空间曲线模型研究[J].中国机械工程,2007,18(11):1269-1272.
    [26]闵建军,王时龙,周杰.新型多股簧钢丝动态张力控制系统研究[J].液压与气动,2007,9:26-29.
    [27]洪茂成,王时龙,任伟军等.多股螺旋弹簧三维接触摩擦研究[J].机械设计与制造,2008,1:55-57.
    [28]杨建锁,王时龙,周杰等.多股螺旋弹簧加工机床数控系统的研究[J].组合机床与自动化加工技术,2007,6:46-52.
    [29]程建宏,王时龙,周杰等.多股簧数控机床张力控制器动态响应特性的研究[J].制造技术与机床,2009,6:145-147.
    [30]周杰,邹政,王时龙等.基于多股簧数控加工机床的多通道张力动态监控系统的研发[J].组合机床与自动化加工技术,2009,12:54-57.
    [31]周杰,彭玉鑫,王时龙等.多股螺旋弹簧数控机床结构设计及控制系统改进[J].组合机床与自动化加工技术,2009,10:71-74.
    [32]王时龙,周杰,任伟军等.多股簧数控机床钢丝张力检测及旋转拧索装置[P].中国,ZL 200710078597.1,2007.11.14:1-21.
    [33]王时龙,周杰,洪茂成等.钢丝盒张力抽丝的防变形装置[P].中国,ZL 200710078632.X,2007.12.5:1-11.
    [34]王时龙,周杰,康玲等.多股簧数控机床钢丝张力控制器[P].中国,ZL 200910104596.9,2010.1.27:1-8.
    [35]王时龙,周杰,康玲等.多股簧数控加工机床[P].中国,ZL 200910104597.3,2010.1.27:1-17.
    [36]李文平.弯曲回弹变分原理及其数值模拟研究[D].燕山大学博士学位论文,2006.
    [37]朱东波,孙琨,李涤尘等.板料成型回弹问题研究新进展[J].塑性工程学报,2002,7(1):11-17.
    [38] F J Gardiner.The Springback of Metals[J].Transactions of ASME,1957,79:1-9.
    [39] A E Domiaty,A H Shabaik.Bending of work-hardening metals under the influence of axialload[J].Jounral of Mechanical Working Technology,1984,10:57-66.
    [40] T Buranathiti,Jian Cao.An effective analytical model for springback prediction in straight flanging processes[J].International Journalof Material and Product Technology,2004,21:137-153.
    [41]余同希,张亮炽.塑性弯曲理论及其应用[M].北京:科学出版社,1992.
    [42] R Hill.The Mathematical Theory of Plasticity[M].London:Oxford,1950.
    [43] M L Wenner.On work hardening and springback in plane strain draw forming[J].American Society for Metal,1983,2(4):277-287.
    [44] W Y D Yuen . Springback in the stretch-bending of sheet metal with non-uniform deformation[J].Journal of Materials Processing Technology,1990,22:1-20.
    [45] T Kuwabara.2-D springback analysis for stretch-bending process based on total strain theory[Z].SAE950691:1-10.
    [46] L C Zhang.A mechanics model for sheet-metal stamping using deformable die.Journal of Materials Processing Technology,1995,53:798-810.
    [47] F Morestin.Elasto-plastic formulation using a kinematical hardening model for springback analysis in sheet metal forming[J].Journal of Materials Processing Technology,l996,56:619-630.
    [48] D K Len.A simplified approach for evaluating bend ability and springback in plastic bending of anisortopic sheet metal[J].Journal of Materials Processing Technology,1997,66:9-17.
    [49] P Xue,T X Yu,E Chu.An energy Approach for predicting springback of metal sheets after double curvature forming,PartI:Axisymmertic Stamping[J].Intenrational Journal of Mechanical Sciences,2001,43:1893-1914.
    [50] P Xue,T X Yu,E Chu.An energy Approach for predicting springback of metal sheets after double curvature forming,PartII:Unequal Double-curvature Forming[J].Intenrational Journal of Mechanical Sciences,2001,43:1915-1924.
    [51] A EL-Megharbel,A EL-Domiauy,M shaker.Springback and residual stresses after stretch beading of work-hardening sheet metal[J].Journal of Materials Proceeding Technology,1990,24:191-200.
    [52] C T Wang,G Kinzel,T Altan.Mathematical modeling of plane-strain bending of sheet and plate[J].Journal of Materials Proceeding Technology,1993,39:279-304.
    [53] C T Wang,G Kinzel,T Altan.Process simulation and springback contron plane strain sheet beading[C].SAE Technical paper No.930280,1993.
    [54] Z T Zhang,D Lee.Development of a new model for plane strain bending and springback analysis[J].Journal of Materials Engineering and Performance,1995,4(3):291-300.
    [55] Z T Zhang , S J Hu . Stress and residual stress distributionsin plane strain bending[J].International Journal of Mechanical Sciences,1998,40(6):53-543.
    [56] A A Tseng,J Milller,Y H Hahn.Mechanical and bending characteristics of invar Sheets[J].Materials and Design,1996,17(2):89-96.
    [57] J T Gau,G L Kinzel.A new model for springback prediction in which the Bauschinger effect is considered[J].International Journal of Mechanical Sciences,2001,43:1813-1832.
    [58] M V Inamdar,P P Date,S V Sabnis.On the efects of geomertic parameters on springback in sheets of five materials subjected to air vee bending[J].Jounral of Materials Processing Technology,2002,123:459-463.
    [59] Z Tan.An empiric model for conrtol springback in V–die bending of sheet metals[J].Journal of Materials Processing Technology,1992,34:449-455.
    [60] W D Carden,L M Geng,D K Matlock,et al.Measurement of springback[J].International Jounral of Mechanical Sciences,2002,44:79-101.
    [61] M Ueda,M Ueno,M Kobayashi.A study of springback in the stretch bending of channels[J].Journal of Mechanics Working Technology,1981,5:163-179.
    [62] R Hino,Y Goto,M Shirashi.Springback of sheet metal laminates subjected to stretch bending and the subsequent unbending[J].Advanced Technology of Plasticity,1999,11:1077-108.
    [63] N Bachter.Three dimensional extension of non-linear shell for mulation based on the enhance dassumed strain concept[J].International Jounral for Numeircal Methods in Engineeirng,1994,7:2551-2568.
    [64] C Sansour.A theory and finite element formulation of shells at finite deformation involving thickness change[J].Archive of Applied Mechanics,1995,65:194-216.
    [65] R Hauptmann,K Schweizerhof.A systematic development of solid-shel element for mulations for linear and non-linear analyses employing only displacement degrees of freedom[J].Intenrational Journal for Numerical Methods in Engineering,1998,42:49-69.
    [66] R A F Valente.Developments on shell and solid-shell finite elements technology in nonlinear continuum mechanics[D].PhD Thesis Faculty of Engineering.University of Porto,2004.
    [67] H Huh,S S Han.Modified membrane finite element formulation consider bending effects in sheet metal forming analysis[J].Intenrational Journal of Mechanical Sciences, 1994,36(7):659-671.
    [68] F Pourboghrat,M E Karabin,R C Becker,et al.A hybrid membrane(shell) method for calculating springback of anisotropic sheet metals undergoing axisymmetric loading[J].International Journal of Plasticity,2000,16:677-700.
    [69] J W Yoon,F Pourboghrat,K Chung,et al.Springback perdiction for sheet metal formingprocess using a 3D hybrid[J].Intenrational Journal of Mechanical Sciences,2002,44:2133-2153.
    [70]叶又澎,颖红,阮雪榆.板料成形数值模拟的关键技术及难点[J].塑性工程学报,1997,4(2):19-23.
    [71]柳玉启.板料成形塑性流动理论及起皱回弹的数值模拟研究[D].吉林工业大学博士学位论文,1996.
    [72]王晓林.蒙皮拉形过程有限元数值模拟研究[D].北京航空航天大学博士学位论文,1999.
    [73]李雪春.弯曲成形中材料性能参数在线实时识别及精度预测研究[D].哈尔滨工业大学博士学位论文,2001.
    [74]张彬,李东升,周贤宾.基于人工神经网络的拉形回弹预测技术研究[J].塑性工程学报,2003,10(2):28-31.
    [75]黄智,李光耀,钟志华.自适应模糊神经网络在板料弯曲回弹预测中的应用[J].计算机仿真,2003,20(11):58-60.
    [76]刁法玺,张凯锋.板料V形弯曲回弹的动力显式有限元分析[J].材料科学与工艺,2002,10(2):170-174.
    [77]刘艳芳,施法中.板料冲压成形回弹的有限元数值模拟研究[J].塑性工程学报,2004,4:36-39.
    [78] Y Toi,J B Lee,M Taya.Finite element analysis of superelastic,large deformation behavior of shape memory alloy helical springs[J].Computers and Structures,2004,82:685–1693.
    [79] D Fakhreddine,T Mohamed,A Said,et al.Finite element method for the stress analysisof isotropic cylindrical helical spring[J].European Journal of Mechanics A/Solids,2005,24:1068–1078.
    [80] M Gurgoze,O Cakar,S Zeren.On the frequency equation of a combined system consisting of a simply supported beam and in-span helical spring–mass with mass of the helical spring considered[J].Journal of Sound and Vibration,2006,295:436–449.
    [81] J T Gau,G L Kinzel.An experimental inverstigations of the influence of the Bauschinger effect on springback predictions[J].Journal of Materials Processing Technology,2001,108:369-375.
    [82]殷仁龙.弹塑性弯曲理论与冷绕螺旋弹簧的回弹[J].华东工学院学报,1992,5:73-76.
    [83]刘金武,高为国,倪小丹.冷绕螺旋弹簧回弹曲率的研究及试验[J].现代制造工程,2002,3:12-13.
    [84] J Chakrabarty.Theory of plasticity[M].New York:McGraw-Hill Book Company,1987.
    [85] G D Bibel,T P Kicher.Reduction of springback and residual stresses during winding of a helical spring[J].Journal of Engineering for Industry,1991,113(2):214-217.
    [86] A Taherizadeh,A Ghaei,D E Green,et al.Finite element simulation of springback for a channel draw process with drawbead using different hardening models[J].International Journal of Mechanical Sciences,2009,51(4):314-325.
    [87] I N Vladimirov,M P Pietryga,S Reese.Prediction of springback in sheet forming by a new finite strain model with nonlinear kinematic and isotropic hardening[J].Journal of Materials Processing Technology,2009,209(8):4062-4075.
    [88] M G Lee,J H Kim,K Chung,et al.Analytical springback model for lightweight hexagonal close-packed sheet metal[J].International Journal of Plasticity,2009,25(3):399-419.
    [89] R Kazan,M Firat,A E Tiryaki.Prediction of springback in wipe-bending process of sheet metal using neural network[J].Materials & Design,2009,30(2):418-423.
    [90]詹梅,杨合,栗振斌.管材数控弯曲回弹规律的有限元分析[J].材料科学与工艺,2004,12(4):349-352.
    [91]陈磊,杨继昌,张立文.板料弯曲回弹影响因素的有限元模拟研究[J].材料科学与工艺,2007,15(2):269-272.
    [92] H S Kim,M Koc.Numerical investigations on springback characteristics of aluminum sheet metal alloys in warm forming conditions[J].Journal of Materials Processing Technology,2008,204(1):370-383.
    [93] A Behrouzi,B M Dariani,M Shakeri.A new approach for inverse analysis of springback in a sheet-bending process[J].Proceedings of the Institution of Mechanical Engineering Part B-Journal of Engineering Manufacture,2008,222(11):1363-1374.
    [94] S A Asgari,M Pereira,B F Rolfe,et al.Statistical analysis of finite element modeling in sheet metal forming and springback analysis[J].Journal of Materials Processing Technology,2008,203(1):129-136.
    [95] C Axinte,B Chirita,I Cristea,et al.Optimization procedure for the springback reduction in sheet metal forming[J].Metalurgia International,2008,13(11):27-34.
    [96] M G Lee,D Kim,R H Wagoner,et al.Semi-analytic hybrid method to predict springback in the 2D draw bend test[J].Journal of Applied Mechanics-Transactions of the ASME,2007,74(6):1264-1275.
    [97] M Firat . U-channel forming analysis with an emphasis on springback deformation[J].Materials & Design,2007,28(1):147-154.
    [98] I A Burchitz,T Meinders.Adaptive through-thickness integration for accurate springback prediction[J].International Journal for Numerical Methods in Engineering,2008,75(5):533-554.
    [99] T X Yu,W Johnson.Influence of axial force on the elastic-plastic bending and springback ofa beam[J].Journal of Mechanical Working Technology,1982,6(1):5-21.
    [100]王时龙,雷松,周杰等.受张力影响的螺旋弹簧回弹理论及数值模拟[J].中南大学学报(已录用).
    [101]雷松,王时龙,周杰等.螺旋弹簧冷绕成形与回弹的数值分析[J].计算机工程与应用(已录用).
    [102] A E Love.A treatise on the mathematical theory of elasticity[M].New York:Dover Publications,1944.
    [103] G A Costello.Large deflection of helical spring due to bending[J].Journal of the Engineerings Mechanical Division (ASCE) 103 (EM3),1977:481-487.
    [104] J W Phillips.Large deflections of impacted helical springs[J].Journal of Acoustics Society American,1972,51:967- 972.
    [105] H H Clark.Stranded wire helical springs for machine guns[J].Product Engineering,1946,17(7):154-160.
    [106]郝兵,李守仁.冲击载荷下弹簧质量系统瞬态响应的近似求法[J].哈尔滨工程大学学报,2003,24(4):427-430.
    [107]郝兵,李帅.冲击载荷下弹簧质量系统的稳态响应[J].机械设计与研究,2003,19(4):46-49.
    [108]刘卫东,姚辉,吴文伶.冲击载荷下圆柱螺旋弹簧强度可靠性研究[J].南昌大学学报,2001,23(3):49-52.
    [109]符朝兴,刘大维,师忠秀.单片钢板弹簧受短波冲击的瞬态响应研究[J].机械设计与制造,2006,9:61-63.
    [110]吴善跃,黄映云,朱石坚.空气弹簧冲击载荷特性的试验研究[J].振动与冲击,2006,25(2):113-117.
    [111]于道文.多股螺旋弹簧的工作特性和寿命分析[J].弹簧工程,1997,3:11-16.
    [112]于道文.复进簧簧圈振动和动态应力[J].兵工学报,1980,1:1-12.
    [113]于道文.多股螺旋弹簧的动应力及其有效寿命[J].南京理工大学学报,1994,3:24-29.
    [114]闵建军,王时龙.多股螺旋弹簧动态计算分析[J].机械工程学报,2007,43(3):199-203.
    [115]闵建军,王时龙.多股螺旋弹簧动态设计方法[J].中国机械工程,2007,18(8):895-899.
    [116]任平弟.钢材料微动腐蚀行为研究[D].西南交通大学博士学位论文,2005.
    [117] E M Eden,W N Rose,F L Cunningham.The endurance of metals[J].Proceedings of the Institution of Mechanical Engineers,1991,4:839-974.
    [118] G A Tomlison.The rusting of steel surface in contact[J].Proceeding of the Royal Society,1927,5:472-483.
    [119] E J Warlow-Davies.Fretting corrosion and fatigue strength:brief results of preliminary experiments[J].Proceedings of the institution of Mechanical Engineers,1941,1(146):p32-38.
    [120] R D Mindlin.Compliance of elastic bodies in contact[J].ASME Journal of Applied Mechanics,1949,16:259-268.
    [121] R B Waterhouse.Fretting Wear[M].ASM Handbook,V01.18,Friction,Lubrication,and Wear Technology,ASM Intemation,USA,1992.
    [122] R B Waterhouse.The role of adhesion and delamination in the fretting wear of metallic materials[J].Wear,1977,45:355-364.
    [123] N P Suh.An overview of the delamination theory of wear[J].Wear,1977,44:1-16.
    [124] Y Berthier,L Vincent,M Godet.Velocity accommodation in fretting[J].Wear,1988,125:25-38.
    [125] M.Godet.Third-bodies in tribology[J].Wear,1990,136:29-45.
    [126] Z R Zhou,S Fayeulle,L Vincent.Cracking behavior of various aluminium alloys during fretting wear[J].Wear,1992,155:317-330.
    [127] Z R Zhou.Fissuration induite en petits debattements:application au cas d’alliages d’aluminium a ronautiques[C].Thesis,Ecole Centrale Lyon,1992.
    [128] Z R Zhou,L Vincent.Effect of external loading on wear maps of aluminium alloys[J].Wear,1993,162-164:619-623.
    [129] Z R Zhou,L Vincent.Mixed fretting regime[J].Wear,1995,181-183:531-536.
    [130] Z R Zhou,L Vincent.Cracking induced by fretting of aluminium alloys[J].Journal of Tribology,1997,119:36-42.
    [131]郭强.高分子材料耐磨机理与金属绳缆微动损伤防护研究[D].清华大学博士学位论文,1996.
    [132]张德坤,葛世荣,朱真才.提升钢丝绳的钢丝微动摩擦磨损特性研究[J].中国矿业大学学报,2002,31(5):367-370.
    [133]张德坤,葛世荣,朱真才.评定钢丝的微动摩擦磨损参数研究[J].中国矿业大学学报,2004,33(1):33-36.
    [134]张德坤,葛世荣.钢丝的微动磨损及其对疲劳断裂行为的影响研究[J].摩擦学学报,2004,24(4):355-359.
    [135]张德坤,葛世荣.钢丝微动磨损的评定参数及理论模型研究[J].摩擦学学报,2005,25(1):50-54.
    [136]张德坤,葛世荣.带有微动磨损缺口钢丝的疲劳特性[J].机械工程学报,2006,42(1):173-177.
    [137] P A McVeigh,T N Farris.Finite element analysis of fretting stresses[J].ASME J Tribology.1997,119:797-801.
    [138] L Johansson.Numerical simulation of contact pressure evolution in fretting[J].ASME J Tribology.1994,116:247-254.
    [139] A E Giannakopoulos,S Suresh.A three-dimensional analysis of fretting fatigue[J].Acta Materials,1998,46:177-192.
    [140]朱如鹏,潘升材,高德平.微动摩擦接触面上力学参数的数值分析[J].工程力学,1996:507-511.
    [141]朱如鹏,潘升材,高德平.微动疲劳中的应力状态参数和微动磨损参数的研究[J].工程力学,1998,15(4):116-121.
    [142] H Zhao.The virtual contact loading methd for contact problem considering material and geometric nonlinearities[J].Computers & Structures,1996,58(3):621-632.
    [143] H Zhao.Analysis of load distribution within solid and hollow roller bearing[J].ASME J Tribology,1998,120:134-139.
    [144] H Zhao . Stress concentration factors within bolt-nut connectors under elasto-plastic deformation[J].Int J Fatigue,1998,20:651-659.
    [145]赵华,周仲荣.数值方法在微动疲劳研究中的应用进展[J].摩擦学学报,2000,20(4):317-320.
    [146]赵华,金雪岩,朱旻昊.微动接触应力的数值分析[J].四川大学学报,2003,35(5):32-36.
    [147] J Ding,S B Leen,I R McColl.The effect of slip regime on the fretting wear-induced stress evolution[J].International Journal of Fatigue,2004,26:521-531.
    [148] I R McColl,J Ding,S B Leen.Finite element simulation and experimental validation of fretting wear[J].Wear,2004,256:1114-1127.
    [149] J Ding.Modelling of fretting wear[D].PhD Thesis,University of Nottingham,2003.
    [150] C Y Lee,L S Tian,J W Bae.Analysis of fretting problems using a numerical method based on Cauchy singular integral equation[J].Key Engineering Materials,2007,353-358:817-822.
    [151] C Y Lee,L S Tian,J W Bae.Application of influence function method on the fretting wear of tube-to-plate contact[J].Tribology International,2009,42:951-957.
    [152] Y S Chai,C Y Lee,J W Bae.Finite element analysis of fretting wear problems in consideration of frictional contact[J].Key Engineering Materials,2005,297-300:1406-1411.
    [153] Y S Chai,J W Bae,C Y Lee.Finite element analysis of fretting wear under various contact conditions[J].Key Engineering Materials,2006,312:375-380.
    [154] C Y Lee,J W Bae,B S Choi.Three dimensional finite element simulation of the fretting wear problems [J].International Journal of Modern Physics B,2006,20(25-27):3890-3895.
    [155] J W Bae,C Y Lee,Y S Chai.Three dimensional fretting wear analysis by finite element substructure method[J].International Journal of precision engineering and manufacturing,2009,10(4):63-69.
    [156] M H Zhu,Z R Zhou,Ph Kapsa,et al.An experimental investigation on composite fretting mode[J].Tribology International,2001,34:733-738.
    [157] M H Zhu,Z R Zhou.Dual-motion fretting wear behaviour of 7075 aluminium alloy[J].Wear,2003,255:269-275.
    [158] M H Zhu,Z R Zhou.Composite Fretting Wear of Aluminum Alloy[J].Key Engineering Materials,2007,353-358:868-873.
    [159]朱旻昊.径向与复合微动的运行和损伤机理研究[D].西南交通大学博士学位论文,2001.
    [160]周仲荣,朱旻昊.复合微动磨损[M].上海:上海交通大学出版社,2004.
    [161] Z B Cai,M H Zhu,Z R Zhou.An experimental study torsional fretting behaviors of LZ50 steel[J].Tribology International,2010,43(1-2):361-369.
    [162] Z B Cai,M H Zhu,J F Zheng,et al.Torsional fretting behaviors of LZ50 steel in air and nitrogen[J].Tribology International,2009,42(11-12):1676-1683.
    [163] Z B Cai,M H Zhu,H M Shen,et al.Torsional fretting wear behaviour of 7075 aluminium alloy in various relative humidity environments[J].Wear,2009,267(1-4):330-339.
    [164] J Yu,Z B Cai,M H Zhu,et al.Study on torsional fretting behavior of UHMWPE[J].Applied Surface Science,2008,255(2):616-618.
    [165]蔡振兵,朱旻昊,俞佳等.扭动微动的模拟及其试验研究[J].摩擦学学报,2008,28(1):18-22.
    [166]蔡振兵,高姗姗,何莉萍等.聚甲基丙烯酸甲酯的扭动微动摩擦学特性[J].四川大学学报(工程科学版),2009,41(1):96-101.
    [167]蔡振兵,朱旻昊,张强等.钢-钢接触的扭动微动磨损氧化行为研究[J].西安交通大学学报,2009,43(9):86-90.
    [168]蔡振兵.扭动微动磨损机理研究[D].西南交通大学博士学位论文,2009.
    [169]邹定伟.中国弹簧行业现状、差距和展望[J].弹簧工程,2003,12(1):2-5.
    [170]冯鹏志.我国近三年弹簧产品进出口统计及简析[J].弹簧工程,2003,12(1):44.
    [171]夏美霞.我国装备制造业的现状和发展方向[J].机械制造,2004,16(2):22-24.
    [172]苏波.加快发展装备制造业是我国经济结构调整的战略选择[J].中国机电工业,2001,14(2):22-23.
    [173]邹定伟.我国弹簧业总体技术水平落后30年[N].中国工业报,2003-10-30.
    [174] S L Wang,S Lei,J Zhou,et al.Mathematical model for determination of strand twist angle and diameter in stranded-wire helical springs[J].Journal of Mechanical Science and Technology,2010,24(6):1203-1210.
    [175] D R Wu.An Introduction to Space Analytic Geometry[M].Beijing:Higher Education Press,1989.
    [176]曹金凤,石亦平.ABAQUS有限元分析常见问题解答[M].北京:机械工业出版社,2009.
    [177]庄茁,张帆,岑松等.ABAQUS非线性有限元软件与实例[M].北京:科学出版社,2005.
    [178]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2008.
    [179]王时龙,雷松,周杰等.两端并圈多股弹簧的冲击响应研究[J].振动与冲击(已录用).
    [180]周仲荣,L Vincent.微动磨损[M].北京:科学出版社,2002.
    [181]王时龙,雷松,蔡振兵等.多股螺旋弹簧扭动微动磨损机理研究[J].摩擦学学报(已录用).
    [182]黄炎.工程弹性力学[M].北京:清华大学出版社,1982.
    [183] M B Karamis,D Odabas.A simple approach to calculation of the sliding wear coefficient for medium carbon steels[J].Wear,1991,151:23-34.
    [184]桂长林.Archard的磨损设计计算模型及其应用方法[J].润滑与密封,1990,1:12-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700