用户名: 密码: 验证码:
离子液体的制备及其在纳米材料制备方面的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要分为两部分的工作,一方面是制备功能性的离子液体,另一方面是将离子液体应用于纳米材料的制备当中。具体包括以下几个方面:
     1.设计并合成了在烷基咪唑类阳离子、吗啡啉类阳离子、氰乙基咪唑类阳离子和吡咯烷酮类阳离子的侧链上分别引入含烯丙基、羟乙基、乙酸基、乙酸乙酯基等官能团的功能化离子液体,以期得到具有新功能、低粘度、低成本的新型室温离子液体。并以新型的双功能型离子液体:1-烯丙基-3-氰乙基咪唑氯盐([ACNEIm]Cl)为研究对象,研究了其水溶液的过量性质。
     2.使用1-丁基-3-甲基咪唑六氟磷酸盐([BMIm]PF6)离子液体作为反应介质,制备了无需高温锻烧就含有锐钛相的纳米TiO2,并对其光催化降解性能进行了研究;进而在一种含羧基功能化的离子液体:1-乙酸基-3-甲基咪唑氯盐([AcMIm]Cl)中,低温水解制备了具有纳米结构的金红石型二氧化钛,并对其光催化降解性能进行了研究。
     3.以一种含丙烯酸阴离子的N-甲基咪唑丙烯酸盐(MImAA)离子液体为稳定剂,利用简便的方法制备了稳定的四氧化三铁(Fe3O4)纳米粒子的水溶液分散体。接着以这种磁性水溶液分散体为核,进行纳米包覆材料的研究,其目地在于方便地实现二氧化钛在光催化降解有机污染物时的磁性分离回收。
     4.将[BMIm]PF6与传统的阴离子型表面活性剂十二烷基硫酸钠(SDS)复配成离子液体微乳液,引入到乳液聚合体系中制备聚苯乙烯纳米粒子。
Ionic liquids (ILs) comprised entirely of cations and anions are liquids at room temperature, which also called low-melting salts. They are deserved for research as new types of media or“soft”functional materials, which have shown special physical and chemical properties compared with other solid or liquid materials. Due to their designable, ionic liquids are“task-specific”or“tailor-making”materials by tuning the combination between anions and cations or grafting proper functional groups. They have shown promising applications in separation and purification, reclaiming nuclear scraps, preparing special optics materials. It is one of the researching emphases in synthesis of new types and given functions of ionic liquids through molecular designing according to the special requirements.
     We have prepared functional ionic liquids by introducing several functional groups including allylic, ethyl-hydroxide, acetic acid, ethyl acetate into the cations of N-methylimidazole, N-methylmorpholine, N-cyanoethylimidazole, N-methyl-2-pyrrolidinonium, respectively. There are seven new types of ionic liquids which haven’t been reported before, that is, 1-allyl-3-cyanoethylimidazole, N'-allyl-N-methyl-2-pyrrolidinonium, 1-2-ethylhydroxide-3-cyanoethylimidazole, N'-acetic acid-N-methylmopholine, 1-acetic acid-3-cyanoethylimidazole, N'-ethyl acetate-N-methylmorpholine, 1-ethyl acetate-3-cyanoethylimidazole. We have studied their prepared methods and characterized them by IR, 1H NMR and mass spectra (MS). Furthermore, we have tested their solubility with some solvents.
     The thermodynamic properties of mixtures for ionic liquid with solvents were indispensable basic data for their industrialization process. In this paper, we have studied densities and viscosities for the binary mixtures of 1-allyl-3-cyanoethylimidazolium chloride ([ACNEIm]Cl) with water from 298.15 K to 323.15 K, including their excess properties.
     There are many prepared methods for nanomaterials, for example, template, microemulsion, precipitation, hydrothermal or solvent-thermal, and microwave methods et al. However, some of these methods need to use volatile organic solvent or rigorous reaction conditions, which might pollute environment or increase production cost. Ionic liquids as environment-friendly green solvents have many kinds and high thermostability, which can dissolve many inorganics and organics. Therefore, they might be used to prepare nanomaterials as reaction media instead of volatile organic solvents. Searching application of ionic liquids in preparing nanomaterials will favor to develop green preparation methods which have simple technics and friendly to environment.
     In this work, nanostructured TiO2 particles have been synthesized at low temperature using 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6), a water immiscible room temperature ionic liquid, as an effective reaction medium by sol-gel method. The as-prepared TiO2 particles present anatase crystal morphology and have favorable photocatalytic performance even without being calcined at high temperature.
     In general, rutile titania is always prepared by phase transformation of TiO2 from anatase at several hundred high temperatures, which often results in particle agglomeration and grain growth. Therefore, developing a method to prepare nanorutile structure TiO2 at low temperature is of significance. In this work, we have reported a hydrolysis method at low temperature to prepare rutile titania in a carboxyl-containing ionic liquid, 1-methylimidazolium-3-acetate chlorine ([AcMIm]Cl). This method avoided high temperature and high pressure. The as-prepared rutile TiO2 also shows photocatalytic performance in the degradation of methyl orange. The template-directing performance of ionic liquid is due to the bidentate chelating complexation between the carboxylic functional group of ionic liquid and titania.
     Magnetic nanoparticles as a new type of materials have been extensively studied in many fields. Magnetic attractive forces combined with inherently large surface energies favor nanoparticle aggregation in magnetic dispersions. In this work, we have reported a simple method to prepare stable water-soluble iron oxide dispersions by using an ionic liquid containing acrylic acid anion, viz., N-methylimidazolium acrylic acid (MImAA) as stabilizer. The size of the as-prepared magnetite nanoparticles could be tuned from 12 nm to 20 nm depending on the concentration of MImAA in the medium. The ionic liquid can efficiently prevent interparticle aggregation and tune the particle growth.
     Following above work, we tried to use the prepared magnetite nanoparticle dispersion without adding other surfactants as core material for coating with silica from the hydrolyzation of tetraethyl orthosilicate (TEOS). The resulting Fe3O4/SiO2 nanocomposite has core-shell structure and the thickness of silica shell could be tuned simply by varying the concentration of TEOS precursor. The Fe3O4/SiO2/TiO2 nanocomposite have been prepared by coating Fe3O4/SiO2 with titania for its easy to magnetic separation in photocatalytic degradation of organic pollution. It has shown that its photocatalytic performance was higher than Fe3O4/TiO2 and still maintained 72 % when it was used repeating for three times.
     In recent years, it was increasing regards to prepare many novel microemulsions containing ionic liquid instead of water or traditional organic solvent. The influence of ionic liquids to the traditional surfactants was also arousing the chemists’attention. It was found that ionic liquids can tune critical micelle concentration (CMC) of surfactants and the amount of micellar aggregates. The hydrophilic ionic liquids can increase the CMC of surfactant and the hydrophobic ILs can decrease the CMC. Sodium dodecyl sulfate (SDS) as a traditional anionic surfactant is extensively used. It will not only pay attention to the basic chemistry but also bring larger impacts to the industry when SDS is combined with ionic liquids, and finally this will bring potential values in applications.
     In this work, an ionic liquid microemulsion have been prepared by combining [BMIm]PF6 with SDS, and polystyrene (PS) nanospheres have been prepared by introducing this microemulsion into traditional emulsion polymerization. As a result, we have obtained well dispersing and steady PS nanospheres with size around 70 nm.
     In summary, we have prepared a series of functional ionic liquids and characterized their structure including their solubility with solvents. Then we have used some ionic liquids in preparing nanomaterials. As a result, nanostructured anatase and rutile titania, stable water-soluble magnetite nanopaticels dispersions, and polystyrene nanosphere were obtained. In addition, the obtained magnetite dispersion as core materials in preparing inorganic nanocomposites also has been studied.
引文
[1] S. Sugden, H. Wilkins, Fused metals and salts, J. Chem. Soc. 1927, 1291-1298.
    [2] F. H. Hurley, T. P. Wier, Electrodeposition of metal from fuse quaternary ammonium salts, J. Electrochem. Soc. 1951, 98, 203-206.
    [3] V. R. Koch, L. L. Miller, R. A. Osteryoung, Electroinitiated Friedel-Crafts transalkylations in a room-teperature molten-salt medium, J. Am. Chem. Soc. 1976, 98, 5277-5284.
    [4] J. S. Wilkes, M. J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, J. Chem. Soc., Chem. Commun. 1992, 965-967.
    [5] D. Appleby, C. L. Hussey, K. R. Seddon, J. E. Turp, Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes, Nature 1986, 323, 614-616.
    [6] R. D. Rogers, K. R. Seddon, Ionic liquid-solvents of the future? Science 2003, 302, 792-793.
    [7] C. E. Song, C. R. Oh, E. J. Roh, Cr (salen) catalysed asymmetric ring opening reactions of epoxides in room temperature ionic liquids, Chem. Commun. 2000, 18, 1743-1744.
    [8] T. L. Merrigan, E. D. Bates, S. C. Dorman et al., New fluorous ionic liquids function as surfactants in conventional room-temperature ionic liquids, Chem. Commun. 2000, 20, 2051-2052.
    [9] J. Robinson, R. A. Osteryoung, An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride, J. Am. Chem. Soc. 1979, 101, 323-327.
    [10] P. Wasserscheid, W. Keim, Ionic Liquids-New“Solutions”for Transition Metal Catalysis, Angew. Chem. Int. Ed. 2000, 39, 3772-3789.
    [11] K. R. Seddon, A. Stark, M. J. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure Appl. Chem. 2000, 72, 2275-2287.
    [12] P. Bonh?te, A. P. Dias, N. Papageorgiou et al., Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts, Inorg. Chem. 1996, 35, 1168-1178.
    [13] J. L. Brédas, B. Thémans, J. G. Fripiat et al., Highly conducting polyparaphenylene,polypyrrole, and polythiophene chains: An ab initio study of the geometry and electronic-structure modifications upon doping, Phys. Rev. B 1984, 29, 6761-6773.
    [14] G. Tourillon, F. Garnier, Electrochemical doping of polythiophene in aqueous medium: Electrical properties and stability, J. Electroanal. Chem. 1984, 161, 407-414.
    [15] S. X. Lall, D. Mancheno, S. Castro, V. Behaj, J. I. Cohen, R. Engel, Polycations. Part X. LIPs, a new category of room temperature ionic liquid based on polyammonium salts, Chem. Commun. 2000, 2413-2414.
    [16] R. S. Varma, V. V. Namboodiri, An expeditious solvent-free route to ionic liquids using microwaves, Chem. Commun. 2001, 7, 643-644.
    [17] V. V. Namboodiri, R. S. Varma, An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves, Tetrahedron Lett. 2002, 43, 5381-5383.
    [18]李春喜,宋红艳,王子镐,超声波在化工中的应用与研究进展,石油学报2001,17,86-94.
    [19] V. V. Namboodiri, R. S. Varma, Solvent-Free Sonochemical Preparation of Ionic Liquids, Org. Lett. 2002, 4, 3161-3163.
    [20] J. D. Holbrey, W. M. Reichert, R. P. Swatloski, G. A. Broker, W. R. Pitner, K. R. Seddon, R. D. Rogers, Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions, Green Chem. 2002, 4, 407-413.
    [21] Z. B. Zhou, M. Takeda, M. Ue, New hydrophobic ionic liquids based on perfluoroalkyltrifluoroborate anions, J. Fluorine Chem. 2004, 125, 471-476.
    [22] Z. B. Zhou, H. Matsumoto, K. Tatsumi, Low-melting, Low-viscous, Hydrophobic Ionic Liquids: N-Alkyl (alkyl ether)-N-methylpyrrolidinium Perfluoroethyltrifluoroborate, Chem. Lett. 2004, 33, 1636-1637.
    [23] C. C. Cassol, G. Ebeling, B. Ferrera, J. Dupont, A Simple and Practical Method for the Preparation and Purity Determination of Halide-Free Imidazolium Ionic Liquids, Adv. Synth. Catal. 2006, 348, 243-248.
    [24] H. I. Ngo, K. LeCopmpte, L. Hargens et al., Thermal properties of imidazolium ionic liquids, Therochem. Acta. 2000, 357-358, 97-102.
    [25] V. D. Sergei, A. B. Richard, New room-temperature ionic liquids with C2-symmetricalim idazoliumc ations, Chem. Commun 2001, 1466-146.
    [26] A. A. Fannin, D. A. Floreani, L. A. King, J. S. Williams et al., Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities, J. Phys. Chem. 1984, 88, 2614-2621.
    [27] S. Chun, S. V. Dzyuba, R. A. Bartsch, Influence of Structural Variation in Room-Temperature Ionic Liquids on the Selectivity and Efficiency of Competitive Alkali Metal Salt Extraction by a Crown Ether, Anal. Chem. 2001, 73, 3737-3741.
    [28] D. R. Mcfarlane, J. Golding, S. Forsyth et al., Low viscosity ionic liquids based on organic salts of the dicyanamide anion, Chem. Commun. 2001, 16, 1430-1431.
    [29]李汝雄.绿色溶剂-离子液体的合成与应用[M].北京:化学工业出版社,2004:10-11.
    [30]邓友全.离子液体-性质、制备与应用[M].北京:中国石化出版社,2006:19.
    [31] J. H. Davis, K. J. Forrester, T. Merrigan, Novel organic ionic liquids (OILs) incorporating cations derived from the antifungal drug miconazole, Tetrahedron Lett. 1998, 39, 8955-8958.
    [32] J. H. Davis, Task-Specific Ionic Liquids, Chem. Lett. 2004, 33, 1072-1077.
    [33] F. F. Zhao, T. J. Geldbach, D. B. Zhao, P. J. Dyson, From Dysfunction to Bis-function: On the Design and Applications of Functionalised Ionic Liquids, Chem. Eur. J. 2006, 12, 2122-2130.
    [34] A. E. Visser, R. P. Swatloski, W. M. Reichert et al., Task-specific ionic liquids for the extraction of metal ions from aqueous Solutions, Chem. Commum. 2001, 135-136.
    [35]张锁江,李闲,张建敏等.新型离子液体作为萃取剂萃取水中有机物:中国,CN200410049612.6[P].2004-06-22.
    [36]张建敏,张锁江.氨基酸类离子液体用于酸性气体吸收:中国,CN200510073345.0[P].2005-06-02.
    [37]张锁江,袁晓亮,陈玉焕等.用醇胺羧酸盐离子液体吸收SO2气体的方法:中国,CN200510069406.6[P].2005-05-09.
    [38] M. Yoshio, T. Mukai, H. Ohno et al., One-Dimensional Ion Transport in Self-Organized Columnar Ionic Liquids, J. Am. Chem. Soc. 2004, 126, 994-995.
    [39]张锁江,吕兴梅,等.离子液体-从基础研究到工业应用[M].北京:科学出版社,2006.
    [40] P. Wasserscheid, B. D. H?lscher, R. V. Hal et al., New, functionalised ionic liquids from Michael-type reactions - a chance for combinatorial ionic liquid development. Chem. Common. 2003, 2038-2039.
    [41] L. C. Branco, J. N. Rosa, J. J. M. Ramos et al., Preparation and Characterization of New Room Temperature Ionic Liquids, Chem. Eur. J. 2002, 8, 3671-3677.
    [42] J. F. Dubreuil, M. H. Farnelart, J. P. Bazureau, Ecofriendly Fast Synthesis of Hydrophilic Poly(ethyleneglycol)-Ionic Liquid Matrices for Liquid-Phase Organic Synthesis, Org. Proc. Res. Dev. 2002, 6, 374-378.
    [43] J. D. Holbrey, A. E. Visser, S. K. Spear et al., Mercury (II) partitioning from aqueous solutions with a new, hydrophobic ethylene-glycol functionalized bis-imidazolium ionic liquid, Green Chem. 2003, 5, 129-135.
    [44] N. Kimizuka, T. Nakashima, Spontaneous Self-Assembly of Glycolipid Bilayer Membranes in Sugar-philic Ionic Liquids and Formation of Ionogels, Langmuir 2001, 17, 6759-6761.
    [45] Z. F. Fei, D. B. Zhao, T. J. Geldbach et al., Br?nsted Acidic Ionic Liquids and Their Zwitterions: Synthesis, Characterization and pKa Determination, Chem. Eur. J. 2004, 10, 4886-4893.
    [46] Z. G. Mu, F. Zhou, S. X. Zhang et al., Effect of the functional groups in ionic liquid molecules on the friction and wear behavior of aluminum alloy in lubricated aluminum-on-steel contact, Tribo. Inter. 2005, 38, 725-731.
    [47]牟宗刚,周峰,张书香等,1-(2'-o,o-二乙基膦酰乙基)-3-己基咪唑六氟磷酸盐离子液体的摩擦学性能研究,润滑与密封2005,3,37-39.
    [48] D. M. Li, F. Shi, S. Guo et al., One-pot synthesis of silica gel confined functional ionic liquids: effective catalysts for deoximation under mild conditions, Tetrahedron Lett. 2004, 45, 265-268.
    [49] G. M. Blackburn, H. L. H. Dodds, Strain effects in acryl transfer reactions. Part III, hydroxide and buffercatalysed hydrolysis of small and medium ring lactones, J. Chem. Soc. Perkin Trans. II 1974, 2, 377-382.
    [50] D. M. Li, F. Shi, J. J. Peng et al., Application of Functional Ionic Liquids Possessing Two Adjacent Acid Sites for Acetalization of Aldehydes, J. Org. Chem. 2004, 69, 3582-3585.
    [51] A. C. Cole, J. L. Jensen, I. Ntai et al., Novel Br?nsted Acidic Ionic Liquids and Their Use as Dual Solvent-Catalysts, J. Am. Chem. Soc. 2002, 124, 5962-5963.
    [52] Z. Y. Du, Z. P. Li, Y. Q. Deng et al., Synthesis and characterization of sulfonyl-funtionalized ionic liquids, Synthe. Commun. 2005, 35, 1343-1349.
    [53] N. Audic, H. Clavier, M. Mauduit et al., An Ionic Liquid-Supported Ruthenium Carbene Complex: A Robust and Recyclable Catalyst for Ring-Closing Olefin Metathesis in Ionic Liquids, J. Am. Chem. Soc. 2003, 125, 9248-9249.
    [54] Z. F. Fei, D. B. Zhao, R. Scopelliti et al., Organometallic Complexes Derived from Alkyne-Functionalized Imidazolium Salts, Organometallics 2004, 23, 1622-1628.
    [55] M. Moret, A. B. Chaplin, A. K. Lawrence et al., Synthesis and Characterization of Organometallic Ionic Liquids and a Heterometallic Carbene Complex Containing the Chromium Tricarbonyl Fragment, Organometallics 2005, 24, 4039-4048.
    [56] D. B. Zhao, Z. F. Fei, R. Scopelliti et al., Synthesis and Characterization of Ionic Liquids Incorporating the Nitrile Functionality, Inorg. Chem. 2004, 43, 2197-2205.
    [57] C. P. Mehnert, N. C. Dispenziere, R. A. Cook, Preparation of C9-aldehyde via aldol condensation reactions in ionic liquid media, Chem. Commun. 2002, 1610-1611.
    [58] S. Abelló, F. Medina, X. Rodríguez et al., Supported choline hydroxide (ionic liquid) as heterogeneous catalyst for aldol condensation reactions, Chem. Commun. 2004, 1096-1097.
    [59] B. C. Ranu, S. Banerjee, Ionic Liquid as Catalyst and Reaction Medium. The Dramatic Influence of a Task-Specific Ionic Liquid, [bmIm]OH, in Michael Addition of Active Methylene Compounds to Conjugated Ketones, Carboxylic Esters, and Nitriles, Org. Lett. 2005, 7, 3049-3052.
    [60] R. J. C. Brown, P. J. Dyson, D. J. Ellis, 1-Butyl-3-methylmidazolium cobalt tetracarbonyl [bmim][Co(CO)4]: a catalytically active organometallic ionic liquid, Chem. Commun. 2001, 1862-1863.
    [61] P. J. Dyson, J. S. McIndoe, D. Zhao, Direct analysis of catalysts immobilised in ionic liquids using electrospray ionisation ion trap mass spectrometry, Chem. Commun. 2003, 508-509.
    [62] K. Fukumoto, M. Yoshizawa, H. Ohno, Room Temperature Ionic Liquids from 20 Natural Amino Acids, J. Am. Chem. Soc. 2005, 127, 2398-2399.
    [63] P. Wasserscheid, M. Sesing, W. Korth, Hydrogensulfate and tetrakis (hydrogensulfatoborate) ionic liquids: synthesis and catalytic application in highly Br?nsted-acidic systems for Friedel–Crafts alkylation, Green Chem. 2002, 4, 134-138.
    [64] J. Z. Gui, H. Y. Ban, X. H. Cong et al., Selective alkylation of phenol with tertbutyl alcohol catalyzed by Br?nsted acidic imidazolium salts, J. Mol. Cata. A: Chem., 2005, 225, 27-31.
    [65] A. J. Walker, N. C. Bruce, Combined biological and chemical catalysis in the preparation of oxycodone, Tetrahedron 2004, 60, 561-568.
    [66] T. Welton, Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chem. Rev. 1999, 99, 2071-2083.
    [67] A. C. Cole, J. L. Jensen, I. Ntai et al., Novel Br?nsted Acidic Ionic Liquids and Their Use as Dual Solvent?Catalysts, J. Am .Chem. Soc. 2002, 124, 5962-5963.
    [68] Y. Katayama, S. Dan, T. Miura et al., Electrochemical Behavior of Silver in 1-Ethyl-3-methylimidazolium Tetrafluoroborate Molten Salt, J. Electrochem. Soc. 2001, 148, C102.
    [69] C. A. Zell, W. Freyland, In Situ STM and STS Study of Co and Co-Al Alloy Electrodeposition from an Ionic Liquid, Langmuir 2003, 19, 7445-7450.
    [70] J. G. Huddleston, R. D. Rogers et al., Room temperature ionic liquids as novel media for‘clean’liquid–liquid extraction, Chem. Commun. 1998, 16, 1765-1766.
    [71] S. G. Zhang, Q. L. Zhang, Z. C. Zhang., Extractive Desulfurization and Denitrogenation of Fuels Using Ionic Liquids, Ind. Eng. Chem. Res. 2004, 43, 614-622.
    [72] R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, Dissolution of Cellose with Ionic Liquids, J. Am. Chem. Soc. 2002, 124, 4974-4975.
    [73] P. Kubisa, Application of ionic liquids as solvents for polymerization processes, Prog. Polym. Sci. 2004, 29, 3-12.
    [74] P. Kubisa, Ionic Liquids in the Synthesis and Modification of Polymers, J. Polym. Sci. Part A Polym. Chem. 2005, 43, 4675-4683.
    [75] M. P. Scott, C. S. Brazel, M. G. Benton, J. W. Mays, J. D. Holbrey, R. D. Rogers, Application of ionic liquids as plasticizers for poly(methyl methacrylate), Chem. Commun. 2002, 1372-1373.
    [76] C. Ye, W. Liu, Y.Chen, L. Yu, Room-temperature ionic liquids: a novel versatile lubricant, Chem. Commun. 2001, 2244-2245.
    [77] J. Huang, T. Jiang, B. Han, H. Gao, Y. Chang, G. Zhao, W. Wu, Hydrogenation of olefins using ligand-stabilized palladium nanoparticles in an ionic liquid, Chem. Commun. 2003, 1654-1655.
    [78] Y. Wang, H. Yang, Syntheis of CoPt nanorods in ionic liquid, J. Am. Chem. Soc. 2005, 127, 5316-5317.
    [79] Z. Li, Z. Liu, J. Zhang, B. Han, J. Du, Y. Gao, T. Jiang, Synthesis of single-crystal gold nanosheets of large size in ionic liquids, J. Phys. Chem. B 2005, 109, 14445-14448.
    [80] M. P. David, L. F. Drummy, R. R. Naik, H. C. de Long, D. M. Fox, P. C. Trulovec, R. A. Mantz, Regenerated silk fiber wet spinning from an ionic liquid solution, J. Mater. Chem. 2005, 15, 4206-4208.
    [81] H. Itoh, K. Naka, Y. Chujo, Synthesis of Gold Nanopa rticles Modified with Ionic Liquid Based on the Imidazolium Cation, J. Am. Chem. Soc. 2004, 126, 3026-3027.
    [82] Y. J. Zhu, W. W. Wang, R. J. Qi et al., Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids, Angew. Chem. Int. Ed. 2004, 43, 1410-1414.
    [83] M. Antonietti, D. B. Kuang, B. Smarsly et al., Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures, Angew. Chem. Int. Ed. 2004, 43, 4988-4992.
    [84] Y. J. Zhang, Y. F. Shen, J. H. Yuan et al., Design and synthesis of multifunctional materials based on an ionic liquid backbone, Angew. Chem. Int. Ed. 2006, 45, 5867-5870.
    [85] Y. Zhou, Recent advances in ionic liquids for synthesis of inorganic nanomaterials, Curr. Nanosci. 2005, 1, 35-42.
    [86] T. Nakashima, N. Kimizuka, Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids, J. Am. Chem. Soc. 2003, 125, 6386-6387.
    [87]陈利娟,张晟卯,吴志申等,离子液体中ZnO纳米棒的制备与表征,应用化学2005,22,554-556.
    [88] L. J. Cheng, S. M. Zhang, Z. S. Wu et al., Preparation of PbS-type PbO nanocrystals in a room-temperature ionic liquid, Mater. Lett. 2005, 59, 3119-3121.
    [89]郑洪河,陈有行,石磊,王键吉,室温离子液体对水热生长纳米α-Fe2O3形貌与电性能的影响,河南师范大学学报(自然科学版) 2006,34 (1).
    [90] C. W. Scheeren, G. Machado, J. Dupont et al., Nanoscale Pt (0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallicprecursor, characterization, and catalytic properties in hydrogenation reactions, Inorg. Chem. 2003, 42, 4738-4742.
    [91] X. D. Mu, J. Q. Meng, Z. C. Li, Y. Kou, Rhodium Nanoparticles Stabilized by Ionic Copolymers in Ionic Liquids: Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation, J. Am. Chem. Soc. 2005, 127, 9694-9695.
    [92]张晟卯,张春丽,吴志申,等,室温离子液体介质中尺寸、结构可控Ni纳米微粒的制备及结构表征,化学学报2004,62,1443-1446.
    [93] Y. Zhou, M. Antonieti, Synthesis of Very Small TiO2 Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates, J. Am. Chem. Soc. 2003, 125, 14960-14961.
    [94] S. Dai, Y. H. Ju, H. J. Gao et al., Preparation of silica aerogel using ionic liquids as solvents, Chem. Commun. 2000, 243-244.
    [95] S. J. Craythorne, A. R. Crozier, F. Lorenzini et al., The preparation of silica entrapped homogeneous hydrogenation catalysts by conventional and ionic liquid mediated sol–gel routes, J. Organomet. Chem. 2005, 690, 3518-3521.
    [96] Y. Liu, M. J. Wang, Z. Y. Li et al., Preparation of Porous Aminopropylsilsesquioxane by a Nonhydrolytic Sol-Gel Method in Ionic Liquid Solvent, Langmuir 2005, 21, 1618-1622.
    [97] A. Noda, M.Watanabe, Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts, Electrochem. Acta 2000, 45, 1265-1270.
    [98]赵天瑜,王华平,张玉梅,等,丙烯腈在离子液体中的三元共聚反应,合成纤维2005,6,17-20.
    [99]来国桥,胡自强,邬继荣,吴连斌,李英芝,甲基咪唑甲酸盐离子液体中MMA的原子转移自由基聚合,高分子学报2006,3,549-552.
    [100] B. G. Trewyn, C. M. Whitman, V. S. Y. Lin, Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents, Nano Lett. 2004, 4, 2139-2143.
    [101] C. J. Adams, A. E. Bradley, K. R.Seddon, The Synthesis of Mesoporous Materials Using Novel Ionic Liquid Templates in Water, Aust. J. Chem. 2001, 54, 679-681.
    [102] Y. Zhou, H. Jan, M. Antonietti, Room-Temperature Ionic Liquids as Template to Monolithic Mesoporous Silica with Wormlike Pores via a Sol-Gel NanocastingTechnique, Nano Lett. 2004, 4, 477-481.
    [103] G .S. Attard, J. C. Glyde, C .G .Goltner, Liquid-Crystalline Phase as Templates for the Synthesis of Mesoporous Silica, Nature 1995, 378, 366-368.
    [104] Y. Zhou, M. Antonietti, A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructure, Chem. Commun. 2003, 2564-2565.
    [105] K. S. Yoo, H. Choi, D. D. Dionysiou, Synthesis of anatase nanostructured TiO2 particles at low temperature using ionic liquid for photocatalysis, Catal. Commun. 2005, 6, 259-262.
    [106] K. S. Kim, D. Demberelnyamba, H. Lee, Size-Selective Synthesis of Gold and Platinum Nanoparticles Using Novel Thiol-Functionalized Ionic Liquids, Langmuir 2004, 20, 556-560.
    [107] E. R. Cooper, C. D. Andrews, P. S. Wheatley et al., Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues, Nature 2004, 430, 1012-1015.
    [108]徐云鹏,田志坚,徐竹生等,Ionothermal Synthesis of Silicoaluminophosphate Molecular Sieve in N-Alkyl Imidazolium Bromide,催化学报2005,26,446-448.
    [109]胡玥,刘彦军,余加祐等,离子热合成磷铝分子筛,无机化学学报2006,22,753-756.
    [110]马英冲,徐云鹏,王少君等,室温离子液体中合成方钠石的研究,高等学校化学学报2006,27,739-741.
    [111] Y. P. Xu, Z. J. Tian, S. J. Wang et al., Microwave-Enhanced Ionothermal Synthesis of Aluminophosphate Molecular Sieves, Angew. Chem. Int. Ed. 2006, 45, 3965-3970.
    [112] E. R. Cooper, C. D. Andrews, P. S. Wheatley et al., Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues, Nature 2004, 430, 1012-1016.
    [113] M. M. Hoffmann, M. P. Heitz, J. B. Carr, J. D. Tubbs, Surfactants in green solvent systems: Current and future research directions, J. dispersion sci. technol. 2003, 24, 155–171.
    [114] J. C. Hao, T. Zemb, Self-assembled structures and chemical reactions in room temperature ionic liquids, Curr. Opin. Colloid Interface Sci. 2007, 12, 129-137.
    [115] G. D. Zhang, X. Chen, B. Jing, Ordered molecular assembly in room temperature ionic liquids, Prog. Chem. 2006, 18, 1085-1091.
    [116] A. Beyaz, S. O. Woon, V. P. Reddy, Ionic liquids as modulators of the critical micelle concentration of sodium dodecyl sulfate, Colloids Surf. B 2004, 35, 119-124.
    [117] K. Behera, P. Dahiya, S. Pandey, Effect of added ionic liquid on aqueous Triton X-100 micelles, J. Colloid Interface Sci. 2007, 307, 235-245.
    [118] L. Y. Wang, X. Chen, Y. C. Chai, J. C. Hao et al., Lyotropic liquid crystalline phases formed in an ionic liquid, Chem. Commun. 2004, 24, 2840-2841.
    [119] M. A. Firestone, J. A. Dzielawa, P. Zapol et al., Lyotropic Liquid-Crystalline Gel Formation in a Room-Temperature Ionic Liquid, Langmuir 2002, 18, 7258-7260.
    [120] M. A. Firestone, P. G. Rickert, S. Seifert et al., Anion effects on ionogel formation in N, N'-dialkylimidazolium-based ionic liquids, Inorg. Chim. Acta 2004, 357, 3991-3998.
    [121] J. L. Anderson, V. Pino, E. C. Hagberg et al., Surfactant solvation effects and micelle formation in ionic liquids, Chem. Commun. 2003, 19, 2444-2445.
    [122] Y. A. Gao, N. Li, L. Q. Zheng et al., A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H2O microemulsions and their performance characterization by UV-Vis spectroscopy, Green Chem. 2006, 8, 43-49.
    [123] Y. A. Gao, S. B. Han, B. X. Han et al., TX-100/Water/1-Butyl-3-methylimidazolium Hexafluorophosphate Microemulsions, Langmuir 2005, 21, 5681-5684.
    [124] Z. H. Li, J. L. Zhang, J. M. Du, B. X. Han, J. Q. Wang, Preparation of silica microrods with nano-sized pores in ionic liquid microemulsions, Colloids Surf. A: Physicochem. Eng. Aspects 2006, 286, 117-120.
    [125] B. Dong, S. H. Zhang, L. Q. Zheng, J. K. Xu, Ionic liquid microemulsions: A new medium for electropolymerization, J. Electroanal. Chem. 2008, 619-620, 193-196.
    [126] J. Eastoe, S. Gold, S. E. Rogers, T. Welton et al., Ionic Liquid-in-Oil Microemulsions, J. Am. Chem. Soc. 2005, 127, 7302-7303.
    [127] H. X. Gao, J. C. Li, B. X.Han et al., Microemulsions with ionic liquid polar domains, Phys. Chem. Chem. Phys. 2004, 6, 2914-2916.
    [128] F. Yan, J. Texter, Surfactant ionic liquid-based microemulsions forpolymerization, Chem. Commun. 2006, 25, 2696-2698.
    [129] F. Yan, J. Texter, Solvent-Reversible Poration in Ionic Liquid Copolymers, Angew. Chem. Int. Ed. 2007, 46, 2440-2443.
    [130] H. S. Xia, J. Yu, Y. Y .Jiang, I. Mahmood, H. Z. Liu, Physicochemical Features of Ionic Liquid Solutions in the Phase Separation of Penicillin (II): Winsor II Reversed Micelle, Ind. Eng. Chem. Res. 2007, 46, 2112-2116.
    [131] Z. M. Qiu, J. Texter, Ionic liquids in microemulsions, Curr. Opin. Colloid Interface Sci. 2008, 13, 252-262.
    [1]任强,武进,张军,何嘉松,过梅丽,1-烯丙基,3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究,高分子学报2003,3,448-451.
    [2] S. H. Yeon, K. S. Kima, S. Choi, H. Lee, H. S. Kimb, H. Kimc, Physical and electrochemical properties of 1-(2-hydroxyethyl)-3-methylimidazolium and N-(2-hydroxyethyl)-N-methyl morpholinium ionic liquids, Electrochim. Acta 2005, 50, 5399-5407.
    [3] J. F. Dubreuil, J. P. Bazureau, Rate accelerations of 1,3-dipolar cycloaddition reactions in ionic liquids, Tetrahedron Lett. 2000, 41, 7351-7355.
    [4] J. S. Lee, N. D. Quan, J. M. Hwang, J. Y. Bae, H. Kim, B. W. Cho, H. S. K, H. Lee, Ionic liquids containing an ester group as potential electrolytes, Electrochem. Commun. 2006, 8, 460-464.
    [5] K. S. Kim, S. Choi, D. Demberelnyamba, H. Lee, J. Oh, B. B. Lee, S. J. Mun, Ionic liquids based on N-alkyl-N-methylmorpholinium salts as potential electrolytes, Chem. Commun. 2004, 828-829.
    [6]张青山,刘爱霞,郭炳南,吴锋,新型N-甲基-N-烯丙基吗啡啉季铵盐类离子液体的合成,高等学校化学学报2005,26,340-342.
    [7]弓胜民,马洪洋,宛新华,赵永峰,何吉宇,周其凤,含氰基离子液体的合成、表征及流变性质研究,高等学校化学学报2006,27,761-766.
    [8] J. H. Davis, Task-specific ionic liquids, Chem. Lett. 2004, 9, 1072-1077.
    [9] Z. F. Fei, T. J. Geldbach, D. B. Zhao, P. J. Dyson, From dysfunction to bis-function: on the design and applications of functionalised ionic liquids, Chem. Eur. J. 2006, 12, 2122-2130.
    [10] T. Mizumo, E. Marwanta, N. Matsumi, H. Ohno, Allylimidazolium halides as novel room temperature ionic liquids, Chem. Lett. 2004, 10, 1360-1361.
    [11] D. B.Zhao, Z. F. Fei, R. P. Scopelliti, J. Dyson, Synthesis and characterization of ionic liquids incorporating the nitrile functionality, Inorg. Chem. 2004, 43, 2197-2205.
    [12] Q. H. Zhang, Z. P. Li, J. Zhang, S. G. Zhang, L. Y. Zhu, J. Yang, X. P. Zhang, Y. Q. Deng, Physicochemical properties of nitrile-functionalized ionic liquids, J. Phys.Chem. B 2007, 111, 2864-2872.
    [13] L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak et al., A detailed thermodynamic analysis of [C4mim][BF4] + water as a case study to model ionic liquid aqueous solutions, Green Chem. 2004, 6, 369-381.
    [14] J. Z. Yang, J. Tong, J. B. Li, Study of the volumetric properties of the aqueous ionic liquid 1-methyl-3-pentylimidazolium tetrafluoroborate, J Solut. Chem. 2007, 36, 573-582.
    [15] Y. W. Zhong, H. J. Wang, K. S. Diao, Densities and excess volumes of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate with aromatic compound at T= (298.15 to 313.15) K, J. Chem. Thermodynamics 2007, 39, 291-296.
    [16] A. B. Pereiro, A. Rodríguez, Thermodynamic properties of ionic liquids in organic solvents from (293.15 to 303.15) K, J. Chem. Eng. Data 2007, 52, 600-608.
    [17] H. T. Xu, D. C Zhao, P. Xu, F. Q. Liu, G. Gao, Conductivity and Viscosity of 1-Allyl-3-methyl-imidazolium Chloride + Water and + Ethanol from 293.15 K to 333.15 K, J. Chem. Eng. Data 2005, 50, 133-135.
    [18] L. Cammarata, S. G. Kazarian, P. A. Salterb, T. Welton, Molecular states of water in room temperature ionic liquids, Phys. Chem. Chem. Phys. 2001, 3, 5192-5200.
    [19] Dean J A.Lange’s handbook of chemistry [M].15th ed. New York:J. A. Dean,Ed.,McGraw-Hill,1999:5.87,5.134.
    [20] P. Bonh?te, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gr?1tzel, Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem. 1996, 35, 1168-1178.
    [21] K. R. Seddon, A. Stark, M. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure Appl. Chem. 2000, 72, 2275-2287.
    [22] M. Abraham, M. C. Abraham, Electrolytic conductance and viscosity of some mixed nitrate-water systems from fused salts to dilute solutions, Electrochim. Acta 1986, 31, 821-829.
    [1] J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, S. R. Teixeira, Transition-Metal Nanoparticles in Imidazolium Ionic Liquids: Recycable Catalysts for Biphasic Hydrogenation Reactions, J. Am. Chem. Soc. 2002, 124, 4228-4229.
    [2] T. Nakashima, N. Kimizuka, Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids, J. Am. Chem. Soc. 2003, 125, 6386-6387.
    [3] Y. Zhou, M. Antonietti, Synthesis of Very Small TiO2 Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates, J. Am. Chem. Soc. 2003, 125, 14960-14961.
    [4] J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser, R. D. Rogers, Chem. Commun. 1998, 1765-1766.
    [5] K. Yoo, H. Choi, D. D. Dionysiou, Ionic liquid assisted preparation of nanostructured TiO2 particles, Chem. Commun. 2004, 2000-2001.
    [6] S. P. Ruan, F. Q. Wu, T. Zhang, W. Gao, B. K. Xu, M. Y. Zhao, Surface state studies of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 dispersions, Mater. Chem. Phys. 2001, 69, 7-9.
    [7] H. Z. Zhang, J. F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, J. Mater. Chem. 1998, 8, 2073-2076.
    [8] C. Suresh, V. Biju, P. Mukundan, K. G. K. Warrier, Anatase to rutile transformation in sol-gel titania by modification of precursor, Polyhedron 1998, 17, 3131-3135.
    [9] S. W. Lee, I. Ichinose, T. Kunitake, Molecular Imprinting of Azobenzene Carboxylic Acid on a TiO2 Ultrathin Film by the Surface Sol-Gel Process, Langmuir 1998, 14, 2857-2863.
    [10] I. Ichinose, T. Kunitake, Molecular Wrapping of a Fluorescent Dye with TiO2-Gel and Capping Reagents, Chem. Lett. 2001, 30, 626-627.
    [11] L. Cammarata, S. G. Kazarian, P. A. Salter, T. Welton, Molecular states of water in room temperature ionic liquids, Phys. Chem. Chem. Phys. 2001, 3, 5192-5200.
    [12] G. B. Deacon, R. J. C. Phillips, Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination, Coord. Chem. Rev. 1980, 33, 227-250.
    [13]邹玲,乌学东,陈海刚,表面修饰二氧化钛纳米粒子的结构表征及形成机理,物理化学学报2001,17,305-309.
    [14]张晟卯,李健,吴志申,张平余,张治军,羧基功能化离子液体表面修饰TiO2纳米微粒的制备及结构表征,高等学校化学学报2006,27,1615-1617.
    [15] H. M. Luo, C. Wang, Y. S. Yan, Synthesis of Mesostructured Titania with Controlled Crystalline Framework, Chem. Mater. 2003, 15, 3841-3846.
    [16] Y. Y Li, J. P. Liu, Z. J. Jia, Morphological control and photodegradation behavior of rutile TiO2 prepared by a low-temperature process, Mater. Lett. 2006, 60, 1753-1757.
    [1] F. Hu, L. Wei, Z. Zhou, Y. Ran, Z. Li, M. Gao, Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer, Adv. Mater. 2006, 18, 2553-2556.
    [2] H. Gu, K. Xu, C. Xu , B. Xu, Biofunctional magnetic nanoparticles for protein separation and pathogen detection, Chem. Commun. 2006, 9, 941-949.
    [3] V. G. Roullin, J. R. Deverre, L. Lemaire, F. Hindré, M. C. V. Julienne, R. Vienet, J. P. Benoit, Anti-cancer drug diffusion within living rat brain tissue: an experimental study using [3H](6)-5-fluorouracil-loaded PLGA microspheres, Eur. J. Pharm. Biopharm. 2002, 53, 293-299.
    [4] J. Frenkel, J. Doefman, Spontaneous and Induced Magnetisation in Ferromagnetic Bodies, Nature 1930, 126, 274-275.
    [5] A. I. Anton, Measurements of turbulence suppression due to a transverse magnetic field applied on a ferrofluid motion, J. Magn. Magn. Mater. 1990, 85, 137-140.
    [6] T. Fried, G. Shemer, G. Markovich, Ordered two-dimensional arrays of ferrite nanoparticles, Adv. Mater. 2001, 13, 1158-1161.
    [7] H. Lin, Y. Watanabe, M. Kimura, K. Hanabusa, H. Shirai, Preparation of magnetic poly (vinyl alcohol) (PVA) materials by in situ synthesis of magnetite in a PVA matrix, J. Appl. Polym. Sci. 2003, 87, 1239-1247.
    [8] D. K. Lee, Y. S. Kang, C. S. Lee, P. Stroeve, Structure and characterization of nanocomposite langmuir-blodgett films of poly(maleic monoester)/Fe3O4 nanoparticle complexes, J. Phys. Chem. B 2002, 106, 7267-7271.
    [9] A. Jordan, R. Scholz, P. Wust, H. Fahling, R. Felix, Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, J. Magn. Magn. Mater. 1999, 201, 413-419.
    [10] P. Migowski, J. Dupont, Catalytic applications of metal nanoparticles in imidazolium ionic liquids, Chem. Eur. J. 2007, 13, 32-39.
    [11] A. Taubert, Z. Li, Inorganic materials from ionic liquids, Dalton Trans. 2007, 7, 723-727.
    [12] H. Itoh, K. Naka, Y. Chujo, Synthesis of gold nanoparticles modified with ionicliquid based on the imidazolium cation, J. Am. Chem. Soc. 2004, 126, 3026-3027.
    [13] D. P. Liu, G. D. Li, Y. Su, J. S. Chen, Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components, Angew. Chem. Int. Ed. 2006, 45, 7370-7373.
    [14] D. S. Jacob, L. Bitton, J. Grinblat, I. Felner, Y. Koltypin, A. Gedanken, Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides, Chem. Mater. 2006, 18, 3162-3168.
    [15] H. Ohno, M. Yoshizawa, W. Ogihara, Development of new class of ion conductive polymers based on ionic liquids, Electrochim. Acta 2004, 50, 255-261.
    [16] D. K. Kim, M. Mikhaylova, Y. Zhang, M. Muhammed, Protective coating of superparamagnetic iron oxide nanoparticles, Chem. Mater. 2003, 15, 1617-1627.
    [17] L. Cammarata, S. G. Kazarian, P. A. Salter, T. Welton, Molecular states of water in room temperature ionic liquids, Phys. Chem. Chem. Phys. 2001, 3, 5192-5200.
    [18] K. Yoo, H. Choi, D. D. Dionysiou, Ionic liquid assisted preparation of nanostructured TiO2 particles, Chem. Commun. 2004, 17, 2000-2001.
    [19] C. Rocchiccioli-Deltcheff, R. Franck, V. Cabuil, R. Massart, Surfacted ferrofluids: interactions at the surfactant-magnetic iron oxide interface, J. Chem. Research (s) 1987, 5, 126-127.
    [20] G. H. Du, Z. L. Liu, X. Xia, Q. Chu, S. M. Zhang, Characterization and application of Fe3O4/SiO2 nanocomposites, J. Sol-Gel. Sci. Technol. 2006, 39, 285–291.
    [21] A. Corrias, M. F. Casula, G. Ennas, S. Marras, G. Navarra, G. Mountjoy, X-ray Absorption Spectroscopy Study of FeCo-SiO2 Nanocomposites Prepared by the Sol?Gel Method, J. Phys. Chem. B 2003, 107, 3030-3039.
    [22] L. Casas, A. Roig, E. Rodríguez, E. Molins, J. Tejada, J. Sort, Silica aerogel–iron oxide nanocomposites: structural and magnetic properties, J. Non-cryl. Solids 2001, 285, 37-43.
    [23] F. Grasset, N. Labhsetwar, D. Li, D. C. Park et al., Synthesis and Magnetic Characterization of Zinc Ferrite Nanoparticles with Different Environments: Powder, Colloidal Solution, and Zinc Ferrite?Silica Core?Shell Nanoparticles, Langmuir 2002, 18, 8209-8216.
    [24] O. Legrini, E. Oliveros, A. M.Braun, Photochemical processes for water treatment, Chem. Rev. 1993, 93, 671-698.
    [25] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobio. C: Photochem. Rev. 2000, 1, 1-21.
    [26]李晓平,徐宝琨,刘国范,吴凤清,纳米TiO2光催化降解水中有机污染物的研究与发展,功能材料1999,30,242-245.
    [27]唐玉朝,钱振型,钱中良,胡春,王怡中,TiO2薄膜光催化剂的制备及其活性,环境科学学报2002,22,393-396.
    [28]苏碧桃,张彰,郑坚,苏致兴,Fe3+掺杂的TiO2纳米复合粒子的合成及表征,化学学报2002,60,1936-1940.
    [29] S. Watson, D. Beydoun, R. Amal, Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core, J. Photochem. Photobiol. A: Chem. 2002, 148, 303-313.
    [30] D. Beydoun, R. Amal, Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst, Mater. Sci. Eng. B 2002, 94, 71-81.
    [31] F. X. Ye, A. Ohmori, The photocatalytic activity and photo-absorption of plasma sprayed TiO2-Fe3O4 binary oxide coatings, Surf. Coat. Technol. 2002, 160, 62-67.
    [32] W. P. Huang, X. H. Tang, I. Felner, Y. Koltypin, A. Gedanken, Preparation and characterization of FexOy–TiO2 via sonochemical synthesis, Mater. Res. Bull. 2002, 37, 1721-1735.
    [33] Y. Gao, B. H. Chen, H. L. Li, Y. X. Ma, Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties, Mater. Chem. Phys. 2003, 80, 348-355.
    [34] D. Beydoun, R. Amal, G. Low et al., Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide, J. Mol. Catal. A: Chem. 2002, 180, 193-200.
    [35]包淑娟,张校刚,刘献明等,TiO2/SiO2/Fe3O4的制备及其光催化性能,应用化学2004,21,261-265.
    [1]史修启,王红霞,张剑,台秀梅,非离子表面活性剂微乳液中苯乙烯聚合,化学试剂2005,27,516-518.
    [2]陆剑燕,陈明清,倪忠斌,熊万斌,刘晓亚,pH响应性共聚微球的制备及其粒径控制,化工新型材料2008,36,28-31.
    [3] C. S. Chern, Emulsion polymerization mechanisms and kinetics, Prog. Polym. Sci. 2006, 31, 443-486.
    [4] Y. Y. Liu, M. J. Yang,Preparation of MMA-BA-DMAEMA Nanosized Latex,Chin. Chem. Lett. 2003, 8, 863-865.
    [5] Y. A. Gao, S. B. Han, B. X. Han, G. Z. Li et al., TX-100/Water/1-Butyl-3-methylimidazolium Hexafluorophosphate Microemulsions, Langmuir 2005, 21, 5681-5684.
    [6] Y. A. Gao, N. Li, L. Q. Zheng, X. Y. Zhao, S. H. Zhang, B. X. Han et al., A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H2O microemulsions and their performance characterization by UV-Vis spectroscopy, Green Chem. 2006, 8, 43-49.
    [7] J. Eastoe, S. Gold, S. E. Rogers, A. Paul, T. Welton et al., Ionic Liquid-in-Oil Microemulsions, J. Am. Chem. Soc. 2005, 127, 7302-7303.
    [8] A. Beyaz, O. W. Su, V. P. Reddy, Ionic liquids as modulators of the critical micelle concentration of sodium dodecylsulfate, Colloids Surf. B: Biointerfaces 2004, 35, 119-124.
    [9] A. Beyaz, O. W. Su, V. P. Reddy, Synthesis and CMC studies of 1-methyl-3-(pentafluorophenyl) imidazolium quaternary salts, Colloids Surf. B: Biointerfaces 2004, 36, 71-74.
    [10]雷声,张晶,黄建滨,离子液体[Bmim]BF4对SDS水溶液表面活性和聚集能力的促进,物理化学学报2007,23,1657-1661.
    [11] K. Behera, P. Dahiya, S. Pandey, Effect of added ionic liquid on aqueous Triton X-100 micelles, J. Colloid Interface Sci. 2007, 307, 235-245.
    [12] J. L. Anderson, V. Pino, E. C. Hagberg et al., Surfactant solvation effects and micelle formation in ionic liquids, Chem. Commun. 2003, 19, 2444-2445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700