用户名: 密码: 验证码:
血红密孔菌的筛选、鉴定及其发酵产漆酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
漆酶(Laccase,EC 1.10.3.2)是一种含铜的多酚氧化酶,在环境污染物的降解与脱毒、纸浆的生物制造与漂白、染料的脱色与脱毒、木质素及其衍生物的降解与转化以及食品性状的改良等领域具有广阔的应用价值和潜力。本论文从自然界筛选到一株产漆酶的白腐菌,并对其进行了鉴定,研究了其发酵条件、产酶机理、酶的分离纯化和性质以及在染料脱色和降解中的作用,主要结果如下所示:
     利用平板显色特征和产漆酶能力测定,筛选到一株产漆酶的白腐菌株SYBC-L1,经形态学和分子生物学鉴定,确认该菌株属于担子菌纲、多孔菌科、密孔菌属、血红密孔菌,命名为血红密孔菌Pycnoporus sanguineus SYBC-L1。其18S和5.8S rDNA的GenBank登录号分别为EU888830和EU888831。
     对P. sanguineus SYBC-L1的液态发酵产漆酶条件进行了优化,利用一些工农业副产物,如麸皮和豆粕作碳氮源,首先通过单因素法初步优化了其发酵培养基和培养条件,再经过响应面设计法对培养基组分进一步优化,得到的优化培养基为:葡萄糖50 g/L,麸皮52.5 g/L,豆粕15 g/L,NH4H2PO4 1.0 g/L,CuSO4·5H2O 2.0 mmol/L,KH2PO4 0.5 mmol/L,NaCl 17 mmol/L,阿魏酸26.1μmol/L,初始pH 4.0。优化后菌株的漆酶产量为61.25 U/ml,为优化前基础培养基的87倍。根据其发酵过程数据分别建立了菌体生长、漆酶合成和底物消耗动力学模型。在此基础上进行7 L发酵罐扩大培养,第10 d漆酶产量为55 U/ml。
     对P. sanguineus SYBC-L1在环境污染物——水葫芦的综合利用方面进行了研究,以水葫芦为固态发酵基质,采用响应面法优化了P. sanguineus SYBC-L1的固态发酵产漆酶条件。优化后的培养基为:水葫芦25.1%,木屑13.9%,CuSO4·5H2O 1.5 mmol/L,没食子酸40μmol/L,起始含水量65%,初始pH 6.0。菌株优化后的漆酶活力为32.02 U/g干基,约为优化前的4.5倍。这种发酵方法不仅提高了水葫芦的综合利用价值,而且有利于水葫芦生物质的进一步利用。对P. sanguineus SYBC-L1在漆酶发酵过程中的生理特性进行了研究,发现菌体在漆酶高产时氧化水平提高,丙二醛、H2O2、抗坏血酸含量以及SOD、CAT活力明显上升,这表明菌体在漆酶合成时受到了一定的氧化胁迫作用。采用Fenton试剂对P. sanguineus SYBC-L1发酵产漆酶进行氧化胁迫试验,结果显示H2O2 : Fe2+比例为10:1时可明显促进漆酶的产生,推测漆酶的产生可能与活性氧诱导的基因表达有关。
     经过硫酸铵分级盐析、DEAE-cellulose阴离子交换层析和Sephadex G-100分子筛层析,分离纯化得到2个漆酶同工酶LacI和LacII,SDS-PAGE显示均为单体蛋白,分子量分别为58.89和63.07 kDa,糖含量分别为36.92%和13.58%,且二者在330 nm处均有特征吸收峰。LacI和LacII的最适反应pH值位于酸性范围,反应温度较宽,高温和低温条件均具有较好的催化活性,且酸碱稳定性和热稳定性良好。SDS、NaN3、β-巯基乙醇和KI对LacI和LacII具有抑制作用,而EDTA、Na+和低浓度的Cu2+、Mg2+及Zn2+稍有促进作用。LacI和LacII的催化底物广泛,ABTS是其最适宜的底物。以ABTS为底物时,Km值分别为0.0166和0.0435 mmol/L,kcat/Km值分别为19,640.36和31,172.64 S-1·mM-1。经UPLC/MS/MS鉴定及氨基酸序列分析,LacI和LacII均属于密孔菌属漆酶。
     对P. sanguineus SYBC-L1漆酶在工业染料的脱色和降解方面进行了研究,结果显示蒽醌类染料是漆酶的反应底物,可直接被漆酶降解,偶氮类染料在漆酶介体存在的情况下可被降解。小分子介体的添加有助于提高染料的脱色效率,RBBR、酸性红1和活性黑5在添加丁香醛连氮后,反应20 min,脱色率分别为94.91%、90.87%和72.15%;酸性蓝129和活性蓝4在HBT介体存在的情况下脱色60 min,其脱色率分别为81.73%和92.18%。利用高效液相色谱对染料降解后的产物进行分析,发现有降解中间产物生成,并且经过植物毒理试验表明,这些降解物的毒性大大降低,对小麦发芽率完全没有抑制,仅对胚芽和根芽的长度稍有影响。
Laccase (EC1.10.3.2, benzenediol: oxygen oxidoreductase) is a oxidoreductase belonging to the multinuclear copper-containing oxidase and can be investigated for a variety of applications including detoxification of harmful substances, bleaching of paper pulp, decolorization of textile dyes, transformation of lignins or their derivatives and improvement of food properties. In this study, a new laccase-producing strain was isolated and identified. The fermentation medium and condition for laccase production were optimized. The physiological characteristics of the strain for laccase production were also investigated. Laccases produced by Pycnoporus sanguineus SYBC-L1 were purified and characterized. The applications in decolotization and degradation of textile dyes were studied. The results were as follows:
     A white-rot fungus SYBC-L1, which produced laccase, was isolated using PDA screening medium. According to morphological and molecular biological identification, the strain was belonged to Pycnoporus sanguineus, located in phylum Basidiomycota, order Polyporales, family Polyporaceae, genus Pycnoporus and designated as Pycnoporus sanguineus SYBC-L1. The GenBank accession numbers of the 18S and 5.8S rDNA gene sequence were EU888830 and EU888831, respectively.
     The fermentation process for laccase production by P. sanguineus SYBC-L1 in submerged fermentation was studied by using some industrial and agricultural by-products. The fermentation medium and conditions were preliminarily optimized by one-factor-at-a-time method, followed by further optimization via response surface methodology. The obtained optimal parameters were glucose 50 g/L, wheat bran 52.5 g/L, soybean meal powder 15 g/L, NH4H2PO4 1.0 g/L, CuSO4·5H2O 2.0 mmol/L, KH2PO4 0.5 mmol/L, NaCl 17 mmol/L, ferulaic acid 26.1μmol/L, initial medium pH 4.0. Under the optimal fermentation condition, the maximum laccase activity reached 61.25 U/ml, which was approximately 87 folds than that in the basal medium. The kinetic models of submerged fermentation for mycelial growth, laccase production and substrate consumption were developed based on the experimental results. Based on previous results, the fermentation process was enlarged in 7 L bioreactor and the laccase yield was 55 U/ml after cultivation for 10 d.
     The utilization of an environmental waster of water hyacinth by P. sanguineus SYBC-L1 was investigated. The fermentation medium were optimized by response surface methodology using water hyacinth as the substrate. The optimal medium were water hyacinth 25.1%, sawdust 13.9%, CuSO4·5H2O 1.5 mmol/L, gallic acid 40μmol/L, initial moisture 65%, initial medium pH 6.0. Under the optimal fermentation condition, the maximum laccase activity reached 32.02 U/g dry substrate, which was approximately 4.5 folds than that in the basal medium. This strategy not only increased the value of water hyacinth’s utilization, but also contributed to the further use of water hyacinth.
     The physiological characteristics of P. sanguineus SYBC-L1 during the laccase producing process were investigated. It was found that when the yield of laccase was high, the oxidation level was relatively high, the contents of malondialdehyde, H2O2 and ascorbic acid were increased and the activities of SOD and CAT were enhanced, indicating that the strain was under oxidative stress during the laccase production period. The oxidation stress study on P. sanguineus SYBC-L1 was performed by using Fenton reagent, the result revealed that H2O2 and Fe2+ with the ratio of 10:1 could significantly promote the laccase production. It was supposed that laccase secretion might be regulated by reactive oxygen, which could induce the gene expression for laccase production.
     Two laccase isozymes (LacI and LacII) were purified by using (NH4)2SO4 fractionation, DEAE-cellulose anion-exchange chromatography and Sephadex G-100 filtration. SDS-PAGE showed that both LacI and LacII were monomeric proteins with the molecular mass of 55.89 and 63.07 kDa, respectively. LacI and LacII respectively contained 36.92% and 13.58% carbohydrates. The UV–vis spectrum of the purified laccases both showed a broad shoulder near 330 nm. The optimal pH values were observed in the acidic region and the catalytic temperatures were broad. LacI and LacII both showed not only high catalytic activity at high or low temperature, but also good stabilities toward pH and temperature. LacI and LacII were strongly inhibited by SDS, NaN3,β-mercaptoethanol and KI, but slightly enhanced by EDTA and metal ions of Na+, Cu2+, Mg2+ and Zn2+ at low concentration. LacI and LacII showed a wide range of substrates and the best substrates were both found to be ABTS. The Km values of LacI and LacII was 0.0166 and 0.0435 mmol/L and the catalytic efficiencies was 19640.36 and 31172.64 S-1·mM-1, respectively, for ABTS as substrate. Through UPLC/MS/MS and protein sequences analysis, LacI and LacII were showed to be identical with laccases from genus Pycnoporus.
     The decolorization and degradation of dyes by P. sanguineus SYBC-L1 laccase were invistegated. Anthraquinone dyes were the laccase substrates and could be directly degraded by P. sanguineus SYBC-L1 laccases, however, azo dyes were not the laccase substrates and could be degraded in the presence of some redox mediators. The decolorization rates could be enhanced by adding some small molecular weight redox mediators. The decolorization rates of RBBR, acid red 1 and reactive black 5 were 94.91%, 90.87% and 72.15%, respectively, after 20 min incubation by adding syringaldehyde, while in the presence of HBT, the decolorization rates of acid blue 129 and reactive blue 4 were 81.73% and 92.18%, respectively, after 60 min incubation. The biodegradations were monitored by HPLC and the results showed some degradation products were generated in the degradation process. Phytotoxicity study revealed that the biodegraded products had no toxicity on wheat germination, but only slightly inhibited on the length of the plumule and radical.
引文
[1]孙智谋,周旭,刘丽萍.粮食危机与以木薯为原料生物质能源的开发利用[J].现代化工, 2008, 28:11-14
    [2]宋安东.生物质(秸秆)纤维燃料乙醇生产工艺试验研究[D]: [博士学位论文].郑州:河南农业大学, 2004
    [3] Christiernin M, Ohlsson A B, Berglund T, et al. Lignin isolated from primary walls of hybrid aspen cell cultures indicates significant differences in lignin structure between primary and secondary cell wall [J]. Plant Physiol Biochem, 2005, 43:777-785
    [4]李维.黄孢原毛平革菌Phanerochaete chrysosporium转化系统的建立及木质素酶cDNA的同源表达[D]: [博士学位论文].成都:四川大学, 1996
    [5]孙迅.粗毛栓菌的木质纤维素降解酶及其基因克隆[D]: [博士学位论文].成都:四川大学, 2004
    [6] Niku-Paavola M L, Karhunen E, Salola P, et al. Ligninolytic enzymes of the white-rot fungus Phlebia radiata [J]. Biochem J, 1988, 254:877-883
    [7]谢君,任路,李维,等.白腐菌液体培养产生木质纤维素降解酶的研究[J].四川大学学报(自然科学版), 2000, 37:161-166
    [8] Bourbonnais R, Paice M G, Reid I D, et al. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization [J]. Appl Environ Microbiol, 1995, 61:1876-1880
    [9] Ardon O, Kerem Z, Hadar Y. Enhancement of laccase activity in liquid cultures of the ligninolytic fungus Pleurotus ostreatus by cotton stalk extract [J]. J Biotechnol, 1996, 51:201-207
    [10] Pointing S B, Jones E B G, Vrijmoed L L P. Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture [J]. Mycologia, 2000, 92:139-144
    [11] Vares T, Kalsi M, Hatakka A. Lignin peroxidases, Manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat straw [J]. Appl Environ Microbiol, 1995, 61:3515-3520
    [12] Faure D, Bouillant M, Bally R. Comparative study of substrates and inhibitors of Azospirillum lipoferum and Pyricularia oryzae laccases [J]. Appl Environ Microbiol, 1995, 61:1144-1146
    [13] Ruijssenaars H J, Hartmans S. A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity [J]. Appl Microbiol Biotechnol, 2004, 65:177-182
    [14] Hullo M F, Moszer I, Danchin A, et al. CotA of Bacillus subtilis is a copper-dependent laccase [J]. J Bacteriol, 2001, 183:5426-5430
    [15] Solano F, Lucas-Elio P, Fernandez E, et al. Marinomonas mediterranea MMB-1 transposon mutagenesis: isolation of a multipotent polyphenol oxidase mutant [J]. J Bacteriol, 2000, 182:3754-3760
    [16] Senan R C, Abraham T E. Bioremediation of textile azo dyes by aerobic bacterialconsortium [J]. Biodegradation, 2004, 15:275-280
    [17] Arias M E, Arenas M, Rodriguez J, et al. Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335 [J]. Appl Environ Microbiol, 2003, 69:1953-1958
    [18] Castro-Sowinski S, Martinez-Drets G, Okon Y. Laccase activity in melanin-producing strains of Sinorhizobium meliloti [J]. FEMS Microbiol Lett, 2002, 209:119-125
    [19] Miyazaki K. A hyperthermophilic laccase from Thermus thermophilus HB27 [J]. Extremophiles, 2005, 9:415-425
    [20] Kurtz M B, Champe S P. Purification and characterization of the conidial laccase of Aspergillus nidulans [J]. J Bacteriol, 1982, 151:1338-1345
    [21] Hoshida H, Fujita T, Murata K, et al. Copper-dependent production of a Pycnoporus coccineus extracellular laccase in Aspergillus oryzae and Saccharomyces cerevisiae [J]. Biosci Biotechnol Biochem, 2005, 69:1090-1097
    [22]王剑锋,王璋,饶军,等.烟管菌漆酶的分离纯化及部分酶学性质研究[J].菌物学报, 2008, 27:297-308
    [23] Ducros V, Brzozowski A M, Wilson K S, et al. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution [J]. Nat Struct Biol, 1998, 5:310-316
    [24]吴坤.杂色云芝(Coriolus Versicolor)和杂色云芝漆酶及其对环境污染物降解的研究[D]: [博士学位论文].杭州:浙江大学, 2002
    [25] Arockiasamy S, Krishnan I P, Anandakrishnan N, et al. Enhanced production of laccase from Coriolus versicolor NCIM 996 by nutrient optimization using response surface methodology [J]. Appl Biochem Biotechnol, 2008, 151:371-379
    [26] Freixo M d R, Karmali A, Fraz?o C, et al. Production of laccase and xylanase from Coriolus versicolor grown on tomato pomace and their chromatographic behaviour on immobilized metal chelates [J]. Process Biochem, 2008, 43:1265-1274
    [27] Janusz G, Rogalski J, Szczodrak J. Increased production of laccase by Cerrena unicolor in submerged liquid cultures [J]. World J Microbiol Biotechnol, 2007, 23:1459-1464
    [28] Lyashenko A V, Zhukhlistova N E, Gabdoulkhakov A G, et al. Purification, crystallization and preliminary X-ray study of the fungal laccase from Cerrena maxima [J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2006, 62:954-957
    [29] Neifar M, Jaouani A, Ellouze-Ghorbel R, et al. Effect of culturing processes and copper addition on laccase production by the white-rot fungus Fomes fomentarius MUCL 35117 [J]. Lett Appl Microbiol, 2009, 49:73-78
    [30] Papinutti L, Dimitriu P, Forchiassin F. Stabilization studies of Fomes sclerodermeus laccases [J]. Bioresour Technol, 2008, 99:419-424
    [31] Ko E M, Leem Y E, Choi H T. Purification and characterization of laccase isozymes from the white-rot basidiomycete Ganoderma lucidum [J]. Appl Microbiol Biotechnol, 2001, 57:98-102
    [32] Songulashvili G, Elisashvili V, Wasser S, et al. Laccase and manganese peroxidase activities of Phellinus robustus and Ganoderma adspersum grown on food industry wastes in submerged fermentation [J]. Biotechnol Lett, 2006, 28:1425-1429
    [33] Matos A J, Bezerra R M, Dias A A. Screening of fungal isolates and properties of Ganoderma applanatum intended for olive mill wastewater decolourization and dephenolization [J]. Lett Appl Microbiol, 2007, 45:270-275
    [34] Elisashvili V, Penninckx M, Kachlishvili E, et al. Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition [J]. Bioresour Technol, 2008, 99:457-462
    [35] Shutova V V, Revin V V, Makushina Iu A. The effect of copper ions on the production of laccase by the fungus Lentinus (Panus) tigrinus [J]. Prikl Biokhim Mikrobiol, 2008, 44:683-687
    [36] Farnet A-M, Criquet S, Cigna M, et al. Purification of a laccase from Marasmius quercophilus induced with ferulic acid: reactivity towards natural and xenobiotic aromatic compounds [J]. Enzyme Microb Technol, 2004, 34:549-554
    [37] Klonowska A, Le Petit J, Tron T. Enhancement of minor laccases production in the basidiomycete Marasmius quercophilus C30 [J]. FEMS Microbiol Lett, 2001, 200:25-30
    [38] Hakulinen N, Kiiskinen L-L, Kruus K, et al. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site [J]. Nat Struct Biol, 2002, 9:601-605
    [39] Fernandez-Larrea J, Stahl U. Isolation and characterization of a laccase gene from Podospora anserina [J]. Mol Gen Genet, 1996, 252:539-551
    [40] Leonowicz A, Grzywnowicz K, Malinowska M. Oxidative and demethylating activity of multiple forms of laccase from Pholiota mutabilis [J]. Acta Biochim Pol, 1979, 26:431-434
    [41] Min K L, Kim Y H, Kim Y W, et al. Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis [J]. Arch Biochem Biophys, 2001, 392:279-286
    [42] Kim Y, Yeo S, Kim M K, et al. Removal of estrogenic activity from endocrine-disrupting chemicals by purified laccase of Phlebia tremellosa [J]. FEMS Microbiol Lett, 2008, 284:172-175
    [43] Kaneko S, Cheng M, Murai H, et al. Purification and characterization of an extracellular laccase from Phlebia radiata strain BP-11-2 that decolorizes fungal melanin [J]. Biosci Biotechnol Biochem, 2009, 73:939-942
    [44] Palmieri G, Cennamo G, Faraco V, et al. Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures [J]. Enzyme Microb Technol, 2003, 33:220-230
    [45] Stajic M, Persky L, Friesem D, et al. Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species [J]. Enzyme Microb Technol, 2006, 38:65-73
    [46] Das N, Chakraborty T K, Mukherjee M. Purification and characterization of a growth-regulating laccase from Pleurotus florida [J]. J Basic Microbiol, 2001, 41:261-267
    [47] Murugesan K, Arulmani M, Nam I H, et al. Purification and characterization of laccase produced by a white rot fungus Pleurotus sajor-caju under submerged culture condition and its potential in decolorization of azo dyes [J]. Appl Microbiol Biotechnol, 2006,72:939-946
    [48] Litthauer D, van Vuuren M J, van Tonder A, et al. Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus (SCC 108) [J]. Enzyme Microb Technol, 2007, 40:563-568
    [49] Lomascolo A, Record E, Herpoel-Gimbert I, et al. Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer [J]. J Appl Microbiol, 2003, 94:618-624
    [50] Oda Y, Adachi K, Aita I, et al. Purification and properties of laccase excreted by Pycnoporus coccineus [J]. Agric Biol Chem, 1991, 55:1393-1395
    [51] Chernykh A, Myasoedova N, Kolomytseva M, et al. Laccase isoforms with unusual properties from the basidiomycete Steccherinum ochraceum strain 1833 [J]. J Appl Microbiol, 2008, 105:2065-2075
    [52] Lorenzo M, Moldes D, Rodríguez Couto S, et al. Improving laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versicolor [J]. Bioresour Technol, 2002, 82:109-113
    [53]董佳里.粗毛栓菌漆酶的生化和分子生物学研究[D]: [博士学位论文].成都:四川大学, 2005
    [54] Galhaup C, Goller S, Peterbauer C K, et al. Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions [J]. Microbiology, 2002, 148:2159-2169
    [55] Dong J L, Zhang Y Z, Dong J L, et al. Purification and characterization of two laccase isoenzymes from a ligninolytic fungus Trametes gallica [J]. Prep Biochem Biotechnol, 2004, 34:179-194
    [56] Nyanhongo G S, Gomes J, Gubitz G M, et al. Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta [J]. Water Res, 2002, 36:1449-1456
    [57] Abadulla E, Tzanov T, Costa S, et al. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta [J]. Appl Environ Microbiol, 2000, 66:3357-3562
    [58] Ahmadi N, Mibus H, Serek M. Isolation of an ethylene-induced putative nucleotide laccase in Miniature Roses (Rosa hybrida L.) [J]. J Plant Growth Regul, 2008, 27:320-330
    [59] Alexandre G, Zhulin I B. Laccases are widespread in bacteria [J]. Trends Biotechnol, 2000, 18:41-42
    [60]钞亚鹏,钱世钧.真菌漆酶及其应用[J].生物工程进展, 2001, 21:23-28
    [61] Snajdr J, Baldrian P. Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor [J]. Folia Microbiol (Praha), 2007, 52:498-502
    [62] Thurston C F. The structure and function of fungal laccases [J]. Microbiology, 1994, 140:19-26
    [63]李杨,段新源,刘稳,等.杂色云芝组成型漆酶Ⅰ的纯化和底物专一性[J].中国生物化学与分子生物学报, 2002, 18:737-740
    [64] Claus H. Laccases: structure, reactions, distribution [J]. Micron, 2004, 35:93-96
    [65]季立才,胡培植.漆酶催化氧化反应研究进展[J].林产化学与工业, 1997, 17:79-84
    [66]周易勇.有机溶剂对漆酶活性的影响[J].中国生漆, 1991:28-29
    [67] Hildén K, Hakala T K, Maijala P, et al. Novel thermotolerant laccases produced by the white-rot fungus Physisporinus rivulosus [J]. Appl Microbiol Biotechnol, 2007, 77:301-309
    [68] Leonowicz A, Cho N, Luterek J, et al. Fungal laccase: properties and activity on lignin [J]. J Basic Microbiol, 2001, 41:185-227
    [69] Yang W Y, Min D Y, Wen S X, et al. Immobilization and characterization of laccase from Chinese Rhus vernicifera on modified chitosan [J]. Process Biochem, 2006, 41:1378-1382
    [70] Mayer A M, Staples R C. Laccase: new functions for an old enzyme [J]. Phytochemistry, 2002, 60:551-565
    [71] Wood D A. Production, purification and properties of extracellular laccase of Agaricus bisporus [J]. J Gen Microbiol, 1980, 117:327-338
    [72]刘淑珍,钱世钧.担子菌漆酶的分离纯化及其性质研究[J].微生物学报, 2003, 43:73-78
    [73]黄乾明.漆酶高产菌株的诱变选育及其酶的分离纯化性质和基因克隆研究[D]: [博士学位论文].雅安市:四川农业大学, 2006
    [74] Coll P M, Tabernero C, Santamaria R, et al. Characterization and structural analysis of the laccase I gene from the newly isolated ligninolytic basidiomycete PM1 (CECT 2971) [J]. Appl Environ Microbiol, 1993, 59:4129-4135
    [75]王国栋,陈晓亚.漆酶的性质、功能、催化机理和应用[J].植物学通报, 2003, 20:469-475
    [76] Shin K S, Lee Y J. Purification and characterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus [J]. Arch Biochem Biophys, 2000, 384:109-115
    [77]万云洋,杜予民.漆酶结构与催化机理[J].化学通报, 2007:662-670
    [78] Ducros V, Davies G J, Lawson D M, et al. Crystallization and preliminary X-ray analysis of the laccase from Coprinus cinereus [J]. Acta Crystallographica Section D-Biological Crystallography, 1997, 53:605-607
    [79] Tlecuitl-Beristain S, Sanchez C, Loera O, et al. Laccases of Pleurotus ostreatus observed at different phases of its growth in submerged fermentation: production of a novel laccase isoform [J]. Mycol Res, 2008, 112:1080-1084
    [80] Songulashvili G, Elisashvili V, Wasser S P, et al. Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes [J]. Enzyme Microb Technol, 2007, 41:57-61
    [81]吴坤,朱显峰,张世敏,等.杂色云芝产漆酶的发酵条件研究[J].菌物系统, 2001, 20:207-213
    [82]高恩丽.云芝漆酶的生产及其应用基础研究[D]: [博士学位论文].杭州:浙江大学, 2007
    [83] Osma J F, Toca Herrera J L, Rodríguez Couto S. Banana skin: A novel waste for laccaseproduction by Trametes pubescens under solid-state conditions. Application to synthetic dye decolouration [J]. Dyes and Pigments, 2007, 75:32-37
    [84]施晓燕. Phellinus sp. SYBC-L2固态发酵产漆酶条件的优化及其酶学性质的研究[D]: [硕士学位论文].无锡:江南大学, 2008
    [85]王欣,蔡宇杰,廖祥儒,等.培养条件对Trametes versicolor SYBC L3固态发酵产漆酶的影响[J].西北农业学报, 2009, 18:174-179
    [86] Fenice M, Giovannozzi Sermanni G, Federici F, et al. Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media [J]. J Biotechnol, 2003, 100:77-85
    [87] Nyanhongo G S, Gomes J, Gübitz G, et al. Production of laccase by a newly isolated strain of Trametes modesta [J]. Bioresour Technol, 2002, 84:259-263
    [88]侯红漫.白腐菌Pleurotus ostreatus漆酶及对蒽醌染料和碱木素脱色的研究[D]: [博士学位论文].大连:大连理工大学, 2003
    [89] Wang J W, Wu J H, Huang W Y, et al. Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon [J]. Bioresour Technol, 2006, 97:786-789
    [90] Galhaup C, Haltrich D. Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper [J]. Appl Microbiol Biotechnol, 2001, 56:225-232
    [91] Niladevi K N, Prema P. Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization [J]. Bioresour Technol, 2008, 99:4583-4589
    [92] Mougin C, Kollmann A, Jolivalt C. Enhanced production of laccase in the fungus Trametes versicolor by the addition of xenobiotics [J]. Biotechnol Lett, 2002, 24:139-142
    [93] PériéF H, Reddy G V B, Blackburn N J, et al. Purification and Characterization of Laccases from the White-Rot Basidiomycete Dichomitus squalens [J]. Arch Biochem Biophys, 1998, 353:349-355
    [94]吴坤,闵航,朱显峰,等.杂色云芝漆酶的分离、纯化和酶学特性研究[J].高校化学工程学报, 2003, 17:173-179
    [95]万云洋,杜予民,杨建红,等.漆树漆酶两种同工酶分离纯化与特性研究[J].武汉大学学报(理学版), 2003, 49:201-204
    [96] Zouari-Mechichi H, Mechichi T, Dhouib A, et al. Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme [J]. Enzyme Microb Technol, 2006, 39:141-148
    [97]赵敏.白腐菌漆酶基因克隆及其诱导产生的研究[D]: [博士学位论文].哈尔滨:哈尔滨工业大学, 2004
    [98] Litvintseva A P, Henson J M. Cloning, characterization, and transcription of three laccase genes from Gaeumannomyces graminis var. tritici, the take-all fungus [J]. Appl Environ Microbiol, 2002, 68:1305-1311
    [99] Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from raretranscripts: amplification using a single gene-specific oligonucleotide primer [J]. Proc Natl Acad Sci USA, 1988, 85:8998-9002
    [100] Temp U, Zierold U, Eggert C. Cloning and characterization of a second laccase gene from the lignin-degrading basidiomycete Pycnoporus cinnabarinus [J]. Gene, 1999, 236:169-177
    [101] Eggert C, LaFayette P R, Temp U, et al. Molecular analysis of a laccase gene from the white rot fungus Pycnoporus cinnabarinus [J]. Appl Environ Microbiol, 1998, 64:1766-1772
    [102] Jonsson L, Sjostrom K, Haggstrom I, et al. Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases [J]. Biochim Biophys Acta, 1995, 1251:210-215
    [103]卢磊.血红密孔菌漆酶的纯化及其基因在毕赤酵母中的表达[D]: [硕士学位论文].哈尔滨:东北林业大学, 2005
    [104]杨建强.革耳Panus rudis漆酶的异源表达和酶学性质改良[D]: [博士学位论文].北京:中国人民解放军军事医学科学院, 2005
    [105] Record E, Punt P J, Chamkha M, et al. Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme [J]. Eur J Biochem, 2002, 269:602-609
    [106] Couto S R, Herrera J L T. Industrial and biotechnological applications of laccases: A review [J]. Biotechnol Adv, 2006, 24:500-513
    [107] Mussatto S I, Roberto I C. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review [J]. Bioresour Technol, 2004, 93:1-10
    [108] Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters: a review [J]. Environ Int, 2004, 30:953-971
    [109] Riva S. Laccases: blue enzymes for green chemistry [J]. Trends Biotechnol, 2006, 24:219-226
    [110] Wesenberg D, Kyriakides I, Agathos S N. White-rot fungi and their enzymes for the treatment of industrial dye effluents [J]. Biotechnol Adv, 2003, 22:161-187
    [111] Pointing S B, Vrijmoed L L P. Decolorization of azo and triphenylmethane dyes by Pycnoporus sanguineus producing laccase as the sole phenoloxidase [J]. World J Microbiol Biotechnol, 2000, 16:317-318
    [112] Rodríguez E, Pickard M A, Vazquez-Duhalt R. Industrial dye decolorization by laccases from ligninolytic fungi [J]. Curr Microbiol, 1999, 38:27-32
    [113]高恩丽,仲伟佳,付小兰.云芝菌固态发酵产漆酶及其对二氯酚脱氯作用的研究[J].食品与发酵工业, 2008, 34:32-36
    [114] Minussi R C, Pastore G M, Durán N. Potential applications of laccase in the food industry [J]. Trends Food Sci Technol, 2002, 13:205-216
    [115] Tien M, Kirk T K. Lignin peroxidase of Phanerochaete chrysosporium [J]. Methods Enzymol, 1988, 161: 238–249
    [116] Kollmann A, Boyer F D, Ducrot P H, et al. Oligomeric compounds formed from2,5-xylidine (2,5-dimethylaniline) are potent enhancers of laccase production in Trametes versicolor ATCC 32745 [J]. Appl Microbiol Biotechnol, 2005, 68:251-258
    [117] Desgranges C, Vergoignan C, Georges M, et al. Biomass estimation in solid state fermentation I. Manual biochemical methods [J]. Appl Microbiol Biotechnol, 1991, 35:200-205
    [118] Ghose T K. Measurement of cellulase activities [J]. Pure and Applied Chemistry, 1987: 257-268
    [119] Raeder U, Broda P. Rapid preparation of DNA from filamentous fungi [J]. Lett Appl Microbiol, 1985, 1:17-20
    [120] White T J, Bruns T, Lee, S., , Taylor J. In PCR Protocols: a Guide to Methods and Applications [M]. In: Innis M A, Gelfland D H, Sninsky J J, et al. editors. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics New York: Academic Press; 1990. p. 315-322
    [121] Jaouani A, Guillén F, Penninckx M J, et al. Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater [J]. Enzyme Microb Technol, 2005, 36:478-486
    [122]吴旺宝,邓泽涛,邓国志.一株产耐高温漆酶真菌的筛选[J].安徽大学学报(自然科学版), 2007, 31:91-94
    [123] Zhang H, Hong Y Z, Xiao Y Z, et al. Efficient production of laccases by Trametes sp. AH28-2 in cocultivation with a Trichoderma strain [J]. Appl Microbiol Biotechnol, 2006, 73:89-94
    [124] Birhanli E, Yesilada O. Increased production of laccase by pellets of Funalia trogii ATCC 200800 and Trametes versicolor ATCC 200801 in repeated-batch mode [J]. Enzyme Microb Technol, 2006, 39:1286-1293
    [125] Kantelinen A, Hatakka A, Viikari L. Production of lignin peroxidase and laccase by Phlebia radiata [J]. Appl Microbiol Biotechnol, 1989, 31:234-239
    [126] Vasdev K, Kuhad R. Induction of laccase production in Cyathus bulleri under shaking and static culture conditions [J]. Folia Microbiol, 1994, 39:326-330
    [127] Lomascolo A, Cayol J-L, Roche M, et al. Molecular clustering of Pycnoporus strains from various geographic origins and isolation of monokaryotic strains for laccase hyperproduction [J]. Mycol Res, 2002, 106:1193-1203
    [128]赵继鼎.中国真菌志(第三卷)多孔菌科[M].北京:科学出版社; 1998.
    [129] Herpo?l I, Moukha S, Lesage-Meessen L, et al. Selection of Pycnoporus cinnabarinus strains for laccase production [J]. FEMS Microbiol Lett, 2000, 183:301-306
    [130] Eggert C. Laccase-catalyzed formation of cinnabarinic acid is responsible for antibacterial activity of Pycnoporus cinnabarinus [J]. Microbiol Res, 1997, 152:315-318
    [131] Revankar M S, Lele S S. Enhanced production of laccase using a new isolate of white rot fungus WR-1 [J]. Process Biochem, 2006, 41:581-588
    [132] Dantan-Gonzalez E, Vite-Vallejo O, Martinez-Anaya C, et al. Production of two novel laccase isoforms by a thermotolerant strain of Pycnoporus sanguineus isolated from an oil-polluted tropical habitat [J]. Int Microbiol, 2008, 11:163-169
    [133] Eugenio M E, Carbajo J M, Martin J A, et al. Laccase production by Pycnoporus sanguineus under different culture conditions [J]. J Basic Microbiol, 2009, 49:433-440
    [134] Revankar M, Desai K, Lele S. Solid-state fermentation for enhanced production of laccase using indigenously isolated Ganoderma sp. [J]. Appl Biochem Biotechnol, 2007, 143:16-26
    [135]王剑锋,李江,王璋.均匀设计法优化烟管菌产漆酶培养基[J].微生物学通报, 2007, 34:625-628
    [136]魏培莲.土曲霉固态发酵产洛伐他汀的关键技术和新工艺探索[D]: [博士学位论文].杭州:浙江大学, 2007
    [137]汤兴俊.热稳定性β-葡聚糖酶发酵工艺及发酵动力学研究[D]: [博士学位论文].杭州:浙江大学, 2003
    [138]陈启和.弹性蛋白酶发酵工艺及其发酵动力学研究[D]: [博士学位论文].杭州:浙江大学, 2003
    [139] Osma J F, Saravia V, Herrera J L, et al. Mandarin peelings: the best carbon source to produce laccase by static cultures of Trametes pubescens [J]. Chemosphere, 2007, 67:1677-1680
    [140] Meza J C, Lomascolo A, Casalot L, et al. Laccase production by Pycnoporus cinnabarinus grown on sugar-cane bagasse: Influence of ethanol vapours as inducer [J]. Process Biochem, 2005, 40:3365-3371
    [141] Gnanamani A, Jayaprakashvel M, Arulmani M, et al. Effect of inducers and culturing processes on laccase synthesis in Phanerochaete chrysosporium NCIM 1197 and the constitutive expression of laccase isozymes [J]. Enzyme Microb Technol, 2006, 38:1017-1021
    [142] Lee I-Y, Jung K-H, Lee C-H, et al. Enhanced production of laccase in Trametes vesicolor by the addition of ethanol [J]. Biotechnol Lett, 1999, 21:965-968
    [143]胡益勇,徐晓玉.阿魏酸的化学和药理研究进展[J].中成药, 2006, 28:253-255
    [144]唐舜, Lomascolo A,郭林,等.从白腐菌中筛选漆酶高产菌株的初步研究(英) [J].菌物系统, 2001, 20:520-525
    [145] Leonowicz A, J T. Induction of laccase by ferulic acid in Basidiomycetes [J]. Acta Biochim Polon, 1975, 22:291-295
    [146]王剑锋,苏国成,刘建玲,等.烟管菌漆酶合成的营养条件研究[J].食品与发酵工业, 2006, 32:20-24
    [147] Niladevi K N, Sukumaran R K, Jacob N, et al. Optimization of laccase production from a novel strain--Streptomyces psammoticus using response surface methodology [J]. Microbiol Res, 2009, 164:105-113
    [148] Niladevi K N, Sukumaran R K, Prema P. Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation [J]. J Ind Microbiol Biotechnol, 2007, 34:665-674
    [149] Liu L, Lin Z, Zheng T, et al. Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969 [J]. Enzyme Microb Technol, 2009,44:426-433
    [150]唐舜.漆酶高产菌株的筛选及其基本酶学性质的研究[D]: [硕士学位论文].北京:中国科学院, 2001
    [151]慕庆峰.血红密孔菌(Pycnoporus sanguineus)对染料的降解及固定化的研究[D]: [硕士学位论文].哈尔滨:东北林业大学, 2005
    [152] Dagno K, Lahlali R, Friel D, et al. Problems of the water hyacinth, Eichhornia crassipes, in the tropical and subtropical areas of the world, in particular its eradication using biological control method by means of plant pathogens [J]. Biotechnol Agron Soc Environ, 2007, 11:299-311
    [153] Ding J, Mack R N, Lu P, et al. China's booming economy is sparking and accelerating biological invasions [J]. Bioscience, 2008, 58:317-324
    [154]李菊娣.凤眼莲的营养性评定与优化利用研究[D]: [博士学位论文].杭州:浙江大学, 2006
    [155]高雷,李博.入侵植物凤眼莲研究现状及存在的问题[J].植物生态学报, 2004, 28:735-752
    [156]郭晓光.水葫芦叶蛋白制品的安全性评价研究[D]: [硕士学位论文].重庆市:西南大学, 2007
    [157] Pandey A. Solid-state fermentation [J]. Biochem Eng J, 2003, 13:81-84
    [158] Vikineswary S, Abdullah N, Renuvathani M, et al. Productivity of laccase in solid substrate fermentation of selected agro-residues by Pycnoporus sanguineus [J]. Bioresour Technol, 2006, 97:171-177
    [159] Nakamura Y, Sungusia M G, Sawada T, et al. Lignin-degrading enzyme production by Bjerkandera adusta immobilized on polyurethane foam [J]. J Biosci Bioeng, 1999, 88:41-47
    [160]池玉杰,伊洪伟.木材白腐菌分解木质素的酶系统-锰过氧化物酶、漆酶和木质素过氧化物酶催化分解木质素的机制[J].菌物学报, 2007, 26:153-160
    [161] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72:248-254
    [162]钱斯亮,蔡宇杰,廖祥儒,等.热稳定性过氧化氢酶高产菌的筛选、鉴定及酶学性质研究[J].西北农业学报, 2008, 17:238-242
    [163] Chiou T-J, Chu S-T, Tzeng W-F. Protection of cells from menadione-induced apoptosis by inhibition of lipid peroxidation [J]. Toxicology, 2003, 191:77-88
    [164] Georgiou C D. Lipid peroxidation in Sclerotium rolfsii: a new look into the mechanism of sclerotial biogenesis in fungi [J]. Mycol Res, 1997, 101:460-464
    [165] Turrens J F. Mitochondrial formation of reactive oxygen species [J]. J Physiol, 2003, 552:335-344
    [166] Dalton T P, Shertzer H G, Puga A. Regulation of gene expression by reactive oxygen [J]. Annu Rev Pharmacol Toxicol, 1999, 37
    [167] Branco M R, Marinho H S, Cyme L, et al. Decrease of H2O2 plasma membranepermeability during adaptation to H2O2 in Saccharomyces cerevisiae [J]. J Biol Chem, 2004, 279:6501-6506
    [168]徐夫元,宋天顺,陈英文,等. Cu(Ⅱ)-Fe(Ⅱ)-H2O2协同催化氧化降解甲基橙[J].中南大学学报(自然科学版), 2007, 28:480-485
    [169] Spickett M C, Smirnoff, N., Pitt R A. The biosynthesis of erythroascorbate in Saccharomyces cerevisiae and its role as an antioxidant [J]. Free Rad Biol Med, 2000, 28:183-192
    [170] Georgiou C D, Petropoulou K P. Effect of the antioxidant ascorbic acid on sclerotial differentiation in Rhizoctonia solani [J]. Plant Pathol, 2001, 50:594-600
    [171] Imlay J A. Pathways of oxidative damage [J]. Annu Rev Microbiol, 2003, 57:395-418
    [172] Janero D R, Hreniuk K D, Sharif H M. Hydrogen peroxide induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): lethal peroxidative membrane injury [J]. J Cell Phyiol, 1991, 149:347-364
    [173] Fridovich I. Superoxide radical and superoxide dismutases [J]. Annu Rev Biochem, 1995, 64:97-112
    [174] McCord J M, Fridovich I. An enzymic function for erythrocuprein (hemocuprein) [J]. J Biol Chem, 1969, 244:6049-6055
    [175] Bai Z H, Harvey L M, McNeil B. Oxidative stress in submerged cultures of fungi [J]. Crit Rev Biotechnol, 2003, 24:267-302
    [176] Miller N J, Rice-Evans C, Davies M J, et al. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates [J]. Clin Sci, 1993, 84:407-412
    [177] Sies H. Antioxidant functions of vitamins [J]. Ann NY Acad Sci, 1992, 669:7-20
    [178]莫凤奎,朱澄云,黄松鹤,等.维生素E和维生素C对大豆磷脂脂质体的抗氧化作用[J].中国药物化学杂志, 1997, 7
    [179]杜玉,娄红祥.天然植物抗氧化剂的作用机制研究概况[J].中药材, 2006, 29:739-743
    [180]黄进,杨国宇,李宏基,等.抗氧化剂作用机制研究进展[J].自然杂志, 2004, 26:74-78
    [181] Bishop D F, Stern G, Fleischman M, et al. Hydrogen peroxide catalytic oxidation of refractory organics in municipal waste waters [J]. Industrial & Engineering Chemistry Process Design and Development, 1968, 7:110-117
    [182]王炳坤,北尾,高岭,等.采用Fenton试剂处理废水中难降解的苯胺类化合物[J].环境化学, 1987, 6:80-84
    [183]程丽华,黄君礼,倪福祥. Fenton试剂生成·OH的动力学研究[J].环境污染治理技术与设备, 2003, 4:12-15
    [184]陈胜兵,何少华,娄金生,等. Fenton试剂的氧化作用机理及其应用[J].环境科学与技术, 2004, 27:105-108
    [185] Belinky P A, Flikshtein N, Lechenko S, et al. Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium [J]. Appl Environ Microbiol, 2003,69:6500-6506
    [186] Hildén K, Hakala T K, Lundell T. Thermotolerant and thermostable laccases [J]. Biotechnol Lett, 2009, 31:1117-1128
    [187] Niladevi K N, Jacob N, Prema P. Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus: Purification and characterization [J]. Process Biochem, 2008, 43:654-660
    [188] Bourbonnais R, Paice M G. Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) [J]. Appl Microbiol Biotechnol, 1992, 36:823-827
    [189] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature, 1970, 227:680-685
    [190] Cui L, Du G, Zhang D, et al. Thermal stability and conformational changes of transglutaminase from a newly isolated Streptomyces hygroscopicus [J]. Bioresour Technol, 2008, 99:3794-3800
    [191] Vite-Vallejo O, Palomares L A, Dantán-González E, et al. The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase [J]. Enzyme Microb Technol, 2009, 45:233-239
    [192] Jordaan J, Leukes W D. Isolation of a thermostable laccase with DMAB and MBTH oxidative coupling activity from a mesophilic white rot fungus [J]. Enzyme Microb Technol, 2003, 33:213-219
    [193] Liers C, Ullrich R, Pecyna M, et al. Production, purification and partial enzymatic and molecular characterization of a laccase from the wood-rotting ascomycete Xylaria polymorpha [J]. Enzyme Microb Technol, 2007, 41:785-793
    [194] Georlette D, Bentahir M, Claverie P, et al. Cold-Adapted Enzymes [M]. 2002. p. 177-196
    [195] Gerday C, Aittaleb M, Bentahir M, et al. Cold-adapted enzymes: from fundamentals to biotechnology [J]. Trends Biotechnol, 2000, 18:103-107
    [196] Sulistyaningdyah W T, Ogawa J, Tanaka H, et al. Characterization of alkaliphilic laccase activity in the culture supernatant of Myrothecium verrucaria 24G-4 in comparison with bilirubin oxidase [J]. FEMS Microbiol Lett, 2004, 230:209-214
    [197] Singh G, Capalash N, Goel R, et al. A pH-stable laccase from alkali-tolerantγ-proteobacterium JB: Purification, characterization and indigo carmine degradation [J]. Enzyme Microb Technol, 2007, 41:794-799
    [198] Qiu W, Chen H. An alkali-stable enzyme with laccase activity from entophytic fungus and the enzymatic modification of alkali lignin [J]. Bioresour Technol, 2008, 99:5480-5484
    [199] Lu L, Zhao M, Zhang B B, et al. Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme [J]. Appl Microbiol Biotechnol, 2007, 74:1232-1239
    [200] Calvo A M, Copa-Patino J L, Alonso O, et al. Studies of the production and characterization of laccase activity in the basidiomycete coriolopsis gallica, an efficient decolorizer of alkaline effluents [J]. Arch Microbiol, 1998, 171:31-36
    [201] Galhaup C, Wagner H, Hinterstoisser B, et al. Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens [J]. Enzyme Microb Technol, 2002, 30:529-536
    [202] Tong P, Hong Y, Xiao Y, et al. High production of laccase by a new basidiomycete, Trametes sp [J]. Biotechnol Lett, 2007, 29:295-301
    [203] Palmieri G, Giardina P, Bianco C, et al. A novel white laccase from Pleurotus ostreatus [J]. J Biol Chem, 1997, 272:31301-31307
    [204] Garcia T A, Santiago M F, Ulhoa C J. Studies on the Pycnoporus sanguineus CCT-4518 laccase purified by hydrophobic interaction chromatography [J]. Appl Microbiol Biotechnol, 2007, 75:311-318
    [205] Garcia T A, Santiago M F, Ulhoa C J. Properties of laccases produced by Pycnoporus sanguineus induced by 2,5-xylidine [J]. Biotechnol Lett, 2006, 28:633-636
    [206] Schliephake K, Mainwaring D E, Lonergan G T, et al. Transformation and degradation of the disazo dye Chicago Sky Blue by a purified laccase from Pycnoporus cinnabarinus [J]. Enzyme Microb Technol, 2000, 27:100-107
    [207] Eggert C, Temp U, Eriksson K E. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase [J]. Appl Environ Microbiol, 1996, 62:1151-1158
    [208]黄乾明,杨婉身,陈华萍,等.粗毛栓菌诱变菌株SAH-12漆酶的分离纯化及酶学性质研究[J].菌物学报, 2007, 26:539-548
    [209] Zhang H, Zhang. Y., Huang F, et al. Purification and characterization of a thermostable laccase with unique oxidative characteristics from Trametes hirsuta [J]. Biotechnol Lett, 2009, 31:837-843
    [210] Mechichi T, Mhiri N, Sayadi S. Remazol Brilliant Blue R decolourization by the laccase from Trametes trogii [J]. Chemosphere, 2006, 64:998-1005
    [211] Jordaan J, Pletschke B I, Leukes W D. Purification and partial characterization of a thermostable laccase from an unidentified basidiomycete [J]. Enzyme Microb Technol, 2004, 34:635-641
    [212]陈伟钊,刘森林,邢苗.耐热碱性纤维素酶分离纯化及酶学特性研究[J].深圳大学学报理工版, 2007, 24:212-216
    [213]梁艳,黄倢,张培军.白斑综合征病毒(WSSV)提取物中43kDa蛋白来源的MALDI-TOF分析[J].海洋水产研究, 2006, 27:1-6
    [214] Kaushik P, Malik A. Fungal dye decolourization: Recent advances and future potential [J]. Environ Int, 2009, 35:127-141
    [215]范洪波,孙晓娟,吴卫忠.难降解染料废水处理方法的研究进展[J].江苏石油化工学院学报, 2002, 14:61-64
    [216] Fu Y, Viraraghavan T. Fungal decolorization of dye wastewaters: a review [J]. Bioresour Technol, 2001, 79:251-262
    [217] Pereira L, Coelho A V, Viegas C A, et al. Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase [J]. J Biotechnol, 2009, 139:68-77
    [218] Lucas M, Mertens V, Corbisier A M, et al. Synthetic dyes decolourisation by white-rotfungi: Development of original microtitre plate method and screening [J]. Enzyme Microb Technol, 2008, 42:97-106
    [219] Asgher M, Batool S, Bhatti H N, et al. Laccase mediated decolorization of vat dyes by Coriolus versicolor IBL-04 [J]. Int Biodeterior Biodegrad, 2008, 62:465-470
    [220] Chhabra M, Mishra S, Sreekrishnan T R. Laccase/mediator assisted degradation of triarylmethane dyes in a continuous membrane reactor [J]. J Biotechnol, 2009, 143:69-78
    [221]罗小林,詹怀宇,付时雨,等.从黑液中分离小分子酚类化合物作为漆酶的天然介体[J].中国造纸学报, 2008, 23:102-106
    [222] Couto R S, Sanromán M, Gübitz G M. Influence of redox mediators and metal ions on synthetic acid dye decolourization by crude laccase from Trametes hirsuta [J]. Chemosphere, 2005, 58:417-422
    [223] Murugesan K, Nam I-H, Kim Y-M, et al. Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture [J]. Enzyme Microb Technol, 2007, 40:1662-1672
    [224] Jadhav U U, Dawkar V V, Ghodake G S, et al. Biodegradation of Direct Red 5B, a textile dye by newly isolated Comamonas sp. UVS [J]. J Hazard Mater, 2008, 158:507-516
    [225] Elisangela F, Andrea Z, Fabio D G, et al. Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process [J]. Int Biodeterior Biodegrad, 2009, 63:280-288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700