用户名: 密码: 验证码:
地下水磁共振与瞬变电磁联合反演方法及探测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当地层导电性较强时,电阻率信息对磁共振探测的影响将非常大。因此,在磁共振反演解释中必须考虑地下电阻率分布信息。然而,传统磁共振地层含水量反演多采用均匀半空间模型,忽略电阻率分布信息对结果的影响。针对这一问题,本文基于多层电介质中磁共振响应理论,提出MRS与瞬变电磁(TEM)联合反演方法,通过电阻率分布信息对含水量反演过程的实时修正,提高解释结果的准确度。针对标准遗传算法易未成熟收敛而难以得到全局最优解问题,提出自适应遗传(AGA)反演算法,基于繁殖规则,动态调整交叉概率和变异概率,模型数据验证了AGA反演算法的有效性及联合反演对比MRS单独反演的优势。在此基础上,通过仿真分析电阻率分布信息对MRS正反演的影响,同时为便于野外工程应用,对现有磁共振与瞬变电磁联合探测系统性能和结构进行了改进。最后给出了三个野外实验结果和应用实例。论文的主要研究内容和取得的研究成果如下:
     1.研究了地表回线源在层状导电介质中产生的磁场分布规律,推导了层状介质模型磁共振响应表达式。通过不同地层电阻率模型磁共振响应分析,得出100米以下的深层电阻率信息依然会影响磁共振信号的结论。通过对不同浅层电阻率模型的磁共振响应对比分析,得出必须改进瞬变电磁仪器性能,减少探测盲区的结论。
     2.以标准遗传算法为基础,提出了一种自适应遗传反演算法。利用模型参数的最小分辨率及搜索空间确定染色体长度;利用群体中个体离散程度和平均适应度自适应调整个体交叉、变异概率;通过综合考虑个体目标函数值及所在群体的分散程度设计了适应度函数。将AGA反演算法应用于磁共振、瞬变电磁单一数据反演,验证反演算法的有效性。
     3.提出了磁共振与瞬变电磁联合反演方法。详细介绍了正则化反演方法,并给出了一种兼顾反演结果稳定性与算法计算效率的正则化参数自动调整方法。建立了具有光滑模型约束的MRS与TEM联合反演目标函数,依据Archie定律,进一步缩小模型参数搜索空间,降低反演问题的多解性。最后详细设计了基于AGA反演算法的MRS与TEM联合反演方案。联合反演优势在均匀半空间模型、层状模型反演算例中均得以体现。在理论信号中分别加入不同信噪比噪声,反演结果稳定。且MRS-TEM联合反演方法即使在加入10%噪声情况下,结果仍能较真实地反映地下含水单元模型结构,相对于传统MRS单独反演,优势明显。
     4.根据现有地面磁共振与瞬变电磁联合探测系统组成结构,针对磁共振采集信号死区时间长和瞬变电磁发射关断时间慢等问题,在磁共振系统发射单元采用“Q-Switch”技术,缩短了探测死区时间,提高信噪比。研究了瞬变电磁半谐振吸收电路,实现了发射电流的快速关断,降低了瞬变电磁浅部探测盲区。
     5.本文研究的磁共振与瞬变电磁联合反演方法在内蒙古正镶白旗水源地、吉林长春烧锅实验场和辽宁绥中沿海地区海水入侵探测工程中得到应用,实现了对地下水的定量定位勘查。联合反演得到的地层结构和含水单元结构可实现相互验证,且探测结果均得到了钻探资料的支持,充分验证了本文研究方法的准确性和实际意义。
     本文创新性工作主要体现为如下几个方面:
     1.提出了磁共振与瞬变电磁联合反演方法,构建了加权联合问题目标函数,解决了以均匀半空间为模型所导致解释精度低的问题。
     2.提出了一种适用于联合反演的自适应遗传算法,解决了标准遗传算法易陷入局部极值的问题,显著地提高了反演结果的准确度。
     3.对联用仪中的Q-switch、半谐振吸收方法进行了改进设计,解决了死区和关断时间长对反演解释的影响。
When the underground is conductive, the electrical conductivity will have a great effecton the Magnetic Resonance Sounding (MRS) signal and can not be ignored in the inversion.The traditional interpretation schemes of MRS used to be limited to the homogeneoushalf-space and take no account of the resistivity in the inversion, in turn resulting in theambiguous aquifer boundaries. Based on the MRS theory in the multi-layer earth model, wedeveloped a new scheme for joint inversion of MRS data and TransientElectromagnetic(TEM) data. By correcting MRS inversion with resistivity in real time, theaccuracy of inversion result was improved greatly. The Adaptive Genetic Algorithm(AGA)was applied. By adaptively adjusting the probability of crossover and mutation, AGA has notonly avoided the premature convergence of GA but also has obtained the global optimalsolution. On this basis, by simulating the effect of conductivity in forward and inversion ofMRS and for convenience in field experiment,we improved the performance and structureof MRS-TEM associated detection system. Finally three field experiments and applicationexamples are given. The main research contents and results are as follows:
     1. We study the magnetic field distribution produced by the surface gyrus line in layeredconductive medium and derive the magnetic resonance response expression of a layeredmedium model. By analyzing the responses of different layered resistivity models, aconclusion can be obtained that the resistivity information below100metres will stillinfluence the magnetic resonance signal. Among numerous geophysical techniques,MRS-TEM associated detection is the best solution. Comparing the magnetic resonanceresponses of different shallow resistivity models, it is concluded that the measureimproving TEM instrument performance must be taken to reduce detection blind area.
     2. In view of the standard genetic algorithm (GA),the adaptive genetic inversion algorithmwas put forward. According to the minimum resolution and the search space of modelparameters to determine the length of the chromosome; According to the individualdispersion and the average fitness to adaptively adjust the crossover and mutationprobability. By considering the value of the individual objective fuction and thedispersion of the group, the fitness function was designed. Using the AGA in the inversion of MRS and TEM data respectively, to vertify the effeciency of the algorithm.
     3. A method of joint inversion based on MRS–TEM data was put forward, which introduce the regularization inversion in detail and presents a parameter automatic adjustment method combining the stability of inversion results with computational efficiency. An objective function of MRS and TEM joint inversion is established with smooth model constraints and further narrows the searching space and reduces the uncertainty of inverse problem according to Archie's law. At last, the MRS and TEM joint inversion scheme are designed in detail based on the AGA algorithm.The advantages of joint inversion is reflected in uniform half space models and layered models. Moreover, mixing noise of different SNR in the theoretical signal, the inversion results is still stable and reflect underground aquifer structure, even in the case of adding10%noise. Compared with the traditional MRS single inversion, the advantage is obvious.
     4. Considering the existing MRS-TEM associated system structure and aiming at the longdead-time of MRS and long turn-off time of TEM, a 'Q-Switch' technique was used inMRS transmitting system to shorten the dead-time and improve the signal-to-noise ratio,a half-resonant&absorbing circuit was realized to shorten the TEM turn-off time anddecrease the TEM blind area.
     5. Joint inversion of MRS and TEM in this paper has been applied in the field to realizethe quantitative and qualitative imaging of groundwater, like BaiQi, Changchun, andLiaoning. The formation structure and the water unit structure obtained by the jointinversion can reach mutual authentication and are also supported by drilling data, bywhich the accuracy and the practical significance of the inversion method has been fullyverified.
     The main innovation lies as follow:
     By analyzing the impact of different resistivity distribution on MRS response, wefound that the resistivity information in the depths will still influence the MRSsignal. So I proposed that MRS and TEM associated detection method is the bestsolution among numerous geophysical techniques.
     The adaptive genetic inversion algorithm(AGA) I proposed can solve the slowconvergence speed and easy to fall into local optimal solution problem of thestandard genetic algorithm (GA). Use the AGA as the inversion algrithom ofJoint inversion of MRS and TEM for the first time, both the theoretical and fielddata vertified the effeciency of the algorithm.
     Joint inversion of MRS and TEM data was proposed. According to characteristicsof MRS and TEM response, the normalized objective function of joint inversionwas established, and the mutual constraints between the model parameters wererealized based on archie formula. By correcting the inversion process in real timeusing the resistivity distribution information, the accuracy of MRS interpretationresults can be improved greatly.
     The MRS and TEM detection system was improved by making the effect ofresistivity distribution on MRS response clear. A half-resonant&absorbingcircuit was realized to shorten the TEM turn-off time and decrease the TEM blindarea. A 'Q-Switch' technique was used in MRS transmitting system to shortenthe dead-time and improve the signal-to-noise ratio.
引文
[1]中华人民共和国水利部.全国水利发展第十个五年计划和2010年规划.2001,8.
    [2]潘玉玲,张昌达.地面核磁共振找水理论和方法[M].武汉:中国地质大学出版社,2000.
    [3]孙建中,孙存谱.核磁共振教程[M].合肥:中国科学技术大学出版社,1996.
    [4] Yaramanci U. New technologies in ground water exploration[J]. SurfaceNuclear Magnetic Resonance, Geologica Acta,2004,2(2):109~120.
    [5]翁爱华,王雪秋,刘国兴等.导电性影响的地面核磁共振反演[J].地球物理学报,2007,50(3):890~896.
    [6] Shushakov O A. Groundwater NMR in conductive water[J].Geophysics,1996,61(4):998~1006.
    [7] Weichman P B, Lavely E M, Ritzwoller M H. Theory of surface nuclearmagnetic resonance with applications to geophysical imagingproblems[J].Phys.Rev.E,2000,62:1290~1312.
    [8] Trushkin D V,Shushakov O A,Legchenko A V.Surface NMR applied to anelectro-conductive medium[J].Geophysical Prospecting,1995,43(4):623~633.
    [9] Valla P, Legchenko A. One-dimensional modelling for proton magneticresonance sounding measurements over an electrically conductivemedium[J]. Journal of Applied Geophysics,2002,50(2):217~229.
    [10]翁爱华,高丽娟.地面核磁共振导电性的等效影响[J].浙江大学学报,2008,35(1):105~110.
    [11]翁爱华,李舟波,王雪秋.层状导电介质中地面核磁共振响应特征理论研究[J].地球物理学报,2004,47(1):157~163.
    [12]刘道涵,胡祥云,李耀国等.基于椭圆极化的核磁共振找水理论研究[J].应用地球物理学报,2012,9(4):365~377.
    [13]孙淑琴,林君,张世雄.导电性对地面核磁共振信号的影响研究[J].物探与化探计算技术,2005,2:78~81.
    [14] Lars Nielsen.Mapping of the freshwater lens in a coastal aquifer on theKeta Barrier (Ghana) by transient electromagnetic soundings[J].Journalof Applied Geophysics,2007,62:1~15.
    [15] Martina Braun,Ugur Yaramanci.1D inversion of resistivity and watercontent of magnetic resonance sounding[C].Proceedings of Near Surface2006-12th European Meeting of Environmental and Engineering Geophysics,Helsinki,Finland,2006
    [16] Anatoly Legchenko,Michael Ezersky.Joint use of TEM and MRS methods ina complex geological setting[J].C. R. Geoscience,2009,341:908~917.
    [17] Lin J, Lin T, Ji Y, Chen Z, Zhao Y, Li H. Non-invasive characterizationof water-bearing strata using a combined geophysical surveys[J]. Journalof applied geophysics,2013.(http://www.sciencedirect.com/science/article/pii/S0926985113000281)
    [18] Lines L R,Schultz A K, Treitel S.Cooperative inversion of geophysicaldata[J].Geophysics,1988,53(1):8~20.
    [19]杨文采.评地球物理反演的发展趋向[J].地学前缘,2002,9(4):389~396.
    [20]陈华根,李嘉虓,吴健生,于鹏. MT-重力模拟退火联合反演研究[J].地球物理学报,2012,55(2):663~670.
    [21] Bernard J. Instrument and field work to measure a Magnetic ResonanceSounding with NUMIS systems[C].3rd Magnetic Resonance SoundingInternational Workshop Madrid, Spain,2006.
    [22] Radic T. Nuclear Magnetic Resonance (NMR) Instrumentation. SNMR MIDI.Radic Research. www.radic-research.de,2007.
    [23] David O.Walsh.Multi-channel surface NMR instrumentation and softwarefor1D/2D groundwater investigations[J]. Journal of Applied Geophysics,2008,66:140~150.
    [24]林君,段清明,王应吉等.核磁共振找水仪原理与应用[M].北京:科学出版社,2010.
    [25]尚新磊.TEM-MRS联用地下水探测关键技术研究[D].长春:吉林大学,2010.
    [26]林君,段清明,王应吉等.核磁共振与瞬变电磁联用仪及其方法.中国:2006100172268[P],2006.
    [27]蒋川东.核磁共振2D/3D地下水成像方法及其阵列式地面探测系统研究[D].长春:吉林大学,2013
    [28]戴苗,胡祥云,吴海波等.地面核磁共振找水反演[J].地球物理学报,2008,51(6):1876~1882.
    [29] Legchenko A, Shushakov O. Inversion of surface NMR data[J]. Geophysics,1998.
    [30] O. Mohnke,U. Yaramanci.Smooth and block inversion of surface NMRamplitudes and decay times using simulated annealing[J].Journal ofApplied Geophysics,2002,50:163~177.
    [31] Weichman P B, Lavely E M, Ritzwoller M. Surface nuclear magneticresonance imaging of large systems[J]. Physical Review Letters1999,82:4102~4105.
    [32] Weichman P B, Lavely E M, Ritzwoller M. Theory of surface nuclear magneticresonance with applications to geophysical imaging problems[J].Physical Review E2000,62:1290~1312.
    [33] Hertrich M, Braun M, Yaramanci U. Magnetic resonance soundings withseparated transmitter and receiver loops[J]. Near Surface Geophysics2005,3:131~144.
    [34] Hertrich M, Braun M, Günther T, Green A G, Yaramanci U. Surface NuclearMagnetic Resonance Tomography[J]. IEEE Transactions on Geoscience andRemote Sensing2007,45:3752~3759.
    [35] Hertrich M,Yaramanci U. Joint inversion of Surface Nuclear MagneticResonance and Vertical Electrical Sounding[J].Journal of AppliedGeophysics2002,50:179~191.
    [36] Martina Braun,Ugur Yaramanci.Inversions of Surface-NMR signals usingcomplex kernels[C].Proceedings of the9th EEGS conference,Prague/CzechRepublic,2003
    [37] Martina Braun,Ugur Yaramanci.Inversion of resistivity in MagneticResonance Sounding[J].Journal of Applied Geophysics,2008,66:151~164.
    [38]牛之链.时间域电磁法原理[M].长沙:中南大学出版社,2007.
    [39]蒋邦远.实用近区磁源瞬变电磁法勘探[M].北京:地质出版社,1998.
    [40]米萨克N.纳比吉安主编.勘察地球物理电磁法(第一卷)[M].赵经祥,王艳君译.北京:地质出版社,1992.
    [41]李貅.瞬变电磁测深的理论与应用[M].陕西科学技术出版社,2002.
    [42]吕国印.瞬变电磁法的现状与发展[J].物探化探,2007,增刊:111~115.
    [43]冯慈章,马西奎.工程电磁场导论[M].北京:高等教育出版社,2000.
    [44]嵇艳鞠.浅层高分辨率全程瞬变电磁系统中全程二次场提取技术研究[D].长春:吉林大学,2004.
    [45]陈曙东.瞬变电磁接收系统的研究[D].长春:吉林大学,2009.
    [46]闫述,石显新,陈明生.瞬变电磁法的探测深度问题[J].地球物理学报,2009,52(6):1583~1591.
    [47]石显新,闫述,傅君眉等.瞬变电磁法中心回线装置资料解释方法的改进[J].地球物理学报,2009,52(7):1931~1936.
    [48] A. P. Raiche.Transient electromagnetic field computations for polygonalloops on layered earths[J].GEOPHYSICS,1987,52(6):785~793.
    [49]刘桂芬.回线源层状大地航空瞬变电磁场的理论计算[D].吉林大学硕士学位论文,2008.
    [50]张伟,王绪本,谭庆炎.汉克尔变换的数值计算与精度的对比[J].物探与化探,2010,43(5):753~755.
    [51] F. N. Kong. Hankel transform filters for dipole antenna radiation in aconductive medium[J].Geophysical prospecting,2007,55(1):83~89.
    [52]罗延钟,昌彦君.G-S变换的快速算法[J].地球物理学报,2000,43(5):684~690.
    [53]尧玉燕.浅谈瞬变电磁法的发展[J].数理与化学研究,2013,5:219.
    [54]陈载林,黄临平,陈玉梁.我国瞬变电磁法应用综述[J].铀矿地质,2010,26(1):51~54.
    [55]许洋铖.全波形时间域电磁接收系统及分辨力研究[D].吉林大学博士学位论文,2011.
    [56]朴化荣.电磁测深法原理[M].北京:地质出版社,1990.
    [57]方文藻.瞬变电磁测深法原理[M].西安:西北工业大学出版社,1993.
    [58]史明娟,罗延忠.瞬变电磁法二、三维正演理论发展[J].国外地质勘探技术,1996,2:1~4.
    [59]李建慧,朱自强,鲁光银,曾思红.回线源瞬变电磁法的三维正演研究[J].地球物理学进展,2013,2:754~765.
    [60]邓晓红.瞬变电磁三维异常特征反演与瞬变场可视化[M].北京:地质出版社,2009.
    [61]郑圣谈,曾昭发,刘四新等.宽带高频电磁场数据反演方法研究[J].地球物理学报,2008,51(1):266~272.
    [62] M. Podder.A rectangular loop source of current on multilayeredearth[J].GEOPHYSICS,1983,48(1):107~109
    [63] A.P.Raiche, D.L.B.Jupp, H.Rutter, K.Vozoff.The joint use of coincidentloop reansient electromagnetic and Schlumberger sounding to resolvelayered structures[J]. GEOPHYSICS,1985,50(10):1618~1627
    [64] Wang,T.,G.W.Hohmann.A finite-difference time domain solution forthree-dimensional electromagnetic modeling[J].GEOPHYSICS,2005,58(6):797~809.
    [65] C.T.Barnett.Simple inversion of time-domain electromagnetic data[J].GEOPHYSICS,1984,49(7):925~933.
    [66] Z.Zhang and J.Xiao. Inversions of surface and borehole data fromlarge-loop transient electromagnetic system over a1-D earth[J].GEOPHYSICS,2001,66(4):1090~1096.
    [67]翁爱华,李舟波,王雪秋.地表大回线源在任意层状介质中产生磁场的计算[J].物探化探计算技术,2000,22(3):245~249.
    [68]蒋川东,林君,段清明等.二维阵列线圈核磁共振地下水探测理论研究[J].地球物理学报,2011,54(11):2973~2983.
    [69] Weng A H,Xu S Z,Wang X Q.On inversion method of Surface Nuclear Magneticresonance data[C].In:Proceedings of the2nd International Conference onEnvironmental and Engineering Geophysics,Wuhan,China,2006,456~460.
    [70]翁爱华.核磁共振测井基础理论与实验研究[D].吉林大学博士学位论文,2011.
    [71]李帝铨,王光杰,底青云等.基于遗传算法的CSAMT最小构造反演[J].地球物理学报,2008,51(4):1234~1245.
    [72]何飞,张效信等.遗传算法反演地球等离子体层离子密度分布[J].地球物理学报,2012,55(1):29~35.
    [73]师学明,王家映,张胜业,胡祥云.多尺度逐次逼近遗传算法反演大地电磁资料[J].地球物理学报,2000,43(1):122~130.
    [74]尹耀田,魏文博,叶高峰,金胜,董浩.基于遗传算法的大地电磁阻抗张量分解方法研究[J].地球物理学报,2012,55(2):671~682.
    [75]赖玉霞,刘建平,杨国兴.基于遗传算法的K均值聚类分析[J].计算机工程,2008,34(20):200~202.
    [76]雷英杰,张善文,李续武等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [77]罗红明,王家映,师学明,朱培民.量子遗传算法[J].工程地球物理学报,2008,5(6):635~642.
    [78]彭淼.大地电磁与天然地震数据联合反演研究[M].北京:中国地质大学,2012.
    [79]姚磊华.遗传算法和高斯牛顿法联合反演地下水渗流模型参数[J].岩土工程学报,2005,27(8):885~890.
    [80]童孝忠.大地电磁测深有限单元法正演与混合遗传算法正则化反演研究[D].长沙:中南大学,2008.
    [81]张文权,翁爱华.地面正则化核磁共振反演方法研究[J].吉林大学学报(地球科学版),2007,37(4):809~813.
    [82] Francisco J.Esparza, Enrique Gomez-Trevino.1-D inversion of resistityand induced polarization data for the least number of layers[J].GEOPHYSICS,1997,62(6):1724~1729.
    [83]陈小斌,赵国泽.大地电磁自适应正则化反演算法[J].地球物理学报,2005,48(4):937~945.
    [84]王乐洋.一种确定联合反演中相对权比的两步法[J].测绘学报,2012,41(1):19~24.
    [85]孙建国.阿尔奇(Archie)公式:提出背景与早期争论[J].地球物理学进展,2007,22(2):472~486.
    [86]罗娜.阿尔奇公式数值分析及其意义[J].石油学报,2007,28(1):111~114.
    [87]李秋实,周荣安,张金功,吴汉宁,李学森.阿尔奇公式与储层孔隙结构的关系[J].石油与天然地质,2002,23(4):364~367.
    [88]张振城,孙建孟,马建海,霍玉雁.阿尔奇公式中a,m值对饱和度计算结果的影响[J].石油大学学报,2004,28(6):27~34.
    [89]蒋川东.核磁共振地下水探测系统的数据处理软件设计与应用[D].长春:吉林大学,2009
    [90]刘桐素.核磁共振找水仪科研样机数据预处理软件设计.长春:吉林大学,2007.
    [91]谭国贞,付志红,周雒维,罗强.瞬变电磁发射机控制系统设计[J].电测与仪表,2006,483(43):8~12.
    [92]付志红,周雒维,苏向丰.瞬变电磁发射机中的电流脉冲整形技术[J].电力电子技术,2006,40(1):108~111.
    [93]付志红,周雒维.瞬变电磁法高动态电流陡脉冲发射电路研究[J].中国电机工程学报,2008,28(33):44~48.
    [94]周逢道,林君,朱凯光,周国华,刘长胜.瞬变电磁探测发射电流波形记录单元设计[J].吉林大学学报(工学版),2009,39(2):541~545.
    [95]荣亮亮,王中兴,林君,段清明,尚新磊.核磁共振发射波形质量评估及影响因素分析[J].仪器仪表学报,2010,31(2):442~448.
    [96]姜艳秋,王应吉,段清明等.地面核磁共振找水仪大功率发射机的研制[J].吉林大学学报(信息科学版),2007,25(3):268~272.
    [97]林君,荣亮亮,段清明,王中兴,王应吉,尚新磊,李晓朋. IGBT桥路及驱动保护电路检测装置:中国,200810051520X[P],2008.
    [98]张小华,林君,王应吉,孙锋.地面核磁共振(NMR)找水仪发射机的研制[J].仪器仪表学报,2006,27(7):689~692.
    [99]荣亮亮.核磁共振多匝线圈找水技术研究[D].长春:吉林大学,2009.
    [100]何峥嵘.运算放大器电路的噪声分析和设计[J].微电子学,2006,25(2):23~26.
    [101]王忠,林君,吴国强. TEM接收机低噪声抗饱和前放电路设计[J].吉林大学学报(信息科学版),2002,20(4):1~4.
    [102]党瑞荣,赵文涛,任志平.瞬变电磁法中接收线圈过渡过程分析[J].石油仪器,2009,23(2):7~9.
    [103]林君,荣亮亮,王中兴,王应吉,段清明,贾晓晨.地面核磁共振找水仪器系统检测、标定装置及检测方法:中国,2008100505797[P],2010.
    [104]潘玉玲,Bernard J,李振宇,熊玉珍,甘涛.轻便新型核磁共振找水仪及其在堤坝监测中的应用[J].大坝与安全,2004(1):27~29.
    [105]王应吉,林君,荣亮亮,高东旭,贾晓晨.地面核磁共振找水仪放大器设计[J].仪器仪表学报,2008,29(8):1627~1632.
    [106]孙天财.发射电流波形对瞬变电磁测量结果影响及校正的研究[D].重庆大学,2008.
    [107]白登海.瞬变电磁法中两种关断电流对响应函数的影响及其应对策略[J].地震地质,2001,23(2):245~251.
    [108]高效曾.核磁共振孔隙度和岩性有关[J].测井技术,1998,22(4):295~298.
    [109] Dlugosch R., Mueller-Petke M.,, Günther T.,, Costabel S., Yaramanci U.Assessment of the potential of a new generation of surface NMRinstruments[J]. Near Surface Geophysics2011,9:89~102.
    [110]王中兴.地面核磁共振找水仪关键技术的研究[D].吉林大学博士论文,2009.
    [111]杨克俊.电磁兼容原理与设计技术[M].北京:人民邮电出版社,2004.
    [112] Anatoly Legchenko.MRS measurements and inversion in presence of EMnoise[J].Boletín Geológicoy Minero,2007,118(3):489~508.
    [113]张昌达,潘玉玲.关于地面核磁共振方法资料岩石物理学解释的一些见解[J].工程地球物理学报,2006,3(1):1~8
    [114]邵跃章,张琦.辽宁省绥中县地质灾害发育特征及成因分析[J].化工矿产地质,2007,29(4):227~231.
    [115]姜嘉礼.葫芦岛市滨海地区海水入侵研究[J].水文,2002,22(2):27~31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700