用户名: 密码: 验证码:
淬火—分配处理60Si2Mn钢的热稳定性与微观组织均匀性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淬火-分配工艺是2003年由Speer等提出的钢的热处理工艺,该工艺能获得马氏体+残余奥氏体复相组织,从而在提高钢的强度的同时保持良好的塑性(韧性)。根据淬火-分配工艺对材料的要求,本文选用商品60Si2Mn钢作为试验材料,利用空气电阻炉-等温油浴-空气电阻炉作为热处理设备,探索淬火-分配工艺在非TRIP钢中的应用。对试验材料进行淬火-分配处理后再进行深冷处理,研究组织中残余奥氏体的热稳定性。试样采用大尺寸(φ10×20的圆柱),利用透射电子显微镜(TEM),场发射扫描电镜(FE-SEM), X射线衍射仪(XRD),金相显微镜结合显微硬度计进行组织表征并研究其组织均匀性,以期使淬火-分配工艺在结构件中获得应用。
     结果表明,对于60Si2Mn钢,利用空气电阻炉-等温油浴-空气电阻炉系列设备可实现淬火-分配工艺,获得预期组织。经多次试验得到较理想的热处理工艺参数为880℃奥氏体化5min,220℃淬火10s,400℃分配处理30s,利用该参数得到钢中残余奥氏体含量最高为13.7%(体积分数)。
     淬火-分配处理后60Si2Mn钢中的组织为马氏体+残余奥氏体,部分马氏体具有回火特征。圆柱试样横截面,自圆心至边缘扫描电镜照片显示微观组织变化不大,显微硬度也仅有微量降低,表明大试样经淬火-分配处理后组织均匀。
     淬火-分配处理后利用酒精-液氮混合溶液在-30℃~-196℃进行不同时间深冷,然后用XRD测残余奥氏体含量并进行硬度测量。结果显示经-30℃分别保温60s和300s,-50℃分别保温60s和300s后,残余奥氏体分别为13.0%,10.9%,9.2%和8.3%;-80℃和液氮中深冷处理后XRD结果中残余奥氏体量太少无法测出,但属于面心里方铁的(111)γ和(200)γ晶面衍射峰仍较明显。表明淬火-分配处理后60Si2Mn钢中残余奥氏体热稳定性良好,可应用于-80℃以上的低温环境。
Quenching and partitioning process is a heat treatment for steels proposed by J G Speer et al in 2003. In the present paper, commercial 60Si2Mn steel, based on the requirement on the steels for the quenching and partitioning process, is adopted as experimental material, and a facilities family of air resistance furnace-oil bath-air resistance furnace is used, to study the application of Q-P process in this kind of alloy structural steels, rather than TRIP steels. Cryogenic treatments at different temperatures are performed to assess the thermal stability of retained austenite. Samples of bigger size (Φ10×20)are designed, and microstructures and its homogeneity are analyzed using transmission electron microscope(TEM), scanning electron microscope(SEM), X-ray diffraction(XRD), and optical microscope combined with hardness, aiming the application in structural members.
     The results show that the Q-P process could be realized using a range of facilities of air electric furnace-oil bath-air electric furnace, rather than salt baths. Optimum process parameters, austenitizing at 880℃for 900s followed by quenching at 220℃for 10s and partitioning at 400℃for 30s, were selected based on repeated experiments. More than 13%(volume fraction) retained austenite combined were got in steels.
     Multiphase microstructures of lath martensite, with thin films of residual austenite between martenite laths and block shape of retained austenite were achieved in the Q-P treated 60Si2Mn steel. There is no obvious change in martensite morphology while a decreasing in martensite size from the center to the edge in the microstructures of different locations of the 1/2 height cross section of the sample under FE-SEM. The homogeneity of microstructures is uniform, namely.
     Some specimens were cryogenic treated at -196℃~30℃for 60-300s. Mixtures of liquid nitrogen and ethyl alcohol were used for cryogenic treatment. The volume fraction of retained austenite in samples subjected only Q-P process and cryogenically treated under -30℃for 60s, in -30℃for 300s and in -50℃for 60s followed with Q-P process are determined as 13.0%,10.9%,9.2% and 8.3%, respectively. After cryogenic treatment under -80℃and -196℃, the volume fraction of austenite in samples are too low to be determined. However, diffraction peaks of (111)γand (200)γcan be still observed. The result reveals that retained austenite in 60Si2Mn grade steel after Q-P heat treatment can be stabilized to -80℃, indicating the possibility he possibility of application of Q-P processed steels in low-temperature environment.
引文
1.纪云航,冯伟骏,王利,薛小怀.新一代高强度淬火分配钢的研究和应用.钢铁研究学报.2008,20(12):1-5.
    2.徐祖耀.我国应尽早发展高强度钢.中国工程院化工、冶金与材料工程学部第六届学术会议特邀报告,薛群基主编.会议论文集.北京:化学工业出版社,2007:403-406.
    3. Krauss G, Repas P E, Fundamentals of Aging and Tempering in Bainitic and Martensitic Steel Products, ISS-AIME,Warrendale, PA, USA,1992.
    4. Zhong N, Wang X D, Wang L, Rong Y H. Enhancement of the mechanical properties of a Nb-microalloyed advancedhigh-strength steel treated by quenching-partitioning-tempering process. Materials Science and Engineering. G Model MSA-24652:6.
    5. Edmonds D V, Hea K, Rizzo F C, De Cooman B C, Matlock D K, Speer J G. Quenching and partitioning martensite-A novel steel heat treatment. Materials Science and Engineering A 438-440 (2006):25-34.
    6. John G Speer, Fernando C Rizzo Assuncao, David K Matlock, David V Edmonds.The "Quenching and Partitioning Process":Background and Recent Progress. Materials Research,2005,8 (4):417-423.
    7. Speer J, Matlock D K, De Cooman B C, Schroth J G.Carbon partitioning into austenite after martensitetransformation. Acta Materialia,2003,51:2611-2622.
    8. John G Speer,David V Edmonds,Fernando C Rizzo,David K Matlock. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of thebainite transformation. Current Opinion in Solid State and Materials Science 2004,8:219-237.
    9. Clarke A J, Speer J G, Miller M K, Hackenberg R E, Edmonds D V, Matlock D K, Rizzo F C, Clarke K D, Moor E De. Carbon partitioning to austenite from martensite or bainite duringthe quench and partition (Q-P) process:A critical assessment. Acta Materialia,2008,56:16-22.
    10.徐祖耀.钢热处理的新工艺[J].热处理,2007,22(1):1-11.
    11. Lu K.,Lu L.and Suresh S.Strengthening materials by engineering coherent internal boundaries at the nanoscale.Science.2009,234:349-352.
    12.齐俊杰,黄运华,张跃.微合金化钢.北京:冶金工业出版社.2006.
    13.科恩M.钢的微合金化及控制扎制.北京:冶金工业出版社.1990.
    14. Courtney T.H.,Mechanical behavior of materials.Boston:McGraw-Hill.2000.
    15.哈宽富.金属力学性质的微观理论.北京:科学出版社.1983.
    16.徐祖耀.马氏体相变与马氏体,第二版.北京:科学出版社.1999.
    17. Morris J.W.Jr.,Lee C.S.and Guo Z.The nature and consequences of coherenttransformations in steel.ISIJ International.2003,43:410-419.
    18. Guo Z.,Lee C.S, Morris J.W.Jr.On coherent transformations in steel.Acta Materialia.2004,52:5511-5518.
    19. Guo Z, Morris J.W.Jr.Martensite variants generated by the mechanical transformation of ecipitated interlath austenite.ScriptaMaterialia.2005,53:933-936
    20. Matsumura O.,Sakuma Y.,and Takechi H.Enhancement of elongation by retained austenitein intercritical annealed 0.4C-1.5Si-0.8Mn Steel.Transactions of the Iron and Steel Institute of Japan.1987,27:570-579.
    21.Hanzaki A.Z.,Hodgson P.D.and Yue S.Retained austenite characteristics in thermomechanically processed Si-Mn transformation-induced plastitity steels.Metallurgical andMaterials Transactions A.1997,28:2405-2414.
    22. Barbe L.,De Meyer M.and De Cooman B.C.Determination of the Ms(?) temperaturedispersed phase TRIP-aided steels. International Conference on TRIP-Aided High StrengthFerrous Alloys.Aachen:WMG.2001:65-69.
    23. Bhadeshia H.K.D.H.TRIP-Assisted Steels ISIJ international.2002,42:1059-1060.
    24. Sakuma Y.,Matsumura O.and Takechi H.Metall.Metallurgical and Materials TransactionsA.1991,22:489-498.
    25. Rashid M.S.High-strength low-alloy steels.Science.1980,208:862-869.
    26. Matlock D.K.and Speer J.G..Design considerations for the next generation of advanced highstrengths sheet steels.Proceedings:ICASS The 3rd International Conference on AdvancedStructural Steels.2006:774-781.
    27. Technical Transfer Dispatch,ULSAB-AVC Body Structure Materials, ULSAB -AVC Consortium,Aooebdux Ⅲ Rev'd 6 June 2001:1-15.
    28. Mintz,B微合金化低碳高强度钢.北京:冶金工业出版社.1982.
    29. Elsen P.and Hougardy H.P.Mechanism of bake-hardening.Steel Research. 1993,64:431-436.
    30. Kozeschnik E.and Buchmayr B.A contribution to the increase in yield strength during the bake hardening process.Steel Research.1997,68:224-230.
    31.Soenen B.,De A.K.,Vandeputte and De Cooman S.B.C.Competition between grainboundary segregation and Cottrell atmosphere formation during static strain aging in ultra lowcarbon bake hardening steels.Acta Materialia.2004,52:3483-3492.
    32. Kitano F.,Urabe T.,Fujita T.and et al.New type of IF high strength steel with superior-secondary work embrittlement,ISIJ International.2001,41:1402-1410.
    33. Abthony Jones D.Review of the development and use of ULC steel manufture by corus group(Wales)and current challenges for further development.IF Steels 2000 Proceeds.2000,55.
    34. Takechi H.Metallurgical aspects on interstitial free sheet steel from industry viewpoints.ISIJ International.1994,34(1):1-8.
    35. Rodrigues P.C.M.,Pereloma E.V.and Santos D.B.Mechanical properities of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling.Materials Science andEngineering A.2000,283:136-143.
    36. Hong S.G.,Kang K.B.and Park C.G.Strain-induced precipitation of NbC in Nb and Nb-Ti microalloyed HSLA steels.Scripta Materialia.2002,46(2):163-168.
    37. Roucoules C.,Yue S.and Jonas J.J.Effect of alloying elements on metadynamic recrystallization in HSLA steels,Metallurgical and Materials Transactions A.1995,26:181-190.
    38. Davies R.G.The deformation behavior of a vanadium-strengthened dual phase steel.Metallurgical Transactions A.1978,9:41-52.
    39. Davies R.G.Influence of martensite composition and content on the properties of dual phase steels.Metallurgical Transactions A.1978,9:671-679.
    40. Huper T.,Endo S.,Ishikawa N.and Osawa K.Effect of volume fraction of constituent phases on the stress-strain relationship of dual phase steels.ISIJ International.1999,39:288-294.
    41. Son Y.I.,Lee Y.K.,Park K.T.,Lee C.S.and Shin D.H.Ultrafine grained ferrite-martensite dual phase steels fabricated via equal channel angular pressing: Microstructure and tensile properties.Acta Materialia.2005,53:3125-3134.
    42. Koo J.Y.,Young M.J.and Thomas G.On the law of mixtures in dual-phase steels.Metallurgical Transactions A,1980,11:842-843.
    43. Tomita Y.and Okabayashi K.Tensile stress-strain analysis of cold worked metals and steels and dual-phase steels.Metallurgical Transactions A,1984,16:865-872.
    44. Mileiko S.T.The tensile strength and ductility of continuous fiber composites. Journal of Materials Science,1969,4:974-977.
    45. Cai X.L.,Reed A.J.G.and Owen W.S.The development of some dual-phase steel structures from different starting microstructures.Metallurgical Transactions A,1984,16:543-557.
    46. Sauveur A.,What is a steel?Another answer.Iron Age.1924,113:581-583.
    47. Zackay V.F.,Parker E.R.,Fahr D.and Bush R.The enhancement of ductility on high strength steels.Trans.ASM,1967,60:252-259.
    48. Matsumura O.,Sakuma Y.and Takechi H.Enhancement of elongation by retained austenite in intercritical annealed 0.4C-1.5Si-0.8Mn steel.Trans.ISIJ,1987, 27:570-579.
    49. Sugimoto K.,Kobayashi M.and Hashimoto S.Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel.Metallurgical Transactions A.1992,23:3084-3091.
    50. Sakuma,Y.,Matsumura,O.and Takechi,H.Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions.Metallurgical Transactions A.1991,22:489-498.
    51. Taleb L.and Sidoroff F.A micromechanical modeling of the Greenwood-Johnson mechanism in transformation induced plasticity.International Journal of Plasticity.2003,19:1821-1842.
    52. Jacques P.J.Transformation-induced plasticity for high strength formable steels. Current Opinion in Solid State and Materials Science.2004,8:259-265.
    53. Zaefferer S.,Ohlert J.and Bleck W.A study of microstructure,transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel.Acta Materialia.2004,52:2765-2778.
    54. Sugimoto K.,Masahiro M.,Kobayashi M.and H.Shirasawa.,Effects of second phase morphology on retained austenite morphology and tensile properties in a TRIP-aided dual phase steel sheet.ISIJ International.1993,33:775-782.
    55. Tomita Y.and Okabayashi K.Improvement in lower temperature mechanical properties of 0.40PctC2Ni2Cr2Mo ultrahigh strength steel with the second phase lower bainite.Metallurgical Transactions A.1983,14:484-492.
    56. Tomita Y.and Okawa T.Effect of modified heat treatment on mechanical properties of 300M steel.Materials Science and Technology.1995,11(3):245-251.
    57.方鸿生,郑燕康,周欣.中碳贝氏体/马氏体复相组织强韧性的研究.金属热处理学报.1986,7(1):10-18.
    58. Fang H.S.,Liu D.Y.,Chang K.D.,and et al.Microstructure and properties of 1500Mpa economical bainite/martensite duplex phase steel.Journal of Iron and Steel Research.2001,13(3):31-36.
    59. Sessler.J.G.Aerospace structural metals handbook.New York:Syracuse University Press.1964.
    60. Pickering F.B.Physical Metallurgy and the Design of Steels.London:Applied Science Publishers.1978.
    61.张少棠.钢铁材料手册.第2卷,低合金高强度钢.北京:中国标准出版社.2001.
    62. Tomita Y.Development of fracture toughness of ultrahigh strength,medium carbon,low alloy steels for aerospace applications.International Materials Reviews.2000,45:27-37.
    63. Krauss,G.Deformation and fracture in martensitic carbon steels tempered at low temperatures.Metallurgical and Materials Transactions A.2001,32:861-877.
    64. Pokrovskaya,N.G.,Petrakov A.F.and Shal'kevich A.B.Modern high-strength structural steels for aircraft engineering.Metal Science and Heat Treatment.2002,44:520-523.
    65. Pokrovskaya,N.G.,Petrakov A.F.and Shal'kevich A.B.Modern high-strength structural steels for workpieces of aviation engineering.Metallovedenie Termicheskaya Obrabotka Metallov.2002.23-26.
    66. Sha W.,Cerezo A.and Smith G.D.W.Phase chemistry and precipitation reactions in maraging steels:Part II.Co-free T-300 steel.Metallurgical Transactions A,1993,24:1233-1239.
    67. Machmeier P.,Matuszewski T.,Jones R.,and et al.Effect of chromium additions on the mechanical and physical properties and microstructure of Fe-Co-Ni-Cr-Mo-C ultra-high strength steel:Part Ⅰ.Journal of Materials Engineering and Performance.1997,6:279-288.
    68. Qian C.,Duan Z.,Geng P.,and et al.Effect of alloying elements on the phase transformation for secondary-hardening martensite steels enriched Co and Ni.Journal of Iron and Steel Research International.1999,11:25-29.
    69. Gr?ssel O.and Frommeyer G.,Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels.Materials Science and Technology.1998,14(12):1213-1217.
    70. Bouaziz O.and Guelton N.Modelling of TWIP effect on work-hardening. Materials Science and Engineering A.2001,319-321:246-249.
    71.Barnett M.R.Twinning and the ductility of magnesium alloys.Part Ⅰ:'Tension' twins.Materials Science and Engineering A.2007,464:1-7.
    72. Frommeyer G.,Brux U.and Neumann P.Supra-ductile and high-strength manganese TRIP/TWIP steels for high energy absorption purposes.ISIJ International.2003,43:438-446.
    73. Caballero F.G.,Bhadeshia H.K.D.H.,Mawella K.J.A.,and et al.Very strong low temperature bainite.Materials Science and Technology.2002,18:279-284.
    74. Bhadeshia H.K.D.H.,52nd Hatfleld Memorial Lecture:Large chunks of very strong steel.Materials Science and Technology.2005,21:1293-1302.
    75. Caballero F.G.and Bhadeshia H.K.D.H.Very strong bainite.Current Opinion in Solid State and Materials Science.2004,8:251-257.
    76. Zwaag S.V.D.,Zhao L.,Kruijver S.O.,and et al.Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steel.ISIJ International.2002,42:1565-1570.
    77. Bai D.Q.,Chiro A.D.and S.Yue.Stability of retained austenite in a Nb microalloyed Mn-Si TRIP steel.Materials Science Forum.1998,284-286:253-260.
    78. Matas,S.and Hehemann R.F.Retained austenite and the tempering of martensite.Nature,1960,187:684-686.
    79. Rao B.V.and Thomas G.Transmission electron microscopy characterization of dislocated 'lath' martensite.Proc.Inter.Conf.Martensitic Transformations-79, MIT.1979:12-16.
    80. Thomas,G.and Sarikaya M.Lath martensites in carbon steels are they bainitic? Proc. nter. Conf. Solid to Solid Phase Transformations,1981,Ed H.I.Aaronson., D.E.Langhlin,R.E.Sekerkay and C.M.Wayman, TMS-AIME.1982:999-1004.
    81. Hsu T.Y.Dissusion of carbon during the formation of low-carbon martensite.Scripta Metallurgica.1983,17:1284-1288.
    82. Krauss G. Steels:Heat treatment and processing principles,ASM International, Metals Park,OH,USA.1990.
    83. Sarikaya M.,Jhingan A.K.and Thomas G.Retained austenite and tempered martensite embrittlement in medium carbon steels.Metallurgical Transactions A.1983,14:1121-1133.
    84. De Moor E.,Lacroix S.,Clarke A.J.,and et al.Effect of Retained Austenite Stabilized via Quench and Partitioning on the Strain Hardening of Martensitic Steels.Metallurgical and Materials Transactions A.39,2008:2586-2595.
    85. Wang X.D.,Zhong N.,Rong Y.H.and Hsu T.Y.Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process.Journal of Materials Research.2009,24(1):260-267.
    86. Speer,J.G.,Rizzo Assuncao F.C.,Matlock D.K.,and et al.The"quenching and partitioning" process:Background and recent progress.Materials Research. 2005,8:417-423.
    87. De Cooman B.C.and Speer J.G.Microstructure properties relationships in quench and partition(Q-P)steel,implications for automotive anti-instrusion applications. Proc.3rd Inter.Conf.on Advanced Structural Steels,Inst.Metals and Materials, Gyeongju,Korea.2006:798-805.
    88. De Cooman B.C.and Speer J.G.Quench and partitioning steel:A new AHSS concept for automotive anti-intrusion applications.Steel Research International. 2006,77:634-640.
    89. Hong S.C.,Ahn J.C.,Nam S.Y.,and et al.Mechanical properties of high-Si plate steel produced by the quenching and partitioning process.Metals and Materials International.2007,13:439-445.
    90. Edmonds D.V.,He K.,Miller M.K.,and et al.Microstructural features of quenching and partitioning':A new martensitic steel heat treatment.Materials Science Forum.2007,539-543:4819-4825.
    91.Rizzo F.,Martins A.R.,Speer J.G.,and et al.Quenching and partitioning of Ni-added high strength steels.Materials Science Forum.2007,539-543:4476-4481.
    92. Thomas G.A,Speer J.G.and Matlock D.K.Considerations in the application of the "quenching and partitioning" concept to hot rolled AHSS production.Iron and Steel Technology.2008,5:209-217.
    93.徐祖耀.钢热处理的新工艺.热处理.2007,22(1),1-11.
    94.徐祖耀.钢的组织控制与设计(一).上海金属.2007,29(1):1-8.
    95.徐祖耀.钢的组织控制与设计(二).上海金属.2007,29(2):1-8.
    96.徐祖耀.用于超高强度钢的淬火-碳分配-回火(沉淀)(Q-P-T)工艺.热处理.2008,23(2):1-5.
    97. Zhong N.,Wang X.D.,Wang L.and Rong Y.H.Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching-partitioning-tempering process.Materials Science and Engineering A.2009,506:111-116.
    98.叶卫平,张覃轶.热处理实用数据速查手册.机械工业出版社.2005
    99. Barnard S. J., Smith G.D.W., Garratt-Reed A. J., et.al. Advances in the Physical Metallurgy and Applications of Steels, Metals Society, London,UK,1981:33-38.
    100.Owen. W. S. The effect of silicon on the kinetics of tempering. Trans. ASM 1954, 46:812-829.
    101.De Cooman B. C.Structure-properties relationship in TRIP steels containing carbide-free bainite. Current Opinion in Solid State and Materials Science,2004, 8:284-303.
    102.史文,李麟,符仁钰,两相区退火对不同硅含量TRIP钢残留奥氏体和力学性能的影响,金属热处理,2003,28(3):10-14.
    103.John G Speer, Fernando C Rizzo Assuncao, David K Matlock, David V Edmonds. The "Quenching and Partitioning" Process:Background and Recent Progress. Materials Research,2005,8 (4):417-423.
    104.Hillert M,Agren J.On Definitions of Paraequilibrium and Orthoequilibrium [J].Scripta Materialia,2004,50:697-699.
    105.Edmondsa D V, K. He, Rizzo F C, De Cooman B C, Matlock, Speer J G Quenching and partitioning martensite-A novel steel heat treatment (J). Materials Science and Engineering,2006,438-440:25-34.
    106.Santofimiaa M J, Zhao L, Petrovb R, Sietsma J. Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel (J). Materials Characterization,2008,59:1758-1764.
    107.Santofimia M J, Zhao L, and Sietsma J. Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization (J). Metallurgical and Materials Transactions A,2009, 40:46-57.
    108.Moor E De, Lacroixs S, Clarke A J, Penning J and Speer J G. Effect of retained austenite stabilized via quenching and prtitioning on strain harding of martensitic steels (J).Metallurgical and Materials Transactions A,2008,39:2586-2595.
    109.Nayaka S S, Anumolua R, Misraa R D K, Kim K H, Lee D L. Microstructure-hardness relationship in quenched and partitionedmedium-carbon and high-carbon steels containing silicon (J). Materials Science and Engineering,2008, 498 (A):442-456.
    110.徐祖耀.淬火-碳分配-回火(沉淀)(Q-P-T)工艺浅介.金属热处理.2009,34(6):1-8.
    111.Zhong Ning, Wang Xiao-dong, Rong Yong-hua, Wang Li. Interface Migration Between Martensite and Austenite During Quenching and Partitioning(Q & P)Process. Journal of Materials Science & Technology,2006.06:35-38
    112.Clarke A J, Speer J G, Matlock D K, Rizzo F C, Edmondsd D V, and Santofimia M J. Influence of carbon partitioning kinetics on final austenite fraction during quenching and partitioning. Scripta Mater,2009; 61 (2):149-152.
    113.Sandra T, Andreas P, Karl H, et al.. Influence of silicon, aluminium,phosphorus and copper on the phase transformations of low alloyed TRIP-steels(J). Steel Research,2002,73 (6):259-266.
    114.Aisman D, Jirkova H, Skalova L, Masek B. Testing of the parametres of the Q-P process in high strength low-alloyed steel (A). Editor B.[ranko] Katalinic. Annals of DAAAM for 2008 & Proceedings of the the 19th International DAAAM Symposium "Intelligent Manufacturing & Automation:Focus on Next Generation of Intelligent Systems and Solutions" (C). Vienna:DAAAM International,2008: 0007-0008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700