用户名: 密码: 验证码:
金属丝网负载分子筛膜催化剂的制备、表征与裂解催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空航天技术的发展,对燃料提出了更高的要求。高密度碳氢燃料和吸热型碳氢燃料是当前燃料发展的两个主要方向。为了增强吸热型碳氢燃料的化学吸热能力、改善高密度碳氢燃料的点火燃烧性能,提出了燃料在进入燃烧室前预先在金属丝网负载分子筛膜作用下催化裂解的新概念,本文主要对金属丝网负载分子筛膜催化剂的制备、表征和催化性能进行了研究,并取得了一些研究成果:
     (1)采用不含有机模板剂的反应体系,研究了亚微米Y分子筛的合成。研究结果表明,反应体系的n(Na2O)/n(SiO2)影响结晶产物Y分子筛的粒径。Y分子筛的粒径随n(Na2O)/n(SiO2)的增大先减小后增大。Y分子筛的硅铝比n(Si) /n(Al)随n(Na2O)/n(SiO2)的增大先减小后几乎不变,当n(Na2O)/n(SiO2)≥1.04时,产物的硅铝比约为2.0。硅源对Y分子筛粒径也有影响。以硅溶胶和固体纳米二氧化硅为硅源合成得到的Y分子筛粒径分布较均匀,平均粒径分别约为300nm和500nm;以硅酸钠为硅源合成的Y分子筛粒径呈二元分布,大颗粒的平均粒径约为1000nm,小颗粒的平均粒径在100nm左右。当反应液的n(SiO2)/n(Al2O3)由25减小为5时,得到了粒径在50-100nm左右的Y分子筛颗粒。微波加热可以提高反应速率,但是对于减小产物粒径没有明显的作用。
     (2)优化并确定了适合于FAU分子筛结晶的澄清反应体系,并研究了该澄清体系用于制备FeCrAl合金丝网负载的FAU分子筛涂层(膜)的可行性。研究发现,载体表面预先涂覆晶种后有利于提高分子筛负载量、涂层的连续性和均匀性。反应液老化对FAU分子筛结晶及成膜均有影响。FAU分子筛涂层具有一定的裂解催化活性。在500℃时,正辛烷的热裂解转化率为4.4%,而在FAU分子筛涂层作用下,其初始裂解转化率为13.2%,但活性随TOS急剧变小
     (3)通过稀土金属离子改性,得到的FAU分子筛膜具有更高的催化活性。离子交换的顺序对于所合成的膜的催化活性有很大的影响。铵型分子筛膜中的铵离子可以较容易被稀土金属离子交换下来,而氢型分子筛膜中氢离子很难被稀土金属离子交换。使用0.125 mol/L、0.25 mol/L和0.50 mol/L硝酸铈溶液交换的分子筛膜,催化裂解性能基本相同。Ce3+和La3+稀土金属离子对分子筛膜的催化性能影响基本一致。
     (4)研究了JP-10在多种类型分子筛催化剂上的催化裂解。发现孔径大小对于JP-10的催化裂解有较大的影响。对于分子筛孔径大于JP-10分子的HY、HUSY以及Hβ三种氢型分子筛催化剂而言,气体产率较高;而对于分子筛孔径小于JP-10分子的HZSM-5分子筛而言,气体产率较低。
     比较了HZSM-5、碱处理HZSM-5(HZSM-5-OH)和酸处理HZSM-5 (HZSM-5-H)三种催化剂对JP-10裂解反应的催化效果。研究发现,JP-10在三种催化剂作用下的裂解转化率分别为67.15%、75.86%和71.74%。气态裂解产物收率大小顺序为HZSM-5-H>HZSM-5>HZSM-5-OH,而液态裂解产物的收率大小刚好相反。在任一催化剂作用下,气态裂解产物的主要成分均为乙烯、丙烷、丙烯和异丁烷,这些组分的相对含量依催化剂的不同而不同,但基本遵循丙烯>乙烯>异丁烯>丙烷的顺序。相对于HZSM-5催化剂而言,JP-10在HZSM-5-OH催化剂上裂解时气体产物收率下降但液体产物收率增加;在HZSM-5-H催化剂上裂解时则刚好相反,气体产物收率增加但液体产物收率下降。
     (5)采用水热合成法制备了不锈钢负载的ZSM-5分子筛涂层。考察了不锈钢载体表面处理对分子筛与载体之间结合力的影响。研究结果表明,与酸处理或洗涤剂清洗处理相比,高温热处理更加有利于提高分子筛与不锈钢载体之间的结合力,且热处理效果与温度有关,最佳处理温度为850℃,在该温度下处理5h后的载体,所得到的分子筛/不锈钢复合材料,不仅具有最大的分子筛表面覆盖率,而且在焙烧过程中分子筛几乎不脱落。热处理后的载体在反应液中进一步浸泡同样会影响分子筛的覆盖率及结合力,影响大小与载体热处理温度有关。
With the development of technology in Aero-Space field, high energy density fuels and endothermic hydrocarbon fuels are two main aims in fuels development. The new conception of zeolitic film supported on metallic mesh using as catalytic cracking catalysts has been submitted, in order to increase the heat-absorbing capacity of endothermic hydrocarbon fuels and improve ignition and combustion behaviors of high energy density fuels. For these reasons, preparation, characterization and catalytic properties for cracking of zeolitic film catalysts supported on metallic mesh have been researched by us in this thesis. The results which were got by us from our research are as below:
     (1) Synthesis of submicron sized zeolite Y has been studied without the presence of organic templates. The size of zeolite NaY crystals is influenced by n(Na2O)/n(SiO2) of the synthesis mixture. The size of NaY zeolite crystals decreases initiallyand then increases with increasing n(Na2O)/n(SiO2). The n(Si)/n(Al) ratio of Y zeolite crystals decreases initially and then almost keeps constant with increasing n(Na2O)/n(SiO2). The n(Si)/n(Al) ratio of the Y crystals is about 2.0 at n(Na2O)/n(SiO2)≥1.04. Silica source is another factor influencing the particle size. The zeolite crystals which are synthesized from silica sol and nano silica have uniform size distribution, and the average sizes of the crystals are 300nm and 500nm, respectively. When sodium silicate is used as silica source, the particle size appears a dual mode distribution (big particles are about 1000nm while small particles are around 100nm). When n(SiO2)/n(Al2O3) of synthesis mixture is changed from 25 to 5, zeolite Y particles with the size of 50nm-100nm are obtained. Microwave heating can accelerate the formation rate of NaY crystals compared with conventional heating, but it has no influence on the particle size.
     (2) Clear solutions were optimized for crystallization of FAU-type zeolite. The clear solution was also used for preparation of FAU-type zeolite coatings on the grids made of FeCrAl alloys. Crystal seeds are beneficial to produce continuous and uniform coatings on grids. Seeds can also increase the amount of the crystals on grids. The ageing of the synthesis mixture is considered as another important factor. The as-synthesized FAU coatings have catalytic activities with the initial conversion of about 13.2% for JP-10 cracking at 500℃, while the conversion of thermal cracking is 4.4%. Unfortunately, the catalytic activity decreases rapidly with time on stream.
     (3) FAU coatings with higher catalytic activities are obtained by modification of rare earth ions. The order for ion exchange is important. NH4+ ions in zeolite can be replaced by Ce3+ ions easily, whereas it is very difficult to exchange H+ ions by Ce3+ ions. The concentration of the rare earth salt solution has little influence on the catalytic cracking of n-octane over FAU zeolite coatings. There is almost no difference in the catalytic activities between Ce3+ and La3+ ions-exchanged FAU coatings.
     (4) Catalytic cracking of JP-10 has been investigated over many types of zeolite. Pore size of zeolite is an important factor influencing JP-10 cracking. The yield of gas products is higher over HY, HUSY and Hβcatalysts than that on HZSM-5. In order to improve the catalytic properties of HZSM-5, HZSM-5-OH and HZSM-5-H were prepared by treating HZSM-5 crystals in basic and acidic solutions, respectively. The average conversions of JP-10 cracking are 67.15%、75.86% and 71.74% for HZSM-5、HZSM-5-OH and HZSM-5-H catalysts, respectively. The gaseous cracking products for each catalyst are mainly consisted of ethylene, propane, propylene and iso-butane. Their yields depend on the catalyst preparation method. The magnitude of these four components of gas products follows propylene>ethylene>iso-butane >propane for each catalyst. The yield of gas products decreases over HZSM-5-OH catalyst while the yield of liquid products increases. The yield of gas products increases over HZSM-5-H catalyst while the yield of liquid products decreases.
     (5) ZSM-5 coatings on stainless steel foils were synthesized by hydrothermal synthesis. The influence of support surface pretreatment was studied on the adhesion strength between zeolite crystals and stainless steel support. The results have shown that high-temperature pretreatment has more favorable effect on adhesion strength of zeolite coatings compared to acid treatment or cleansing with detergent, the degree of which depends on the temperature. ZSM-5 coatings with the highest coverage and the strongest adhesion strength were achieved on stainless steel support that was pretreated at 850℃for 5h. The immersion of high-temperature pretreated support in the synthesis solution also imposes influence on surface coverage and adhesion strength of zeolite coatings, the degree of which depends on pretreatment temperature.
引文
[1]H. J. C. Hennepe, D. Bargeman, M. H. V. Mulder and C. A. Smolder, Zeolite-filled silicone rubber membranes, J. Membr. Sci.,1987,35,39-55.
    [2]H. J. C. Hennepe, C. A. Smolder, D. Bargeman and M. H. V. Mulder, Exclusion and tortuosity effects for alcohol/water separation by zeolite-filled silicone rubber membranes, Sep. Sci. Technol.,1991,26,585-596.
    [3]M. D. Jia, K. V. Peinemann and R. D. Behling, Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation, J. Membr. Sci.,1991, 57,289-296.
    [4]T. Bein, Synthesis and applications of molecular sieve layers and membranes, Chem.14 Mater.,1996,8,1636-1653.
    [5]M. Matsukata and E. Kikuchi, Zeolitic membranes:synthesis, properties, and prospects, Bull. Chem. Soc. Jpn.,1997,70,2341-2356.
    [6]A. Tavolaro and E. Drioli, Zeolite membranes, Adv. Mater.,1999,11,975-996.
    [7]J. Caro, M. Noack, P. Kolsch and R. Schafer, Zeolite membranes-state of their development and perspective, Micropor. Mesopor. Mater.,2000,38,3-24.
    [8]A. S. T. Chiang and K. J. Chao, Membranes and films of zeolite and zeolite-like materials, J. Phys. Chem. Solids,2001,62,1899-1910.
    [9]G. J. Myatt, P. M. Budd, C. Price and S. W. Carr, Synthesis of a zeolite NaA membrane, J. Mater. Chem.,1992,2,1103-1104.
    [10]R. Lai, Y.S. Yan, G.R. Gavalas, Growth of ZSM-5 films on alumina and other surfaces. Micropor. Mesopor. Mater.,2000,37(1-2):9-19.
    [11]T. Nakazawa, M. Sadakata, T. Okubo.Early stages of MFI film formation, Micropor. Mesopor. Mater.,1998,21(4-6):325-332.
    [12]H. Kita, K. Horii, Y. Ohtoshi, K. Tanaka and K. Okamoto, Synthesis of a zeolite NaA membrane for pervaporation of water-organic liquid mixtures, J. Mater. Sci. Lett.,1995,14,206-208.
    [13]I. Kumakiri, T. Yamaguchi and S. Nakao, Preparation of zeolite A and faujasite membranes from a clear solution, Ind. Eng. Chem. Res.,1999,38,4682-4688.
    [14]K. Aoki, K. Kusakabe and S. Morooka, Gas permeation properties of A-type zeolite membrane formed on porous substrate by hydrothermal synthesis, J. Membr. Sci.,1998,141,197-205.
    [15]L. Washmonkriel and K. J. Balkus, Preparation and characterization of oriented MAPO-39 membranes, Micropor. Mesopor. Mater.,2000,38,107-121.
    [16]K. J. Balkus, G. Gbery and Z. S. Deng, Preparation of partially oriented zeolite MCM-22 membranes via pulsed laser deposition, Micropor. Mesopor. Mater., 2002,52,141-150.
    [17]K. Kusakabe, T. Kuroda, A. Murata and S. Morooka, Formation of a Y-type zeolite membrane on a porous a-alumina tube for gas separation, Ind. Eng. Chem. Res.,1997,36,649-655.
    [18]T. Munoz, Jr. and K. J. Balkus, Jr., Preparation of oriented zeolite UTD-1 membranes via pulsed laser ablation, J. Am. Chem. Soc.,1999,121,139-146.
    [19]M. C. Lovallo and M. Tsapatsis, Preferentially oriented submicron silicalite membranes, AIChE J.,1996,42,3020-3029.
    [20]M. C. Lovallo, A. Gouzinis and M. Tsapatsis, Synthesis and characterization of oriented MFI membranes prepared by secondary growth, AIChE J.,1998,44, 1903-1913.
    [21]R. Lai and G. R. Gavalas, Surface seeding in ZSM-5 membrane preparation, Ind. Eng. Chem. Res.,1998,37,4275-4283.
    [22]S. Nair, Z. Lai, V. Nikolakis, G. Xomeritakis, G. Bonilla and M. Tsapatsis, Separation of close-boiling hydrocarbon mixtures by MFI and FAU membranes made by secondary growth, Micropor. Mesopor. Mater.,2001,48,219-228.
    [23]J. Hedlund, M. Noack, P. Kolsch, D. Creaser, J. Caro and J. Sterte, ZSM-5 membranes synthesized without organic templates using a seeding technique, J. Membr. Sci.,1999,159,263-273.
    [24]B.J. Schoeman, J. Sterte and J.E. Otterstedt, Colloidal zeolite suspensions, Zeolites,1994,14,110-116.
    [25]S. Mintova and T. Bein, Nanosized zeolite films for vapor sensing applications, Micropor. Mesopor. Mater.,2001,50,159-166.
    [26]V. Valtchev and S. Mintova, layer-by-layer preparation of zeolite coatings of nanosized crystals, Micropor. Mesopor. Mater.,2001,43,41-49.
    [27]M. Tsapatsis, M. Lovallo and M. E. Davis, High-resolution electron microscopy study on the growth of zeolite L nanoclusters, Micropor. Mater.,1996,5, 381-388.
    [28]B.J. Schoeman, J. Sterte and J. E. Otterstedt, Synthesis of colloidal suspensions of zeolite ZSM-2, J. Colloid Interf. Sci.,1995,170,449-456.
    [29]A.E. Persson, B.J. Schoeman, J. Sterte and J.E. Otterstedt, The synthesis of discrete colloidal particles of TPA-silicalite-1, Zeolites,1994,14,557-567.
    [30]B.J. Schoeman, J. Sterte and J.E. Otterstedt, Synthesis and size tailoring of colloidal zeolite particles, J. Chem. Soc. Chem. Commun.,1993,994-995.
    [31]R Lai, G. R. Gavalas, ZSM-5 membrane synthesis with organic-free mixture. Micropor. Mesopor. Mater.,2000,38,239-245.
    [32]S. Mintova, J. Hedlund, V. Valtchev, et al., Continuous films of zeolite ZSM-5 on modified gold surfaces. Chem. Commun.,1997,1,15.
    [33]S. Mintova, J. Hedlund, V. Valtchev, et al., ZSM-5 films prepared from template free precursors. J. Mater. Chem.,1998,8(10),2217-2221.
    [34]M. Noack, P. Kolsch, J. Caro, et al. MFI membrane of different Si/Al ratios for pervaption and steam permeation. Micropor. Mesopor. Mater.,2000,35-36, 253-265.
    [35]A.S. Huang and J. Caro, Cationic polymer used to capture zeolite precursor particles for the facile synthesis of oriented zeolite LTA molecular sieve membrane Chem. Mater.,2010,22,4353-4355.
    [36]A. Gouzinis, M. Tsapatsis., On the preferred orientation and micro-structural manipulation of molecular sieve films prepared by secondary growth., Chem. Mater.,1998,10,2497-2504.
    [37]G Xomeritakis, A. Gouzinis, S. Nair, et al., Growth, microstructure, and permeation properties of supported zeolite (MFI) films and membranes prepared by secondary growth. Chemical Engineering Science,1999,54,3521-3531.
    [38]R Lai, G. R. Gavalas, Surface seeding in ZSM-5 membrane preparation. Ind. Eng Chem Res,1998,37,4275-4283.
    [39]K. Ha, Y. Lee, H.J. Lee and K.B. Yoon Facile Assembly of zeolite monolayers on glass, silica, alumina and other zeolites using 3-halopropylsilyl reagents as covalent linkers, Adv. Mater.2000,12(15),1114-1117.
    [40]W. Xu, J. Dong, J.P. Li, J.Q. Li and F. Wu, A novel method for the preparation of zeolite ZSM-5, J. Chem. Soc. Chem. Commun.,1990,755-756.
    [41]J. Dong, T. Dou, X. Zhao and L. Gao, Synthesis of membranes of zeolites and ZSM-5 and ZSM-35 by the vapor phase method, J. Chem. Soc. Chem. Commun., 1992,1056-1058.
    [42]S. G. Thoma, D. E. Trudell, F. Bonhomme and T. M. Nenoff, Vapor phase transport synthesis of un-supported ZSM-22 catalytic membranes, Micropor. Mesopor. Mater.,2001,50,33-39.
    [43]J. Caro, M. Noack, P. Kolsch and R. Schafer, Zeolite membranes-state of their development and perspective, Micropor. Mesopor. Mater.,2000,38,3-24.
    [44]M. Matsukata, N. Nishiyama and K. Ueyama, A zeolitic membrane synthesized on a porous alumina support, J. Chem. Soc. Chem. Commun.,1994,339-340.
    [45]N. Nishiyama, K. Ueyama and M. Matsukata, Synthesis of defect-free zeolite-alumina composite membranes by a vapor-phase transport method, Micropor. Mater.,1996,7,299-308.
    [46]N. Nishiyama, T. Matsufuji, K. Ueyama and M. Matsukata, FER membrane synthesized by a vapor-phase transport method:its structure and separation characteristics, Micropor. Mater.,1997,12,293-303.
    [47]Z.L. Cheng, E. Gao and H.L. Wan, Novel synthesis of FAU-type zeolite membrane with high performance, Chem. Commun.,2004,1718-1719.
    [48]M. Matsukata, M. Ogura, T. Osaki, P.R.H.P. Rao, M. Nomura and E. Kikuchi Conversion of dry gel to microporous crystals in gas phase, Topics in Catalysis, 1999,9,77-92.
    [49]S. Alfaro, M. Arruebo, J. Coronas, M. Menendez and J. Santamaria, Preparation of MFI type tubular membranes by steam-assisted crystallization, Micropor. Mesopor. Mater.,2001,50,195-200.
    [50]J.H. Koegler, A. Arafat, H. Bekkum and J. C. Jansen, Synthesis of films of oriented silicalite-1 crystals using microwave heating. Stud. Surf. Sci. Catal., 1997,105(3),2163-2170.
    [51]J. Motuzas, A. Julbe, R.D. Noble, van der Lee and Z. J. Beresnevicius, Rapid synthesis of oriented silicalite-1 membranes by microwave-assisted hydrothermal treatment. Micropor. Mesopor. Mater.,2006,92(1-3),259-269.
    [52]X. Chen, W. Yang, J. Liu, L. Lin, Synthesis of zeolite NaA membranes with high permeance under microwave radiation on mesoporous-layer-modified macroporous substrates for gas separation. J. Membr. Sci.,2005,255(1-2), 201-211.
    [53]Y. S. Li, J. Liu, W. S. Yang, Formation mechanism of microwave synthesized LTA zeolite membranes. J. Membr. Sci.,2006,281(1-2),646-657.
    [54]L.C. Boudreau, J.A. Kuck, M. Tsapasis, Deposition of oriented zeolite A films:in situ and secondary growth. J. Membrane Sci.,1999,152,41-59.
    [55]T. Seike, M. Matsuda, M. Miyake, Fabrication of Y-type zeolite films by electrophoretic deposition. Solid State Ionics,2002,151,123-127.
    [56]T. Seike, M. Matsuda, M. Miyake, Preparation of FAU type zeolite membrane by electrophoretic deposition and their separation properties J. Mater. Chem.,2002, 12,366-368.
    [57]黄爱生 刘杰 李砚硕 林跃升 杨维慎,电泳法在致密金属表面合成A型分子筛膜,科学通报,2004年5月,第49卷,第10期,937-941.
    [58]K. Kusakabe, T. Kuroda and S. Morooka, Separation of carbon dioxide from nitrogen using ion-exchanged faujasite-type zeolite membranes formed on porous support tubes, J. Membr. Sci.,1998,148,13-23.
    [59]K. Kusakabe, T. Kuroda, K. Uchino, Y. Hasegawa and S. Morooka, Gas permeation properties of ion-exchanged faujasite-type zeolite membranes, AIChE J.,1999,45,1220-1226.
    [60]Y. Hasegawa, K. Watanabe, K. Kusakabe and S. Morooka, The separation of CO2 using Y-type zeolite membranes ion-exchanged with alkali metal cations, Sep. Purif. Technol.,2001,22-3,319-325.
    [61]Y. Hasegawa, K. Watanabe, K. Kusakabe, and S. Morooka, Influence of alkali cations on permeation properties of Y-type zeolite membranes, J Membr. Sci., 2002,208,415-418.
    [62]Y. Hasegawa, K. Kusakabe and S. Morooka, Effect of temperature on the gas permeation properties of NaY-type zeolite formed on the inner surface of a porous support tube, Chem. Eng. Sci.,2001,56,4273-4281.
    [63]X.Gu, J. Dong and T.M. Nenoff, Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist CO2/N2 mixtures Ind. Eng. Chem. Res.,2005,44,937-944.
    [64]J.H. Dong, Y.S. Lin and W. Liu, Multicomponent hydrogen/hydrocarbon separation by MFI-type zeolite membranes, AIChE J.,2000,46,1957-1966.
    [65]K. Aoki, K. Kusakabe and S. Morooka, Gas permeation properties of A-type zeolite membrane formed on porous substrate by hydrothermal synthesis, J. Membr. Sci.,1998,141,197-205.
    [66]G.Q. Guan, K. Kusakabe and S. Morooka, Gas permeation properties of ion-exchanged LTA-type zeolite membranes, Sep. Sci. Technol.,2001,36, 2233-2245.
    [67]L.X. Zhang, M.D. Jia and E.Z. Min, Synthesis of SAPO-34/ceramic composite membranes, Stud. Surf. Sci. Catal.,1997,105,2211-2216.
    [68]J.C. Poshusta, V. A. Tuan, J. L. Falconer and R. D. Noble, Synthesis and permeation properties of SAPO-34 tubular membranes, Ind. Eng. Chem. Res., 1998,37,3924-3929.
    [69]J.C. Poshusta, V. A. Tuan, E. A. Pape, J. L. Falconer and R. D. Noble, Separation of light gas mixtures using SAPO-34 membranes, AIChE J.,2000,46,779-789.
    [70]H. Kalipcilar, T. C. Bowen, R.D. Noble and J. L. Falconer, Synthesis and separation performance of SSZ-13 zeolite membranes on tubular supports, Chem. Mater.,2000,14,3458-3464.
    [71]G.Q. Guan, K. Kusakabe and S. Morooka, Synthesis and permeation properties of ion-exchanged ETS-4 tubular membranes, Micropor. Mesopor. Mater.,2001, 50,109-120.
    [72]A. Huang, W. Dou and J. Caro, Steam-Stable Zeolitic Imidazolate Framework ZIF-90 Membrane with Hydrogen Selectivity through Covalent Functionalization, J. Am. Chem. Soc.2010,132,15562-15564.
    [73]J. Coronas, R. D. Noble and J. L. Falconer, Separations of C4 and C6 isomers in ZSM-5 tubular membranes, Ind. Eng. Chem. Res.,1998,37,166-176.
    [74]K. Kusakabe, S. Yoneshige, A. Murata and S. Morooka, Morphology and gas permeance of ZSM-5-type zeolite membrane formed on a porous alpha-alumina support tube, J. Membr. Sci.,1996,116,39-46.
    [75]Z.A.E.P. Vroon, K. Keizer, M. J. Gilde, H. Verweij and A.J. Burggraaf, Transport properties of alkanes through ceramic thin zeolite MFI membranes, J. Membr. Sci.,1996,113,293-300.
    [76]W.J.W. Bakker, F. Kapteijn, J. Poppe and J.A. Moulijn, Permeation characteristics of a metal-supported silicalite-1 zeolite membrane, J. Membr. Sci., 1996,117,57-78.
    [77]K. Keizer, A. J. Burggraaf, Z. A. E. P. Vroon and H. Verweij, Two component permeation through thin zeolite MFI membranes, J. Membr. Sci.,1998,147, 159-172.
    [78]Z.A.E.P. Vroon, K. Keizer, A. J. Burggraaf and H. Verweij, Preparation and characterization of thin zeolite MFI membranes on porous supports, J. Membr. Sci.,1998,144,65-76.
    [79]T. Matsufuji, N. Nishiyama, M. Matsukata and K. Ueyama, Separation of butane and xylene isomers with MFI-type zeolitic membrane synthesized by a vapor-phase transport method, J. Membr. Sci.,2000,178,25-34.
    [80]J. Coronas, J. L. Falconer and R. D. Noble, Characterization and Permeation properties of ZSM-5 tubular membranes, AIChE J.,1997,43,1797-1812.
    [81]F Lopez, M.P. Bernal, R. Mallada, J. Coronas, and J. Santamaria Preparation of silicalite membranes on stainless steel grid supports, Ind. Eng. Chem. Res.2005, 44,7627-7632.
    [82]K. Okamoto, H. Kita, K. Horii, K. Tanaka and Kondo, Zeolite NaA membrane: Preparation, single-gas permeation and pervaporation and vapor permeation of water/organic liquid mixtures, Ind. Eng. Chem. Res.,2001,40,163-175.
    [83]J.J. Jafar and P. M. Budd, Separation of alcohol/water mixtures by pervaporation through zeolite A membranes, Micropor. Mater.,1997,12,305-311.
    [84]Y. Morigami, M. Kondo, J. Abe, H. Kita and K. Okamoto, The first large-scale pervaporation plant using tubular-type with zeolite NaA membrane, Sep. Purif. Technol.,2001,25,251-260.
    [85]T. Sano, H. Yanagishita, Y. Kiyozumi, F. Mizukami and K. Haraya, Separation of ethanol/water mixture by silicalite membrane on pervaporation, J. Membr. Sci., 1994,95,221-228.
    [86]T. Sano, M. Hasegawa, Y. Kawahami, Y. Kiyozumi, H. Yanagishita, D. Kitamoto and F. Mizukami, Potentials of silicalite membranes for the separation of alcohol/water mixtures, Stud. Surf. Sci. Catal.,1994,84,1175-1182.
    [87]X. Lin, H. Kita and K. Okamoto, Silicalite membrane preparation, characterization, and separation performance, Ind. Eng. Chem. Res.,2001,40, 4069-4078.
    [88]V.A. Tuan, S.G. Li, J.L. Falconer and R.D. Noble, Separating organics from water by pervaporation with isomorphously-substituted MFI zeolite membranes, J. Membr. Sci.,2002,196,111-123.
    [89]Q. Liu, R.D. Noble, J.L. Falconer and H.H. Funke, Organics/water separation by pervaporation with a zeolite membrane, J. Membr. Sci.,1996,117,163-174.
    [90]S.G. Li, V.A. Tuan, R.D. Noble and J.L. falconer, ZSM-11 membranes: Characterization and pervaporation performance, AIChE J.,2002,48,269-278.
    [91]S. Nair, Z. Lai, V. Nikolakis, G. Xomeritakis, G. Bonilla and M. Tsapatsis, Separation of close-boiling hydrocarbon mixtures by MFI and FAU membranes made by secondary growth, Micropor. Mesopor. Mater.,2001,48,219-228.
    [92]K. Wegner, J. H. Dong and Y. S. Lin, Polycrystalline MFI zeolite membranes: xylene pervaporation and its implication on membrane microstructure, J. Membr. Sci.,1999,158,17-27.
    [93]C. D. Baertsch, H. H. Funke, J. L. Falconer and R.D. Noble, Permeation of aromatic hydrocarbon vapors through silicalite-zeolite membranes, J. Phys. Chem.,1996,100,7676-7679.
    [94]G. Xomeritakis and M. Tsapatsis, Permeation of aromatic isomer vapors through oriented MFI-type membranes made by secondary growth, Chem. Mater.,1999, 11,875-878.
    [95]G. Xomeritakis, S. Nair and M. Tsapatsis, Transport properties of alumina-supported MFI membranes made by secondary (seeded) growth, Micropor. Mesopor. Mater.,2000,38,61-73.
    [96]G. Xomeritakis, Z. P. Lai and M. Tsapatsis, Separation of xylene isomer vapors with oriented MFI membranes made by seeded growth, Ind. Eng. Chem. Res., 2001,40,544-552.
    [97]H. Kita, K. Fuchida, T. Horita, H. Asamura and K. Okamoto, Preparation of Faujasite membranes and their permeation properties, Sep. Purif. Technol.,2001, 25,261-268.
    [98]T. Sano, M. Hasegawa, Y. Kawakami and H. Yanagishita, Separation of methanol/methyl-tert-butyl ether mixture by pervaporation using silicalite membrane, J. Membr. Sci.,1995,107,193-196.
    [99]J. Coronas, J. Santamaria, The use of zeolite films in small-scale and micro-scale applications Chem. Eng. Sci.2004,59,4879.
    [100]E.E. McLeary, J.C. Jansen and F. Kapteijn, Zeolite based films, membranes and membrane reactors:Progress and prospects Microp. Mesop. Mater.,2006,90, 198-220.
    [101]A. Julbe, D. Farrusseng and C. Guizard, Porous ceramic membranes for catalytic reactors-overview and new ideas, J. Memdbr. Sci.,2001,181,3-20.
    [102]D. Casanave, A. Giroir-Fendler, J. Sanchez, R. Loutaty and J. A. Dalmon, Control of transport properties with a microporous membrane reactor to enhance yields in dehydrogenation reactions, Catal. Today,1995,25,309-314.
    [103]D. Casanave, P. Ciavarella, K. Fiaty and J. A. Dalmon, Zeolite membrane reactor for isobutane dehydrogenation:Experimental results and theoretical modelling, Chem. Eng. Sci.,1999,54,2807-2815.
    [104]P. Ciavarella, D. Casanave, H. Moueddeb, S. Miachon, K. Fiaty and J. A. Dalmon, Isobutane dehydrogenation in a membrane reactor-Influence of the operating conditions on the performance, Catalysis Today,2001,67,177-184.
    [105]B.S. Liu and C.T. Au, A La2NiO4-zeolite membrane reactors for the CO2 reforming of methane to syngas, Catal. Lett.,2001,77,67-74.
    [106]B.S. Liu, L.Z. Gao and C.T. Au, Preparation, characterization and application of a catalytic NaA membrane for CH4/CO2 reforming to syngas, Appl. Catal. A: General,2002,235,193-206.
    [107]X.F. Zhang, Y.S. Li, J.Q. Wang, H. Tong and C. Liu, Synthesis and characterization of Fe-MFI zeolite membrane on a porous α-Al2O3 tube, Sep. Purif. Technol.,2001,25,269-274.
    [108]U. Illgen, R. Schafer, M. Noack, P. Kolsch, A. Kuhnle, and J. Caro, Membrane supported catalytic dehydrogenation of iso-butane using an MFI zeolite membrane reactor, Catal. Commun.,2001,2(11-12),339-345.
    [109]K. Tanaka, R. Yoshikawa, C. Ying C, H. Kita and K. Okamoto, Application of zeolite membranes to esterification reactions, Catal. Today,2001,67,121-125.
    [110JJ.J. Jafar, P. M. Budd and R. Hughes, Enhancement of esterification reaction yield using zeolite-A vapour permeation membrane, J. Membr. Sci.,2002,199, 117-123.
    [111]M.P. Bernal, J. Coronas, M. Menendez and J. Santamaria, Coupling of reaction and separation at the microscopic level:esterification processes in a H-ZSM-5 membrane reactor, Chem. Eng. Sci.,2002,57,1557-1562.
    [112]K. Tanaka, R. Yoshikawa, Y. Cui, H. Kita and K. Okamoto, Application of zeolite T membrane to vapor-permeation-aided esterification of lactic acid with ethanol, Chem. Eng. Sci.,2002,57,1577-1584.
    [113]M. A. Salomon, J. Coronas, M. Menendez and J. Santamaria, Synthesis of MTBE in zeolite membrane reactors, Appl. Catal. A:General,2000,200, 201-210.
    [114]E. Piera, C. Tellez, J. Coronas, M. Menendez and J. Santamaria, Use of zeolite membrane reactors for selectivity enhancement:application to the liquid-phase oligomerization of i-butene, Catal. Today,2001,67,127-138.
    [115]A. Pantazidis, J. A. Dalmon and C. Mirodatos, Oxidative dehydrogenation of propane on catalytic membrane reactors, Catal. Today,1995,25,403-408.
    [116]S. Mota, S. Miachon, J. C. Volta and J. A. Dalmon, Membrane reactor for selective oxidation of butane to maleic anhydride, Catal. Today,2001,67, 169-176.
    [117]A. Julbe, D. Farrusseng, J. C. Jalibert, C. Mirodatos and C. Guizard, Characteristics and performance in the oxidative dehydrogenation of propane of MFI and V-MFI zeolite membranes, Catal. Today,2000,56,199-209.
    [118]T. Masuda, T. Asanuma, M. Kitamura, K. Hashimoto, Y. Kobayashi and T. Komaya, Pervaporation of concentrated acetic acid solution and reaction of methanol to olefin using cylindrical MFI-type zeolite membranes without any pin holes, Shokubai (Japanese),1998,40,348-351.
    [119]Y. Hasegawa, K. Kusakabe and S. Morooka, Selective oxidation of carbon monoxide in hydrogen-rich mixtures by permeation through a platinum-loaded Y-type zeolite membrane, J. Membr. Sci.,2001,190,1-8.
    [120]K. Sotowa, Y. Hasegawa, K. Kusakabe and S. Morooka, Enhancement of CO oxidation by use of H2-selective membranes impregnated with noble-metal catalysts, Int. J. Hydrogen Energ.,2002,27,339-346.
    [121]Y. Takata, T. Tsuru, T. Yoshioka and M. Asaeda, Gas permeation properties of MFI zeolite membranes prepared by the secondary growth of colloidal silicalite and application to the methylation of toluene, Micropor. Mesopor. Mater.,2002, 54,257-268.
    [122]G. Neri, G. Rizzo, F. Corigliano, I. Arrigo, M. Capri, L. De Luca, V. Modafferi and A. Donato, A novel Pt/zeolite-based honeycomb catalyst for selective CO oxidationin H2-rich mixture, Catalysis Today,2009,147S, S210-S214.
    [123]Qian Shao, Peng Wang, Huiping Tian, Riyuan Yao, Yan Sun, Jun Long Study of the application of structural catalyst in naphtha cracking process for propylene production Catalysis Today,2009,147S, S347-S351.
    [124]P.A. Parikh, Catalytic and Kinetic Study of toluene ethylation over ZSM-5 wash-coated honeycomb monolith, Ind. Eng. Chem. Res.,2008,47,1793-1797.
    [125]Igor Yuranov, Albert Renken, Lioubov Kiwi-Minsker Zeolite/sintered metal fibers composites as effective structured catalysts Applied Catalysis A:General, 2005,281,55-60.
    [126]V. Sebastian, O. Iglesia, R. Mallada, L. Casado, G. Kolb, V. Hessel and J. Santamaria, Praparation of zeolite films as catalytic coatings on microreactor channels, Microp. Mesop. Mater.,2008,115,147-155.
    [127]V. Sebastian, S. Irusta, R. Mallada, and J. Santamaria, Microreactors with Pt/zeolite catalytic films for the selective oxidation of CO in simulated reformer streams Catalysis Today,2009,147S, S10-S16.
    [128]K.D. Deeng, A.R. Mohamed, S. Bhatia Process optimization studies of structured Cu-ZSM-5 zeolite catalyst for the removal of NO using design of experiments (DOE) Chem. Eng. J.,2004,103,147-157.
    [129]J.M. Zamaro, M.A. Ulla and E.E. Miro ZSM-5 growth on a FeCrAl steel support. coating characteristics upon the catalytic behavior in the NOx SCR, Microp. Mesop. Mater.,2008,115,113-122.
    [130]S. Ivanova, B. Louis, B. Madani, J.P. Tessonnier, M.J. Ledoux and C.Pharm-Huu, ZSM-5 coatings on β-SiC monoliths:possible new structured catalyst for the methanol-to-olefin process, J. Phys. Chem. C,2007,111, 4368-4374.
    [131]Olov Ohrman, Jonas Hedlund, Johan Sterte Synthesis and evaluation of ZSM-5 films on cordierite monoliths Applied Catalysis A:Gerneral,2004,270, 193-199.
    [132]M Osada, I Sasaki, M Nishioka, M Sadakata, T Okubo, Synthesis of a faujasite thin layer and its application for SO2 sensing at elevated temperatures Microporous and Mesoporous Materials 1998,23,287-294.
    [133]M. Sadakata, T. Okubo, Gas sensing with zeolite-coated quartz crystal microbalances-principal component analysis approach. Sensor and Actuator B, 2002,86,26-33.
    [134]杨冬秋,谢海芬,孙晓翔,刘全,黄宜平基于分子筛薄膜探测神经类毒气的传感器的研究,传感器与微系统,2006年,第25卷,第一期,10-12
    [1]B. A. Hobmberg, H.T. Wang, J.M. Norbeck, Y.Y. Yan, Controlling size and yield of zeolite Y nanocrystals using tetramethylammonium bromide, Microp. Mesop. Mater.,2003,59,13-28.
    [2]B. Wang, H.Z. Ma, Factors affecting the synthesis of microsized NaY zeolite Microp. Mesop. Mater.,1998,25,131-136.
    [3]S. Mintova, V. Valtchev, Synthesis of nanosized FAU-type zeolite, Porous materials in environmentally friendly process(Stud. Surf. Sci. Catal.),1999,125, 141-148.
    [4]B. A. Holmberg, H. Wang, Y. Yan, High silica zeolite Y nanocrystals by dealumination and direct synthesis, Microp. Mesop. Mater.,2004,74,189-198.
    [5]M. I. Ahmad, S. M J. Zaidi, S. U. Rahman, Desalination 2006,193,387-97.
    [6]G. Zhu, S. Qiu, J. Yu, Y. Sakamoto, F. Xiao, R. Xu, O. Terasaki Synthesis and characterization of high-quality zeolite LTA and FAU single nanocrystals, Chem. Mater.,1998,10,1483-1486.
    [7]F. Delprato, L. Delmotte, J.L. Guth, L. Huve, Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates, Zeolties,1990,10(6),546-552.
    [8]S. Sang, Z. Liu, P. Tian, Z. Liu, L Qu, Y. Zhang, Synthesis of small crystals zeolite NaY, Materials Letters 2006,60,1131-1133.
    [9]Y. C. Kim, J.Y. Jeong, J.Y. Hwang, S. D. Kim, W. J. Kim Influencing factors on rapid crystallization of high silica nano-sized zeolite Y without organic template under atmospheric pressure, J. Porous Mater.2009,16,299-306.
    [10]T. Wakihara, T. Okubo, Hydrothermal synthesis and characterization of zeolites, Chemistry letters,2005,34,276-281.
    [11]N. N. Feoktistova, S. P. Zhdanov, Study of stability of zeolites NaA and NaX in mother liquors, Russian chemical bulletin,1996,45,2287-2290.
    [12]P. M. Slangen, J. C. Jansen, H. van Bekkum, The effect of ageing on the microwave synthesis of zeolite NaA, Microp. Mater.1997,9,259-265.
    [13]G. A. Tompsett, W. C. Conner, K. S. Yngvesson, Microwave synthesis of nanoporous materials, Chem. Phys. Chem.,2006,7,296-319.
    [14]H. Katsuki and S. Furuta, Microwave Versus Conventional-Hydrothermal Synthesis of NaY Zeolite, Journal of Porous Materials,2001,8,5-12.
    [15]胡林彦,谢素娟,王清遐,刘盛林,徐龙伢,微波加热法合成NaY分子筛,工业催化,2007年第15卷增刊504-507
    [1]X. Yin, G Zhu, W. Yang, et al. Stainless-steel-net-supported zeolite NaA membrane with high permeance and high permselectivity for oxygen over nitrogen. Advanced Materials,2005,17,2006-2010.
    [2]I. Yuranov, A. Renken, L. Kiwi-Minsker. Zeolite/sintered metal fibers composites aseffective structured catalysts. Applied Catalysis A:General 281 (2005)55-60.
    [3]厉刚,郑少烽,孙聪明,等.JP-10燃料在HZSM-5/不锈钢筛网复合膜上的常压催化裂解.推进技术,2009,30(3):375-379
    [4]吴越催化化学1995年6月第一版695-697
    [5]S.P. Davis, E.V.R. Borgstedt, S.L. Suib, Growth of zeolite crystallites and coatings on metal surfaces Chem. Mater.1990,2,712-719
    [6]Svetlana Mintova, Valentin Valtchev, and Ludmil Konstantinov. Adhesivity of molecular sieve films on metal substrates. Zeolites 17:462-465
    [7]V. Sebastian, O. de la Iglesia, R. Mallada, L. Casado, G. Kolb, V. Hessel, J. Santamaria. Preparation of zeolite films as catalytic coatings on microreactor channels. Microp. and Mesop. Mater.,2008,115,147-155
    [8]V. Sebastian, S. Irusta, R. Mallada, J. Santamaria. Microreactors with Pt/zeolite catalytic films for the selective oxidation of CO in simulated reformer streams. Catalysis Today 2009,147S S10-S16
    [9]Mayuka Osada, Isao Sasaki, Masateru Nishioka, Masayoshi Sadakata, Tatsuya Okubo. Microporous and Mesoporous Materials 1998,23,287-294
    [10]Mayuka Osada, Isao Sasaki, Masateru Nishioka, Masayoshi Sadakata, Tatsuya Okubo. Chem. Mater.,15 (13),2003
    [11]Y. Kim, J. Jeong, J. Hwang, et al. Influencing factors on rapid-crystallization of high silica nano-sized zeolite Y without organic template under atmospheric pressure. J Porous Mater (2009) 16:299-306
    [12]Izumi Kumakiri,* Takeo Yamaguchi, and Shin-ichi Nakao. Preparation of Zeolite A and Faujasite Membranes from a Clear Solution. Ind. Eng. Chem. Res. 1999,38,4682-4688
    [1]李文静,王博峰,沸石分子筛的改性方法及其应用,内蒙古石油化工,第30卷,48-30.
    [2]杨睿媛,李超美,沸石分子筛的改性方法及其应用,内蒙古石油化工,第27卷,78-80.
    [3]F.E. Trigueiro, D.F.J Monterio, F.M.Z. Zotin, E.F. S-Aguiar, Thermal stability of Y zeolites containing different rare earth cations, Journal of Alloys and Compounds,2002,344,337-341.
    [4]G. Puente, E.F. S-Aguiar, F.M.Z. Zotin, Influence of different rare earth ions on hydrogen transfer over Y zeolite, Appl. Catal. A:General,2000,197(1):41-46.
    [1]龙军,邵潜,贺振富,等.规整结构催化剂及反应器研究进展,化工进展,2004,23(9),925-932.
    [2]J.C. Jansen, J.H. Koegler, H. Bekkum, et al. Zeolitic coatings and their potential use in catalysis, Microp. Mesop. Mater.,1998,21,213-226.
    [3]J. Sterte, J. Hedlund, D. Creaser, et al. Application of the seed-film method for the preparation of structured molecular sieve catalysts, Catalysis Today,2001, 69,323-329.
    [4]G.B.F. Seijger, O.L. Oudshoorn, W.E.J. Kooten, In-situ synthesis of binderless ZSM-5 zeolitic coatings on ceramic foam supports, Microp. Mesop. Mater., 2000,39,195-204.
    [5]G.B.F. Seijger, A. Berg, R. Riva, et al. In-situ preparation of ferrierite coatings on cordierite honeycomb supports, Applied Catalysis A:General,2002,236, 187-203.
    [6]M.A. Ulla, R. Mallada, L.B. Gutierrez, et al. Preparation and characterization of Co mordenite coatings onto cordierite monoliths as structured catalysts, Catalysis Today,2008,133-135,42-48.
    [7]Z.Shan, W.E.J. Kooten, O.L. Oudshoorn, et al. Optimization of the preparation of binderless ZSM-5 coatings on stainless steel monoliths by in situ hydrothermal synthesis, Microp. Mesop. Mater.,2000,34,81-91.
    [8]G.B.F. Seijger, S.G. Palmaro, K. Krishna, et al., In-situ preparation of ferrierite coatings on structured metal supports, Microp. Mesop. Mater.,2002,56,33-45.
    [9]J.M. Zamaro, M.A. Ulla, E.E. Miro, ZSM-5 growth on a FeCrAl steel support. Coating characteristics upon the catalytic behavior in the NOx SCR, Microp. Mesop. Mater.,2008,115,113-122.
    [10]B. Louis, P. Resue, L. K-Minsker, et al. Synthesis of ZSM-5 coatings on stainless steel grids and their catalytic performance for partial oxidation of benzene by N2O, Applied Catalysis A:General,2001,210,103-109.
    [11]I. Yuranov, A. Renken, L. K-Minsker, Zeolite/sintered metal fibers composites as effective structured catalysts, Applied Catalysis A:General,2005,281,55-60.
    [12]余立挺,张益群,马建新,等.金属载体上原位合成ZSM-5分子筛,’华东理工大学学报,自然科学版,2003,29,500-503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700