用户名: 密码: 验证码:
炼厂废碱液中酚的络合萃取与资源化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油炼制过程中所产生的汽油需要用氢氧化钠对其洗涤以获得精制品,为此而产生大量的废碱液。这些废碱液中含有高浓度的酚类、硫化物、油等污染物。本文以废碱液作为研究对象,通过酸化预处理和络合萃取等工艺以降低废碱液中的有机物,为废碱液的进一步生物处理奠定基础。同时在对废碱液中酚类物质回收的过程中,达到对污染物的资源化利用的目的。
     本实验以磷酸三丁酯为络合剂采用络合萃取法提取废碱液中的酚,采用多级错流工艺探讨萃取剂的损耗率。利用层流型恒界面池,通过考察转速、界面积、温度、初始酚浓度等因素对萃取速率的影响,探讨了萃取过程的控制模式。
     实验结果表明:在初始pH<8、温度为20-30℃、磷酸三丁酯的体积分数为25-30%时,当废碱液中酚浓度为12000-14000mg/L时能达到98%以上的酚类化合物的萃取率。磷酸三丁酯萃取酚类物质的动力学研究表明,酚类萃取过程属扩散控制过程,且推导得出其动力学方程式为R=kfl[ArOH(w)]·[TBP(o)]-kb[ArOH(o)],萃取反应为一级可逆反应。根据回收的酚类物质的特点,探讨将其制成微球并使其炭化活化得到酚醛基炭微球,可作为催化剂、载体、吸附材料、电极材料等介质。
     研究表明,通过对酚类萃取反萃工艺参数的考察与酚类萃取动力学控制模式的判定,以便工业应用中采取提高萃取速率更有效的措施,为工业化提供数据。回收的酚类化合物制得的炭微球是废弃物资源化利用的方法之一。
Waste lye was produced in the oil refining process in refineries after alkali cleaning oil in order to obtain petrol products. It consisted of high concentration of phenols, sulfides, oils and other pollutants. In this thesis, waste lye in oil refinery as the research object, phenolic compounds have been reduced through the acidification pretreatment and complexation extraction process, these laid the foundation for further biological treatment of waste lye. Meanwhile, recovery of phenols from waster lye in oil refinery and utilization of phenolic compounds have been studied.
     In this thesis, phenols have been extracted from waste lye by using tributyl phosphate(TBP) as extraction agent, waste ratio of extraction agent has been discussed by multistage extraction. The extraction kinetics of phenolic compounds have been measured by the constant interfacial cell with laminar flow, effects of stirring speed, temperature, specific area, phenol concentration and extraction concentration on the extraction rate have been studied, and the extraction mechanism has been discussed in detail.
     The experimental results indicated that, under conditions of the initial pH<8, the temperature in 20~30℃, the volume fraction of TBP in 25~30%, the extractability of phenol by TBP were over 98% when the initial concentration of phenol for 12000~14000mg/L. Studing on extraction kinetics of phenolic compounds showed that phenols extraction was diffusion-controlled regime, and the rate equation could be expressed as: R=kf1[ArOH(w)]·[TBP(o)]-kb[ArOH(o)], the extraction of phenols by TBP was first order reaction. According to the characteristic of phenolic compounds which have been extracted from waste lye, phenolic resin-based activated carbon was prepared by recovery of phenolic compounds had been discussed. It can attain certain adsorption effect of phenols, and it can be used as catalyst, carrier, adsorption material, electrode material, et al.
     The results showed that, through the investigation of the extraction and reverse extraction process parameters and the control model judgement of extraction dynamics of phenols, it could provide data for further industrialization, more effective measures can be taken in engineering application in order to improving extraction rate. Phenolic compounds recovery from waste lye made into carbon microspheres was one method of waste resources utilization.
引文
[1]林世雄主编.石油炼制工程(第三版)[M].北京:中国石油工业出版社,2000,594-598.
    [2]何志祥.炼油碱渣湿式空气氧化处理装置的运行研究[D].湖南:湘潭大学,2004.
    [3]牟彤,白冰,崔毓利.高效生物处理技术在炼油厂碱渣废水处理中的应用[J].油气田环境保护,2007,17(1):23-26.
    [4]江燕斌.含高浓酚、硫炼油碱洗废水治理技术的工程化研究[D].广东:华南理工大学,2000.
    [5]谢文玉,谭国强,钟理.炼油碱渣处理技术研究与应用进展[J].2007,27(6):10-14.
    [6]周红星.焦化废水联合处理方法的试验研究[D].北京:北京工业大学,2009.
    [7]Lin S.H., Wang C.S. Treatment of high-strength phenolic wastewater by a new two-step method[J]. Journal of Hazardous Matelials,2002,90:205-216.
    [8]Lee D.K., Song B.K., Jeong S.E., et al. Catalytic wet oxidation of phenol using regeneration of Pt/Al2O3[J]. Journal of the Japan Petroleum Institute,2010,53(3):184-190.
    [9]杜新,张荣,毕继诚.超临界水氧化法处理高浓度焦化废水技术开发[J].化工进展,2008,27(增刊):534-536.
    [10]Ding Z.Y., Aki S.N.V.K., et al. Catalytic supercritical water oxidation:phenol conversion and product selectivity. Environmental Science and Technology,1995,29:2748-2753.
    [11]程丽华,黄君礼,高会旺.Fenton试剂对水中酚类物质的取出效果研究[J].环境科学与技术,2004,27(4):3-4.
    [12]唐春然,许中坚,唐国丰等.H202引发的UV/Fenton苯酚光催化降解[J].中国环境科学,2009,29(7):702-706.
    [13]Korbahti B.K., Tanyolac A., et al. Continuous electrochemical treatment of phenolic wastewater in a tubular reactor[J]. Water Research,2003,37:1505-1514.
    [14]邱凌峰,应传友.Ti/IrO2-Ta2O5阳极电催化氧化法处理含酚废水[A].全国医药行业节能减排科技创新暨新技术新设备应用研讨会论文集[C].上海:全国医药行业节能减排科技创新暨新技术新设备应用研讨会,2009,55-59.
    [15]Christian P. Ultrasound and environment degradation of chloroaromatic derivative[J]. Environmental Science and Technology,1998,32:1316-1318.
    [16]严平,杨晓帆,邬江华等.超声波处理苯酚废水的研究[J].西南民族大学学报(自然科学版),2008,34(3):535-538.
    [17]Qu X.F., Zheng J.T., Zhang Y.Z. Catalytic ozonation of phenolic wastewater with activated carbon fiber in a fluid bed reactor[J]. Journal of Colloid and Interface Science,2007, 309:429-435.
    [18]魏瑞霞,庞睿智,李艳霞.树脂吸附法回收焦化废水中的酚[J].工业水处理,2008,28(12):65-69.
    [19]周富荣,杜金萍,万昆.微乳液膜连续处理焦化厂含酚废水的试验研究[J].工业水处理,2007,27(3):49-51.
    [20]殷国监.硅橡胶膜膜萃取处理高浓度含酚废水[D].辽宁:大连理工大学,2007.
    [21]庞洁.电渗析法处理含酚废水[D].北京:北京化工大学,2010.
    [22]Li Z., Wu M.H., Jiao Z., et al. Extraction of phenol from wastewater by N-octanoylpyrrolidine[J]. Journal of Hazardous Materials,2004,114(1-3):111-114.
    [23]杨义燕等.络合萃取法处理工业含酚废水,环境科学,1995,26(2):35.
    [24]Xu Jin-quan, Duan Wu-hua, Zhou Xiu-zhu, et al. Extraction of phenol in wastewater with annular centrifugal contactors [J]. Journal of Hazardous Materials,2006,131(1-3): 98-102.
    [25]殷中意等.固定相络合萃取剂处理水中苯酚的性能研究[J].重庆环境科学,2002,24(5):45-47.
    [26]葛宜掌等.协同-络合萃取法回收含酚废水中的酚类[J].环境化学,1996,15(2):112.
    [27]彭盘英,崔世海,王玉萍等.络合萃取法处理6-硝基间甲酚废水[J].现代化工,2001,21(2):30-32.
    [28]张纲,张凤宝,张国亮.化学萃取法处理高浓度含酚废水的研究[J].化学工业与工程,2000,17(1):33-36.
    [29]魏远隆,安春江,席淑琪等.固定化微生物法处理含酚废水的研究[J].南京理工大学学报,2005,29(3):326-329.
    [30]Wlodzimierz Sokol, Wojciech Korpal. Determination of the optimal operational parameters for a three-phase fluidized bed bioreactor with a light biomass support when used in treatment of phenolic wastewaters[J]. Biochemical Engineering Journal,2004,20:49-56.
    [31]Danesi P.R. Armolex:an apparatus for solvent extraction kinetic measurements [J]. Separation Science and Technology,1982,17(7):961-968.
    [32]郑重,李德谦.层流型恒界面池[P].CN:94220491.3,1994.
    [33]朱屯,陈长庆.新型恒界面池系统及其应用[J].化学通报,1988,2:32-33.
    [34]Inci I. Linear solvation energy relationship modeling and kinetic studies on reactive extraction of succinic acid by tridodecylamine dissolved in MIBK[J]. Biotechnology Progress, 2007,23(5):1171-1179.
    [35]Zhong Zheng, Jun Lu, et al. The kinetics study in liquid-liquid systems with constant interfacial area cell with laminar flow[J]. Chemical Engineering Science,1998,3(13):2327-2333.
    [36]余静,刘代俊等.反胶团萃取磷酸溶液中镁的动力学[J].高校化学工程学报,2009,23(6):939-944.
    [37]Dongbei Wu, Xianglan Wang, Deqian Li. Extraction kinetics of Sc(Ⅲ), Y(Ⅲ), La(Ⅲ) and Gd(Ⅲ) from chloride medium by Cyanex 302 in heptane using the constant interfacial cell with laminar flow[J]. Chemical Engineering and Processing,2007,46:17-24.
    [38]戴猷元.中空纤维膜萃取的传质特性及其过程强化[J].膜科学与技术,2003,23(4):130-133.
    [39]刘江,周荣琪.离心分配色谱技术及其在天然产物分离中的应用[J].化工进展,2003,22(11):1176-1181.
    [40]郑卫.逆流色谱技术在抗生素分离纯化中的应用[J].中国抗生素杂志,2005,30(3):180-186.
    [41]欧阳贻德,苏裕光等.异戊醇从氯化物-磷酸体系中萃取盐酸的动力学[J].化学工程,2008,36(9):1-4.
    [42]易莜筠等.研究萃取动力学的新方法-气搅法[J].华南理工大学学报(自然科学版),2001,29(1):40-42.
    [43]Harding J. Aqueous dispersions based on heat-hardenable phenolic resins containing a gum mixture stabilizing acent[P]. US Patent,3823103,1974.
    [44]Smiley L.H. Foamed thermoset articles and processes[P]. US Patent,4026828,1977.
    [45]McCarthy Jr N J. Aqueous phenolic resole dispersion containing certain hydroxyalkylated gums as interracial agents[P]. US Patent,4039525,1977.
    [46]Paeala L.A., Blickensderfer J.R. Rubber modified phenolic friction panicles[P]. US Patent,4316827,1982.
    [47]Wismer M., Schimmel K.F., Temple R.G. Organic flatting agents and method of preparation[P]. US Patent,3850868,1974.
    [48]Singh A., Lal D. Effect of reaction parameters on the particle sizes of crosslinked spherical phenolic beads by suspension polymerization of phenol and formaldehyde [J]. Journal of Applied Polymer Science,2006,100(3):2323-2330.
    [49]林金火,刘小英.悬浮缩聚法制备腰果酚醛树脂多孔微球的特性[J].应用化学,2006,23(4):432-434.
    [50]官理想,吴文辉.反相细乳液液滴界面聚合法制备酚醛树脂多孔微球[J].现代化工,2009,29(8):41-43.
    [51]Zhou H., Huang G.S., Gao P., et al. Preparation of porous/hollow particles of phenolic resin[J]. Advances in Polymer Technology,2007,18(7):582.
    [52]Zhou H., Li B., Huang G.S. Sound absorption behavior of multiporous hollow polymer micro-spheres[J]. Materials Letters,2006,60(29):3451.
    [53]李开喜等.酚醛树脂基活性炭微球的电化学性能研究Ⅰ.酚醛树脂基微球制备过程的研究[J].新型炭材料,2005,20(1):58-62.
    [54]刘生,张学军,沈曾民.乳液法制备中空酚醛树脂微球[A].2004年材料科学与工程新进展论文集[C].北京:2004年中国材料研讨会,2004,923-928.
    [55]Echigo Y., Sugawam K., Yamao M., Suematu Y., Asami K. Spherical particles of thermosetting phenolic resin and process for producing the same[P]. US Patent,4839445, 1989.
    [56]吕永根,凌立成,吴世旻等.用悬浮法从沥青和树脂制备微米球炭[J].新型炭材料, 2001,16(3):1-5.
    [57]刘小军,王永邦,乔文明等.氯化锌活化制备沥青基球形活性炭[J].华东理工大学学报(自然科学版),2010,36(4):523-528.
    [58]TSAI W.T., CHANG C.Y., WANG S.Y., et al. Preparation of activated carbons from corn cob catalyzed by potassium salts and subsequent gasification with CO2[J]. Bioresource Technology,2001,78(2):203-208.
    [59]孙晓峰,王新宇,赖延清等.化学活化和化学-物理联合活化制备石油焦基活性炭[J].中南大学学报(自然科学版),2010,41(1):50-54.
    [60]王勇,吴承思,万涛.TiO2酚醛活性炭复合材料降解含酚废水的研究[J].武汉理工大学学报,2003,25(10):8-11.
    [61]王云海,赵景联.甲醇气相羰基化新型镍催化剂的研究Ⅰ.酚醛树脂基活性炭负载镍催化剂的制备[J].天然气化工,2002,27(3):5-12.
    [62]Lanying J., Fengyun Z., Yongqi H., et al. Modification of Activated Carbon Fiber by loading Metals and Their Performance on SO2 Removal [J]. Chinese Journal of Chemical Engineering,2006,14(4):478-485.
    [63]张玺.酚醛树脂基球形活性炭的制备及对C02吸附的研究[D].上海:华东理工大学,2010.
    [64]郑军.载铁酚醛树脂基活性炭的制备及H2S脱除性能研究[J].煤炭转化,2008,31(3):77-81.
    [65]Alexandroff E E. NBC Defense & Technology International [J].1986,1(2):44.
    [66]夏笑虹,刘洪波,陈杰等.炭化温度对酚醛树脂基活性炭孔结构及电化学性能的影响研究[J].功能材料,2009,40(12):2023-2026.
    [67]Zhenhe Feng, Ruisheng Xue, Xiaohong Shao. Highly mesoporous carbonaceous material of activated carbon beads for electric double layer capacitor [J]. Electrochimica Acta,2010,55 (24):7334-7340.
    [68]卢月美,巩前明,梁吉.中孔碳纳米管/活性炭微球的制备及其对VB12的吸附研究[A].第九届全国新型炭材料学术研讨会论文集[C].厦门:第九届全国新型炭材料学术研讨会,2009.79-84.
    [69]Kureha Kagaku Kabusshiki Kaisha Japan. Method of treatment for stoma-peripheral inflammation diseases[P]. US Patent,5556622,1996.
    [70]王新涛,刘风军.微粒子活性炭在胃癌诊治中的应用[J].中国现代普通外科进展,2007,10(6):533-535.
    [71]黄允宁,王炜,苏刚,等.微粒子活性炭在胃癌淋巴结清扫术中的应用价值[J].中华普通外科杂志,2002,17(6):354-355.
    [72]周桂林,谢红梅,邱发礼.活性炭吸附储存H2的研究[J].太阳能学报,2007,28(11):1256-1261.
    [73]M.Jorda-Beneyto, F.Suarez-Garcia, D.Lozano-Castello, et al. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures[J]. Carbon,2007, 45(2):293-303.
    [74]Shao Xiaohong, Wang Wenchun, Xue RuisSheng, Shen Zengming. Adsorption of methane and hydrogen on mesocarbons microbeads by experiment and molecular simulation [J]. Journal of Physical Chemistry B,2004,108(9):2970-2978.
    [75]靳文广.水处理用活性炭筛选方法的研究[D].上海:上海大学,2009.
    [76]张巍,应维琪,常启刚,等.水处理活性炭吸附性能指标的表征与应用[J].中国环境科学,2007,27(3):289-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700