用户名: 密码: 验证码:
高压大容量交流有源电力滤波器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对10kV~35kV高压交流配电系统中日益严重的谐波与无功危害,在全面总结国内外有关高压大容量交流有源电力滤波器方案并分析其存在不足的基础上,将传统变压器理论与现代电力电子技术有机地结合起来,提出了三种新型的适用于高压交流配电系统的有源电力滤波技术新方案,通过理论推导、仿真分析和实验结果论证了这三种新方案的正确性、有效性和实用性,为高压大容量交流有源电力滤波器的工程应用奠定了一定的基础。全文研究的内容主要涉及六个方面:
     1、为了解决有源电力滤波器的大容量问题,提出一种变压器二次侧多补偿绕组的结构。将此变压器应用于基于基波磁通补偿的串联混合型有源电力滤波器中,成功地研制了一套100kVA的实验样机。实时检测串联变压器一次侧的基波电流,根据基波磁通补偿条件,得到基波补偿电流的指令信号,通过电力电子变流器跟踪产生基波补偿电流注入到二次侧多个补偿绕组中,使得串联变压器对基波电流呈现很小的一次侧漏阻抗,对谐波电流呈现很大的一次侧自阻抗,从而迫使负载谐波电流流入无源滤波器支路。通过采用三个独立的单相变压器的结构,该有源电力滤波器在三相负载严重不平衡时,也能具有极好的谐波抑制能力。该有源电力滤波器中各变流器结构完全相同,通过模块化设计很容易实现。通过将此有源电力滤波器与TCR联合使用,可以实现谐波抑制与无功功率补偿相结合。
     2、提出一种基于线性并联变压器谐波阻抗控制的并联型有源电力滤波器新方案。实时检测并联变压器一次侧的谐波电流,根据谐波补偿条件,得到谐波补偿电流的指令信号,通过电力电子变流器跟踪产生谐波补偿电流注入到二次侧补偿绕组中,使得并联变压器对谐波电流呈现近似为零的低阻抗,对基波电流呈现很大的一次侧自阻抗,从而输导系统中的谐波电流流入并联变压器支路。并联变压器铁心开有气隙,工作在较低的磁密状态,该工作点位于B-H曲线的线性段,以确保滤波效果。通过并联变压器降压隔离,该有源电力滤波器中的功率半导体开关器件始终工作在安全范围之内,确保了装置的安全性、可靠性。通过采用并联变压器二次侧多补偿绕组的结构,可以大大提高有源电力滤波器的容量。
     3、提出一种基于线性并联变压器谐波阻抗控制与基波阻抗可调的并联混合型有源电力滤波器新方案。实时检测并联变压器一次侧的谐波电流与基波电流,根据恒定的谐波补偿系数与实时变化的基波补偿系数,计算出补偿电流的指令信号,通过电力电子变流器跟踪产生补偿电流注入到二次侧补偿绕组中,使得并联变压器对谐波电流呈现近似为零的低阻抗,对基波电流呈现连续无级可调的电抗。因而,该有源电力滤波器不仅能够有效地输导系统中的谐波电流流入并联变压器支路,与无源滤波器相结合,还能够实时补偿系统的无功功率。同样通过采用并联变压器二次侧多补偿绕组的结构来提高有源电力滤波器的容量。
     4、提出三种单相有源电力滤波器指令电流的提取方法,即基于LC并联谐振的基波电流检测方法、基于开关电容滤波器的基波电流检测方法、基于单相d-q变换的谐波电流检测方法及其改进电路。针对基于谐波阻抗控制的并联型有源电力滤波器和基于谐波阻抗控制与基波阻抗可调的并联混合型有源电力滤波器独特的工作原理,提出一种指令电流离线检测方法,此检测方法由于不存在延时而具有理想的快速性。通过采用三相各自独立检测的策略,这些检测方法同样可以用于三相有源电力滤波器。
     5、对本文提出的三种有源电力滤波器建立了精确的数学模型,推导出通用的传递函数,给出了系统稳定的充要条件。结合实验样机应用情况,对有源电力滤波器中应用最广泛的瞬时值比较电流非线性控制和三角波比较电流线性控制进行了研究。
     6、对本文三种实验样机中涉及到的辅助电路与系统进行了研究。主要涵盖五个方面的内容:IGBT栅极驱动原理及样机中使用的三种驱动电路、电压型桥式变换器中典型的IGBT缓冲电路、IGBT过流过压与过热保护方法、样机中变压器与电感设计原则、控制系统的设计思想。
In this dissertation, three novel active power filters are proposed for 10kV~35kV power distribution systems application, which are the combination of traditional transformer theory and modern power electronic technology. The disadvantages of the conventional active power filters for high voltage gird are overcome in the proposed schemes, thus the security and reliability, the dynamic responses and the ability of harmonic suppression and reactive power compensation are satisfactory. The correctness, the validity and the practicality of the three schemes are demonstrated by the theory deduction, the simulation analysis and the experimental results, which establishes definite base for the practical applications of high voltage large capacity alternate active power filters.
     To manufacture a high-power active filtering device, a novel transformer structure that contains one primary and multiple secondary compensation windings is presented. The proposed linear transformer is applied to a series hybrid active power filter that is based on the fundamental magnetic flux compensation and thus a 100kVA prototype is successfully developed. Firstly, the series transformer’s primary fundamental current is detected. Then, the reference signals of fundamental compensation currents are obtained according to the fundamental magnetic flux compensation condition. Fundamental compensation currents that produced by power electronic converters are injected into the multiple compensation windings. In this condition, the series transformer can really exhibit very low primary leakage impedance to fundamental and very high primary self-impedance to harmonics and thus acts as a“harmonic isolator”. The topology consisting of three independent single- phase transformers and single-phase converters is adopted in three-phase active power filters in order to deal with unbalanced harmonic-producing loads. Since the converters are the same, modular design scheme can be adopted. The proposed active power filter together with the TCRs can be used to realize the combination of harmonic suppression and reactive power compensation.
     A novel shunt active power filter is proposed, which is based on the harmonic impedance control of a linear parallel transformer. Firstly, the primary harmonic current of the parallel transformer is detected. Then, the reference signal of harmonic compensation current can be obtained according to the harmonic compensation condition. Harmonic compensation current that is produced by power electronic converter is injected into the secondary compensation winding. In this condition, the parallel transformer can exhibit nearly zero impedance to harmonic current and very high primary self-impedance to fundamental current and thus lead harmonic current in power systems to flow into the transformer branch. With a step-down transformer, the power semiconductor switches of the active power filter are always worked in relatively low voltage, which ensure the security and reliability of the active filtering device. To greatly increase the capacity of the proposed active power filter, a novel parallel transformer structure with multiple secondary compensation windings should be adopted.
     A novel shunt hybrid active power filter is proposed, which is based on the harmonic impedance control and fundamental impedance adjust of a linear parallel transformer. Firstly, the parallel transformer’s primary harmonic current and primary fundamental current are separated. Then, the reference signal of compensation current is calculated according to the fixed harmonic compensation coefficient and the variational fundamental compensation coefficient. Compensation current that is produced by power electronic converter is injected into the secondary compensation winding. In this condition, the parallel transformer can exhibit nearly zero impedance to harmonic current and continuous adjustable reactance to fundamental current. Thus, the proposed shunt hybrid active power filter can not only lead harmonic current in power systems to flow into the transformer branch but also compensate reactive power of power systems together with passive power filter. In the same way, a novel parallel transformer structure with multiple secondary compensation windings should be adopted to greatly increase the capacity of the proposed active power filter.
     Three reference current detecting methods are presented for single-phase active power filter, i.e. fundamental current detecting method based on parallel resonance of passive LC filter, fundamental current detecting method based on switched-capacitor filter (SCF), harmonic current detecting method based on d-q transformation and its improved circuits. A reference current off-line detecting method is also presented for the two shunt active power filters proposed in the dissertation, which has ideal dynamic response since detecting delay does not exist. With strategy of each phase independent detecting, these methods can also be implemented in three-phase active power filter.
     Unified accurate mathematic model of the three active power filters presented in the dissertation is established, transfer function is deduced, sufficient and necessary condition of system steady is also put forward. Two current control schemes are discussed, i.e. current nonlinear control method based on instantaneous compare and current linear control method based on triangle compare.
     Finally, assistant circuits and control systems of the prototypes are discussed, which mainly contains five aspects, i.e. operation principle of IGBT grid driver and introduction of three drivers implemented in the prototypes, typical IGBT cushion circuits for voltage source converters, protection methods of over-current over-voltage and over-temperature, design principles of transformers, inductances and control systems.
引文
[1] 吴竞昌,孙树勤,宋文南等.电力系统谐波.北京:水利电力出版社,1988
    [2] 王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998
    [3] IEEE recommended practices and requirements for harmonic control in electrical power system, ANSI/IEEE Standard 60519,1992
    [4] IEC D Sterbances in supply system caused by household appliances and similar electrical equipment international electro-technical commission publication 60555,1982
    [5] 水利电力部.电力系统谐波管理暂行规定(SD126-84). 北京:水利电力出版社,1984
    [6] 中国国家标准 GB/T 14549-93.电能质量公用电网谐波. 北京:中国标准出版社,1994
    [7] Key T S,Lai J H.Comparison of standards and power supply design options for limiting harmonic distortion in power systems. IEEE Trans Industry Applications, 1993,29(4):688-695
    [8] Tanaka T,Akagi H.A new method of harmonic power detection based on the instantaneous active power in three-phase circuits.IEEE Trans Power Delivery, 1995,10(4):1737-1742
    [9] Akagi H.Prospects of new technologies for power electronics in the 21st century. IEEE/PES Transmission and Distribution Conference and Exhibition 2002:Asia Pacific,2002(2):1399-1404
    [10] Lorenz L,Mitlehner H.Key power semiconductor device concepts for the next decade.IEEE-IAS,2002(1):564-569
    [11] Ren F,Zolper J C.Wide energy bandgap electronic devices.River Edge,NJ:World Scientific Pub,2003
    [12] Hingorani N G. Network access and future of power transmission. EPRI Journal, 1986,Apirl-May:45-52
    [13] Hingorani N G. Introducing Custom Power. IEEE Spectrum, 1995, 32(6): 41-48
    [14] 夏道止,沈赞埙.高压直流输电系统的谐波分析及滤波.北京:水利电力出版社,1994
    [15] 陈坚,电力电子学——电力电子变换和控制技术.北京:高等教育出版社,2002
    [16] Bird B M,Marsh J F,Mclellan P R.Harmonic reduction in multiple converters by triple-frequency current injection.Proc IEE,1969,116(10):1730-1734
    [17] Akagi H,Kanazawa Y,Nabae A.Generalized theory of the instantaneous reactive power in three-phase circuits. In: IEEE & JIEE Proceedings IPEC. Tokyo: IEEE, 1983:1375-1386
    [18] Akagi H,Tsukamoto Y,Nabae A.Analysis and design of an active power filter using Quad-series Voltage source PWM Converters.IEEE Trans Industry Applications, 1990,26(1):93-98
    [19] Malesani L, Rossetto L, Renti P. Active power filter with hybrid energy storage. IEEE Trans Power Electronics,1991,6(3):392-397
    [20] Enjeti P N,Shireen W,Packebush P et al.Analysis and design of a new active power filter to cancel neutral current harmonics in three-phase four-wire electric distribution systems.IEEE Trans Industry Applications,1994,30(6):1565-1572
    [21] Dixon J W,Garcia J J,Moran L.Control system for three-phase active power filter which simultaneously compensates power factor and unbalanced loads.IEEE Trans Industrial Electronics,1995,42(6):636-641
    [22] Torrey D A, Zamel A M. Single-phase active power filters for multiple nonlinear loads. IEEE Trans Power Electronics,1995,10(3):263-272
    [23] Akagi H. New trends in active filters for power conditioning. IEEE Trans Industry Applications,1996,32(6):1312-1322
    [24] Dixon J W,Venegas G,Moran L A.A series active power filter based on a sinusoidal current-controlled voltage-source inverter.IEEE Trans Industrial Electronics,1997, 44(5): 612-620
    [25] Peng F Z. Application issues of active power filters. IEEE Industry Applications Magazine,1998,4(5):21-30
    [26] Noriega G V,Karady G G.Five step-low frequency switching active power filter for network harmonic compensation in substations.IEEE Trans Power Delivery,1999, 14(4):1298-3303
    [27] Adil M A,Torrey D A.A pssive series,active shunt filter for high power applications.IEEE Trans Power Electronics,2001,16(1):101-109
    [28] 王群,姚为正,刘进军等.谐波源与有源电力滤波器的补偿特性.中国电机工程学报,2001,21(2):16-20
    [29] Kim S, Enjeti P N. A new hybrid active power filter (APF) topology. IEEE Trans Power Electronics, 2002, 17(1): 48-54
    [30] 邓占锋,朱东起,姜新建.三相四线制下中线谐波电流治理的新方法.电力系统自动化,2002,26(4):15-19
    [31] Jin T,Wen J,Smedley K.Control and topologies for three-phase three-level active power filters.2004 IPEMC,pp.655-664
    [32] Akagi H.Active power filters.Proceedings of the IEEE,2005,93(12):2128-2141
    [33] 范瑞祥,罗安,章兢等.谐振注入式有源滤波器的输出滤波器研究.中国电机工程学报,2006,26(5):95-100
    [34] Choe G, Park M. A new injection method for AC harmonic elimination by active power filter. IEEE Trans Industrial Electronics, 1988, 35(1): 141-147
    [35] Bhavaraju V B, Enjeti P. A fast active power filter to correct line voltage sags. IEEE Trans Industrial Electronics, 1994, 41(3): 333-338
    [36] Nastran J,Cafael R,Seliger M et al.Active power filter for nonlinear AC loads. IEEE Trans Power Electronics,1994,9(1):92-96
    [37] Wang Zhaoan,Wang Qun,Yao Weizheng et al.A series active power filter adopting hybrid control approach.IEEE Trans Power Eletronics,2001,16(3):301-310
    [38] Srianthumrong S, Akagi H. A DC module for transient analysis of a series active filter integrated with a double-series diode rectifier. IEEE Trans Industry Applications, 2003, 39(3): 864-873
    [39] Gyugyi L, Strycula E C. Active power filtes. Proceedings of IEEE/IAS Annual Meeting, 1976, pp. 529-535
    [40] Akagi H, Kanazawa Y, Nabae A. Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Trans industry Applications,1984,20(3):625-630
    [41] Moran L A, Dixon J W, Wallace R R. A three-phase active power filter operating with fixed switching frequency for reactive power and current harmonic compensation.IEEE Trans Industrial Electronis,1995,42(4):402-408
    [42] Chatterjee K, Fernandes B G, Dubey G K. An instantaneous reactive volt-ampere compensator and harmonic suppressor system. IEEE Trans Power Electronics, 1999,14(2):381-392
    [43] Jeong G Y, Park T J, Kwon B H. Line-voltage-sensorless active power filter for reactive power compensation.IEE Proceedings Electric Power Applications,2000, 147(5):385-390
    [44] Peng F Z, Akagi H, Nabae A. A new approach to harmonic compensation in power systems — a combined system of shunt passive and series active filters. IEEE Trans Industry Applications,1990,26(6):983-990
    [45] Kim Y S, Kim J S, Ko S H. Three-phase three-wire series active power filter, which compensates for harmonic and reactive power. IEE Proceedings Electric Power Applications,2004,151(3):276-282
    [46] Li Dayi, Chen Qiaofu, Jia Zhengchun et al. A novel active power filter with fundamental magnetic flux compensation. IEEE Trans Power Delivery,2004,19(2): 799-805
    [47] 颜晓庆,杨君,王兆安.并联混合型电力有源滤波器的研究.电力电子技术, 1998(4):4-6
    [48] Fujita H, Yamasaki T, Akagi H. A hybrid active filter for damping of harmonic resonance in industrial power systems.IEEE Trans Power Electronics,2000,15(2): 215-222
    [49] Rivas D, Moran L, Dixon J W et al. Improving passive filter compensation performance with active techniques. IEEE Trans Industrial Electronics, 2003, 50(1): 161-170
    [50] 邓占锋,朱东起,姜新建.降低有源部分容量的混合电力滤波器.清华大学学报, 2003,43(3):293-295
    [51] Jou H L,Wu J C,Chang Y J et al.New active power filter and control method.IEE Proceedings Electric Power Applications,2005, 152(2):175-181
    [52] Jou H L, Wu J C, Chang Y J et al. A novel active power filter for harmonic suppression. IEEE Trans Power Delivery, 2005, 20(2): 1507-1513
    [53] Akagi H, Fujita H. A new power line conditioner for harmonic compensation in power systems. IEEE Trans Power Delivery, 1995, 10(3): 1570-1575
    [54] 朱鹏程,李勋,康勇等.统一电能质量控制器控制策略研究.中国电机工程学报, 2004,24(8):67-73
    [55] 肖国春.直流有源电力滤波器的理论及应用研究[博士学位论文],西安:西安交通大学图书馆,2002
    [56] Ledwich G, Doulai P. Multiple converter performance and active filtering. IEEE Trans Power Electronics,1995,10(3):273-279
    [57] Moran L A,Fernandez L,Dixon J W et al.A simple and low-cost control strategy for active power filters connected in cascade.IEEE Trans Industrial Electronics,1997, 44(5): 621-629
    [58] 李建林,林平,王长永等.基于载波相移 SPWM 技术的电流型有源电力滤波器的研究.中国电机工程学报,2003,23(10):99-103
    [59] Wang Geng,Li Yongdong,You Xiaojie.A novle control algorithm for cascade shunt active power filter. 35th Annual IEEE Power Electronics Specialists Conference, 2004, pp: 771-775
    [60] Massoud A M, Finney S J, Williams B W. Seven-level shunt active power filter. 2004 11th International Conference on Harmonics and Quality of Power, pp. 136-141
    [61] Tan P C,Loh P C,Homes D G.Optimal impedance termination of 25-kV electrified railway systems for improved power quality.IEEE Trans Power Delivery,2005, 20(2): 1703-1710
    [62] 丁洪发,段献忠,朱庆春.基于不对称级联逆变器的串联混合有源电力滤波器.电力系统自动化,2005,29(20):63-67
    [63] Ortuzar M E, Carmi R E, Dixon J W et al. Voltage-source active power filter based on multilevel converter and ultracapacitor DC link. IEEE Trans Industrial Electronics,2006, 53(2): 477-485
    [64] Dixon J, Valle Y D, Orchard M et al. A full compensating system for general loads, based on a combination of thyristor binary compensator, and a PWM-IGBT active power filter. IEEE Trans Industrial Electronics, 2003, 50(5): 982-989
    [65] Tan P C,Loh P C,Holmes D G.A robust multilevel hybrid compensation system for 25-kV electrified railway applications.IEEE Trans Power Electronics,2004,19(4): 1043-1052
    [66] Lopez M,Moran L,Dixon J.A three-phase active power filter implemented with multiple single-phase inverter module in series.Proceedings of the 2000 IEEE ISIE, 2000,pp.96-101
    [67] Lopez M G, Moran L T, Espinoza J C et al. Performance analysis of a hybrid asymmetric multilevel inverter for high voltage active power filter applications. 2003 IEEE IECON, pp.1050-1055
    [68] Akagi H, Fujita H, Wada K. A shunt active filter based on voltage detection for harmonic termination of a radial power distribution line. IEEE Trans Industry applications,1999,35(3):638-645
    [69] 王跃,杨君,王兆安等.电气化铁路用混合电力滤波器的研究.中国电机工程学报,2003,23(7):23-27
    [70] Hafner J,Aredes M,Heumann K.A shunt active power filter applied to high voltage distribution lines.IEEE Trans Power Delivery,1997,12(1):266-272
    [71] Liu Fei, Zou Yunping, Ding Kai et al. A novel combined control algorithm for the hybrid active power filter applied to high voltage grid. The 30th Annual IEEE-IES, 2004, pp:1435-1439
    [72] Inzunza R, Akagi H. A 6.6-kV transformerless shunt hybrid active filter for installation on a power distribution system. IEEE Trans Power Electronics, 2005, 20(4): 893-900
    [73] Rivas D,Moran L,Dixon J et al. A simple control scheme for hybrid active power filter. IEE proceedings Generation, Transmission & Distribution, 2002, 149(4): 485-490
    [74] 刘飞,邹云屏,李辉.C 型混合有源电力滤波器.中国电机工程学报, 2005, 25(6): 75-80
    [75] 谭甜源,罗安,唐欣等.大功率并联混合型有源电力滤波器的研制.中国电机工程学报,2004,24(3):41-45
    [76] Ye Z M,Dong B,Qian Z M.A novel active power filter for high voltage application. Proceedings of IEEE Annual PESC,1998, pp:1429-1435
    [77] Fujita H, Akagi H. A practical approach to harmonic compensation in power systems — series connection of passive and active filters. IEEE Trans Industry Applications,1991,27(6):1020-1025
    [78] 李达义,陈乔夫,贾正春.一种新型的串联型有源电力滤波器.电力系统自动化, 2000,24(18):27-29
    [79] 李达义,陈乔夫,贾正春.一种实用的基于基波磁通补偿的串联混合型有源电力滤波器.电工技术学报,2003,18(1):67-71
    [80] 李达义,陈乔夫,贾正春等.基于基波磁通补偿的三相有源电力滤波器.电力系统自动化,2003,27(11):48-51
    [81] Bhavaraju V B, Enjeti P N. Analysis and design of an active power filter for balancing unbalanced loads. IEEE Trans Power Electronics,1993,8(4):640-647
    [82] Verdelho P, Marques G D. An active power filter and unbalanced current compensator. IEEE Trans Industrial Electronics,1997,44(3):321-328
    [83] Lee G M, Lee D C, Seok J K. Control of series active power filters compensating for source voltage unbalance and current harmonics. IEEE Trans Industrial Electronics, 2004,51(1):132-139
    [84] 史伟伟,蒋全,胡敏强等.串联型电力有源滤波器中低通滤波器的设计及参数优化.中国电机工程学报,2001,21(11):74-78
    [85] 邓礼宽, 姜新建, 朱东起等. APF 和 SVC 联合运行的稳定控制. 电力系统自动化,2005,29(18):29-32
    [86] 陈乔夫,李达义,熊娅俐等.一种大容量的串联型有源电力滤波器.电力系统自动化,2005,29(1):73-76
    [87] Li Dayi,Chen Qiaofu,Jia Zhengchun et al.A high-power active filtering system with fundamental magnetic flux compensation.IEEE Trans Power Delivery,2006,21(2): 823-830
    [88] 梁旭,刘文华,陈建业等.基于多重化逆变器的静止无功发生器直流侧电流分析.电工技术学报,2000,15(1):52-56
    [89] Shatshat R E, Kazerani M, Salama M M A. Multi converter approach to active power filtering using current source converters. IEEE Trans Power Delivery, 2001, 16(1): 38-45
    [90] 卓放,周新,李可等.模块化 PWM 主电路实现的大容量有源电力滤波器.电力系统自动化,2002,26(16):45-47
    [91] 唐卓尧,任震.并联型混合滤波器及其滤波特性分析.中国电机工程学报,2000, 20(5):25-29
    [92] 唐敏,李群湛,贺建闽.牵引变电所无功谐波综合补偿方案研究.电网技术,2004, 28(2):47-52
    [93] 罗安,付青,王丽娜等.变电站谐波抑制与无功补偿的大功率混合型电力滤波器.中国电机工程学报,2004,24(9):115-123
    [94] 张长征,陈乔夫,赵尤斌等.基于谐波阻抗控制的并联型有源电力滤波器.中国电机工程学报,2005,25(25):88-92
    [95] 李达义,陈乔夫,贾正春.基于磁通可控的可调电抗器的新原理.中国电机工程学报,2003,23(2):116-120
    [96] 盛建科,陈乔夫,熊娅俐等.基于磁通可控的新型自动调谐消弧线圈.电工技术学报,2005,20(2):88-93
    [97] Sheng Jianke,Chen Qiaofu,Ke Jianxing et al.A novel principle of magnetic flux compensation and its application in power systems. International Journal of Electronics,2003,90(11/12):707-720
    [98] 姜齐荣,刘文华,韩英铎等.± 20M var STATCOM 控制器设计.电力系统自动化, 2000,24(12):24-28
    [99] 徐永海,肖湘宁,刘昊等.混合型有源电力滤波器与并联电容器组联合补偿技术研究.电工技术学报,2005,20(1):112-118
    [100] Tepper J S, Dixon J W, Venegas G et al. A simple frequency-independent method for calculating the reactive and harmonic current in a nonlinear load. IEEE Trans Industrial Electronics,1996,43(6):647-654
    [101] Nedeljkovic D, Nastran J, Voncina D et al. Synchronization of active power filter current reference to the network. IEEE Trans Industrial Electronics,1999,46(2): 333-339
    [102] 赵成勇,李庚银,李海生等.电力牵引系统的预测型谐波电流检测方法研究.电工技术学报,2001,16(1):85-88
    [103] Newman M J, Zmood D N, Homes D G.. Stationary frame harmonic reference generation for active filter systems. IEEE Trans Industry Applications,2002,38(6): 1591-1599
    [104] Li Hongyu, Zhuo Fang, Wang Zhaoan et al. A novel time-domain current-detection algorithm for shunt active power filters. IEEE Trans Power Systems, 2005, 20(2): 644-651
    [105] Ortega J M M,Esteve M P,Payan M B et al.Reference current computation methods for active power filters: accuracy assessment in the frequency domain. IEEE Trans Power Electronics, 2005, 20(2): 446-456
    [106] Czarnecki L S. Considering on the reactive power in nonsinusoidal situations. IEEE Trans Instrument and Measurement,1985,34(3):399-404
    [107] 李达义,陈乔夫,熊娅俐等.一种简单实用的基波检测方法.电力系统自动化, 2004,28(21):54-57
    [108] 李达义,陈乔夫,贾正春等.一种基于开关电容滤波器的快速基波检测方法.电力系统自动化,2005,29(10):45-49
    [109] Zhang F, Geng Z, Yuan W. The algorithm of interpolating windowed FFT for harmonic analysis of electric power system. IEEE Trans Power Delivery, 2001, 16(2): 160-164
    [110] Hidalgo R M, Fernandez J G, Rivera R R et al. A simple adjustable window algorithm to improve FFT measurements. IEEE Transactions on Instrumentation and Measurement,2002,51(1):31-36
    [111] Czarnecki L S. On some misinterpretations of the instantaneous reactive power p-q theory. IEEE Trans Power Electronics, 2004, 19(3): 828-836
    [112] Czarnecki L S. Instantaneous reactive power p-q theory and power properties of three-phase systems. IEEE Trans Power Delivery, 2006, 21(1): 362-367
    [113] Wang Qun, Wu Ning, Wang Zhaoan. A neuron adaptive detecting approach of harmonic current for APF and its realization of analog circuit. IEEE Trans Instrumentation and Measurement, 2001, 50(1): 77-84
    [114] 杨桦,任震.基于小波变换检测谐波的新方法.电力系统自动化,1997,21(10): 39-41
    [115] Barros Julio, Perez Enrique. An adaptive method for determining the reference compensating current in single-phase shunt active power filters. IEEE Trans Power Delivery, 2003, 18(4): 1578-1580
    [116] Han B M, Bae B Y, Ovaska S J. Reference signal generator for active power filters using improved adaptive predictive filter. IEEE Trans Industrial Electronics, 2005, 52(2): 576-584
    [117] 李达义.基于基波磁通补偿的串联混合型有源滤波器研究[博士学位论文],武汉,华中科技大学图书馆,2005
    [118] Jung Y G,Kim W Y,Lim Y C et al.The algorithm of expanded current synchronous detection for active power filters considering three-phase unbalanced power system. IEEE Trans Industrial Electronics,2003,50(5):1000-1006
    [119] 王群,姚为正,王兆安.高通和低通滤波器对谐波检测电路检测效果的影响研究.电工技术学报,1999,14(5):22-26
    [120] 蒋斌,颜钢锋,赵光宙.一种单相谐波电流检测法的研究.电工技术学报.2000, 15(6):65-69
    [121] 周卫平,吴正国,夏立.基波相位和频率的高精度检测及在有源电力滤波器中的应用.中国电机工程学报,2004,24(4):91-96
    [122] Bord D M, Novotny D W. Current control of VSI-PWM inverter. IEEE Trans Industry Applications,1985,21(4):562-570.
    [123] Joachim Holtz.Pulsewidth modulation- a survey.IEEE Trans Industrial Electronics, 1992,39(5):410-420
    [124] Buso S, Malesani L, Mattavelli P. Comparison of current control techniques for active filter applications. IEEE Trans Industrial Electronics,1998,45(2):722-729
    [125] Malesani L, Mattavelli P, Tomasin P. High-performance hysteresis modulation technique for active filters. IEEE Trans Power Electronics,1997,12(5):876-884
    [126] Malesani L, Mattavelli P, Tomasin P. Improved constant-frequency hysteresis current control of VSI inverters with simple feedforward bandwidth prediction.IEEE Trans Industry Applications,1997,33(5):1194-1202
    [127] Rahman K M, Rezwan M, Choudhury M A et al. Variable-band hysteresis current controllers for PWM voltage-source inverters. IEEE Trans Power Electronics,1997, 12(6):964-970
    [128] Pan C T, Chang T Y. An improved hysteresis current controller for reducing switching frequency. IEEE Trans Power Electronics,1994,9(1):97-104
    [129] 戴朝波,林海雪.电压源型逆变器三角载波电流控制新方法.中国电机工程学报, 2002,22(2):99-102
    [130] Van Der Broeck H W,Skudelny H C,Stanke G V.Analysis and realization of a pulse width modulator based on voltage space vectors.IEEE Trans Industry Applications, 1998,24(1):142-150
    [131] Blasko V. Analysis of a hybrid PWM based on modified space-vector and triangle- comparison methods. IEEE Trans Industry Applications,1997,33(3):756-764
    [132] Ambro ic V, Fiser R, Nedeljkovic D. Direct current control—a new current regulation principle. IEEE Trans Power Electronics,2003,18(1):495-503
    [133] 李玉梅,马伟明.无差拍控制在串联电力有源滤波器中的应用.电力系统自动化, 2001,25(8):28-30
    [134] Ziogas P D. The delta modulation technique in static PWM inverters. IEEE Trans Industry Applications,1981,17(2):199-204
    [135] Rahman M A,Esmail A R D,Choudhury M A.Analysis of delta PWM static AC-DC converters.IEEE Trans Power Electronics,1995,10(4):494-503
    [136] 童梅,项基.一种混合型电力滤波器的变结构控制.电工技术学报,2002,17(1): 59-63
    [137] Bose B K.Modern power electronics and AC drivers.Prentice-Hall Inc,2002
    [138] 吴斌.中压大功率变换器及其在电力传动中的应用.西安:高等电力电子技术课程讲义,2006
    [139] 林渭勋.现代电力电子电路.杭州:浙江大学出版社,2002
    [140] 贾正春.电力电子培训讲义.武汉:华中科技大学电气学院,2003
    [141] 李湘生,陈乔夫.变压器的理论计算与优化设计.武汉:华中理工大学出版社, 1990
    [142] 陈乔夫,李湘生.互感器电抗器的理论与计算.武汉:华中理工大学出版社,1992
    [143] Fujita H, Akagi H. The unified power quality conditioner: the integration of series- and shunt- active filters.IEEE Trans Power Electronics,1998,13(2):315-322
    [144] Farrukh Kamran, Thomas G H. Combined deadbeat control of a series-parallel converter combination used as a universal power filter. IEEE Transactions Power Electronics,1998,13(1):160-168
    [145] Sergio A O da S,Pedro F D G,Porfirio C C et al.A three-phase line-interactive UPS system implementation with series-parallel active power-line conditioning capabilities. IEEE Trans Industry Applications,2002,38(6):1581-1590

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700