用户名: 密码: 验证码:
纳米材料PbTiO_3,BaTiO_3及Ba_xSr_(1-x)TiO_3的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PbTiO_3、Ba_xSr_(1-x)TiO_3及BaTiO_3是重要的压电陶瓷材料,具有优异的物理化学特性,它们的用途非常广泛。由于一维纳米材料和纳米粒子拥有不寻常的化学物理性质及在不同领域的广泛应用,引起了人们的普遍关注。随着现代科学技术的发展,许多合成方法用于制备一维纳米材料和纳米粒子。在这些制备方法中,反相微乳法、低温煅烧法和熔盐法等由于能有效控制颗粒的形貌及大小,而吸引了研究人员的关注。利用上述方法,我们合成项链状PbTiO_3纳米线、Ba_xSr_(1-x)TiO_3和BaTiO_3纳米粒子,同时研究了相关反应条件。
     在环己烷/TritonX-100/正己醇/水相的微乳液体系中,以Ti(OC_4H_9)_4、H_2C_2O_4·2H_2O和Pb(NO_3)_2为原料,制备出混合草酸盐(PbC_2O_4+TiOC_2O_4·2H_2O)前驱体。然后在680℃煅烧4 h,得到具有不同形貌的PbTiO_3粒子,有球形纳米粒子,项链状纳米线以及由纳米粒子构成微米立方体和长方体。改变ω_0值(水与表面活性剂的物质的量的比)能有效控制产品的形貌和颗粒大小,并提出了其可能的形成机理。
     以氢氧化钡、氢氧化锶和钛酸丁酯为原料,采用低温煅烧(300~500℃)法合成了钛酸锶钡纳米粒子。结果表明,所得钛酸锶钡纳米粒子大小分布均匀,粒径约为13~20 nm,粒子形状近似为球形,晶相结构为立方相。该粉体为完全互溶体的固溶体,随Sr含量的增加,晶胞参数a和晶胞体积V减小,a随组成呈线性关系,符合Vegard定律。
     以氢氧化钡和钛酸丁酯为原料,采用固相研磨与低温(200~300℃)煅烧相结合的方法制得了钛酸钡纳米粉体。结果表明,所得钛酸钡纳米粉体的粒径约为15~20 nm,粒子形状近似为球形,晶体结构为立方相,钡钛物质的量之比约为1.0。该粉体在热处理温度为800~1000℃时,由立方相转变为四方相;而在热处理温度为668~892℃时,存在于晶格中的羟基被除去。
     用TiO_2和Ba(OH)_2为钛源和钡源,以NaOH和KOH为熔剂,采用融盐法成功地合成了立方体状BaTiO_3纳米粒子。结果表明,在反应温度为200℃,反应8 h时所得粒子形貌不规则、颗粒大小分布不均匀;反应24 h时粒子形状为立方体,尺寸分布较均匀,粒径约为30~70 nm;而当反应时间延长至48 h和72 h时,样品形貌逐渐由立方体变为球形,且粒径增大。反应温度高于185℃时,能得到立方相、结晶良好、纯度高的BaTiO_3纳米粒子。另外,还初步探讨了融盐法制备BaTiO_3纳米粒子的形成机理。
PbTiO_3,Ba_xSr_(1-x)TiO_3 and BaTiO_3 are kinds of important piezo ceramic materials because of its excellent physics and chemical properties,which have been applicated in many fields.One-dimensional nanomaterial and nanoparticles have received considerable attention because of their unusual properties and potential applications in diverse fields. Owing to the need of nanotechnology and modern electronic industry,many methods have been utilized to synthesize one-dimensional nanomaterial and nanoparticles.Among of these methods,treverse microemulsion,low temperature calcination method and molten salt method can effectively control the morphology and size of product have attracted the investigator's attention.Using the above methods,we synthesized necklace-like PbTiO_3 nanowires,Ba_xSr_(1-x)TiO_3 nanoparticles and BaTiO_3 nanoparticles,and simultaneously studied the effect of the relevant reaction condition on the morphology and size of the products.
     The mixed oxalate precursors(TiOC_2O_4·2H_2O+PbC_2O_4) were prepared by the chemical reaction of Ti(OC_4H_9)_4,H_2C_2O_4·2H_2O and Pb(NO_3)_2 in a reverse microemulsion system consisting of water,t-octylphenoxypolyethoxyethanol(Triton X-100),n-hexanol and cyclohexane.Calcination of the precursors at 680℃for 4 h yielded PbTiO_3 particles with varying size and morphology including spherical particles,necklace-like nanowires and rectangular parallelepiped-like microscale particles consisting of spherical nanoparticles.The morphologies and sizes of PbTiO_3 particls can be controlled by changing the molar ratio of water to surfactant Triton X-100(ω_0).The possible formation mechanism of PbTiO_3 particles is also proposed in the paper.
     Ba_xSr_(1-x)TiO_3 nanoparticles were successfully prepared by the low temperature(300~500℃) calcination method,using barium hydroxide,strontium hydroxide,and tetrabutyl titanate as starting materials.It is confirmed that the barium strontium titanate nanoparticles with uniform size distribution and particle sizes of 13~20 nm,similar to spherical shape,are cubic perovskite structure.The powders are true solid solution,and as the increases of the doping proportion of Sr~(2+),both the cell parameter a and the cell volume V become smaller.The a values are linearly related with the compositions of the powders,which is in accord with Vegard's law.
     BaTiO_3 nanopowders were synthesized by the combination of solid phase grinding and low temperature(200~300℃) calcination method,using barium hydroxide and tetrabutyl titanate as reactants.The results show that the prepared BaTiO_3 nanopowders with particle sizes of 15~20 nm and almost spherical particle shape are cubic phase,and their molar ratio of barium to titanate is about 1.0.The phase transition from cubic to tetragonal phase of barium titanate occurrs when the temperature of heat treatment is 800~1000℃,and the hydroxyl ions existing in the lattice of BaTiO_3 is removed when the temperature of heat treatment is 668~892℃.
     BaTiO_3 nanoparticles with cubic morphology starting from Ba(OH)_2 and TiO_2 have been synthesized by molten salt method using NaOH and KOH as a flux.Results show that the products with irregular shape and uneven particle size distribution is prepared at 200℃and 8h;cubical BaTiO_3 nanoparticles with uniform size distribution which are 30~70 nm in sizes is obtained at 24 h;as the reaction time is prolonged to 48 h and 72 h,the morphology of the product is gradually changed into spherical shape from cubic shape and diameter of particles increased.When the reaction temperature is higher than 185℃,BaTiO_3 nanoparticles with cubic phase,high crystallinity and high purity is obtained.In addition,the formation mechanism of BaTiO_3 nanoparticles prepared by molten salt method is also discussed.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:6-15.
    [2]孙大可,曹立新,常素玲.一维纳米材料的制备、性质及应用[J].稀有金属,2006,30(1):88-96.
    [3]刘海峰,彭同江,孙红娟,等.一维纳米功能材料研究新进展[J].化工新型材料,2007,35(4):1-3.
    [4]Zhang Y,Ago H,Liu J.Morphology-controlled synthesis and characterization of bismuth sulfide crystailites via a hydrothermal method[J].J.Crys.Grow.,2004,264:363-368.
    [5]Holmes J D,Johnston K P,Korgel B A,et al.Control of thickness and orientation of solution grown silicon nanowires[J].Science,2000,287(5457):1471-1475.
    [6]Wang J,Gudiksen M S,Lieber C M,et al.Highly polarized photoluminescence and photodetection from single indium phosphide nanowires[J].Science,2001,293(5534):1455-1462.
    [7]张小勇,胡学兵,施卫国,等.一维纳米材料的合成和应用[J].硅酸盐学报,2008,27(6):1195-1199.
    [8]申永良.纳米粒子的性质[J].化学教育,1999,7:11-14.
    [9]Xu H,Gao L.Hydrothermal synthesis of high-purity BaTiO_3 powders:control of powder phase and size,sintering density,and dielectric properties[J].Mater.Lett.,2004,58(10):1582-1586.
    [10]邹正光,李金莲,陈寒元.高能球磨在复合材料制备中的应用[J].桂林工学院学报,2002,2(2):174-178.
    [11]张剑光,张明福,韩杰才,等.高能球磨法制备纳米钛酸钡的晶化过程[J].压电与声光,2001,23(5):381-383.
    [12]刘韩星,孙晓琴,肖静,等.熔盐法制备SrTiO_3片状晶的研究[J].化学学报,2004,62(3):324-327.
    [13]朱启安.钛酸钡制备新方法研究[J].无机盐工业,2000,32(2):8-10.
    [14]Hennings D,Rosenstein G,Schreinemacher H.Hydrothermal preparation of barium titanate from barium-titanium acetate gel precursors[J].J.Eur.Ceram.Soc.,1991,8(2):107-115.
    [15]Xia C T,Shi E W,Zhong W E,et al.Preparation of BaTiO_3 by the hydrothermal method[J].J.Eur.Ceram.Soc.,1995,15(12):1171-1176.
    [16]蒲永平,陈寿田.水热法合成四方相超细BaTiO_3粉体的研究进展[J].材料导报,2003,17(11):44-46.
    [17]李青莲,陈维,陈寿田,等.纳米品钛酸钡粉体制备及陶瓷烧结性能的研究[J].压电与声光,2000,22(1):37-39.
    [18]陈贞亮,王政存,申承民,等.溶胶-凝胶发制备纳米钛酸锶[J].功能材料,1999,30(6):633-635.
    [19]Wang X W,Zhang Z Y,Zhou S X.Preparation of nano-crystalline SrTiO_3 powder in sol-gel process[J].Mater.Sci.Eng.B,2001,86:29-33.
    [20]高保娇,高建峰,周加其,等.超微镍粉的微乳液法制备研究[J].无机化学学报,2001,17(4): 431-435.
    [21]Wang Z L.Handbook of nanophase and nanostructured materials synthesis[M].Beijing:Tsinghua university press,2002:6.
    [22]Anuradha T V,Anganathan S,Mimani T,et al.Combustion synthesis of nanostructured barium titanate[J].Scripta mater.2001,44:2237-2241.
    [23]刘晓林,张靖强,陈建峰,等.超重力反应沉淀法制备的纳米钛酸钡粉体的烧结与介电性能研究[J].北京化工大学学报,2004,31(5):6-9.
    [24]胡雄,丁一刚,吴元欣,等.超重力反应沉淀法制备纳米钛酸锶的性能表征[J].化工矿物与加工,2008,5:1-3.
    [25]邓时.钛酸钡粉体的制备及应用概述[J].四川化工,1990,4:16-20.
    [26]Lee S J,Son T W,Mimani T,et al.Combustion synthesis of nanostructured barium titanate[J].Scripta mater.,2001,44:2237-2241.
    [27]Messing G L,Zhang S C,Jayanthi G V.Ceramic powder synthesis by spray pyrolysis[J].J.Am.Ceram.Soc.,1993,76(11):2707-2726.
    [28]Yoo S E,Yoshimura M,Somiya S,et al.Direct preparation of BaTiO_3 powders from titanium metal by anodic oxidation under hydrothermal conditions[J].J.Mater.Sci.Lett.,1989,8:530-532.
    [29]Yoshimura M,Yoo S E,Hayashi M,et al.Preparation of BaTiO_3 thin film by hydrothermal electrochemical method[J].Jap.J.Appl.Phys.,1989,28(11):2007-2009.
    [30]高道江,肖定全,张文,等.水热电化学技术及其在陶瓷薄膜制备中的应用[J].功能材料,2002,33(3):240-242.
    [31]Ma Y,Vileno E,Suib S,et al.Synthesis of tetragonal BaTiO_3 by microwave heating and conventional heating[J].Chem.Mater.,1997,9(12):3023-3031.
    [32]诸爱珍.陶瓷粉体常用的干燥方法[J].江苏陶瓷,2000,33(3):23-25.
    [33]金宗莲,徐华蕊,朱孟钦,等.喷雾反应法制备电子陶瓷用钛酸钡[J].中国粉体技术,2001,7(2):18-20.
    [34]徐华蕊,古宏晨,高濂,等.组分均匀分布的球形实心钛酸钡超细粉体的喷雾水解反应法制备和表征[J].无机材料学报,2002,17(5):938-944.
    [35]Chen Jun,Xing Xianran,Sun Ce,et al.Zero thermal expansion in PbTiO_3-based perovskites[J].Am.Chem.Soc.,2008,130,1144-1145.
    [36]Frantti J,Fujioka Y,Nieminen R M.Pressure-induced phase transitions in PbTiO_3:a query for the polarization rotation theory[J].Phys.Chem.B,2007,111:4287-4290.
    [37]Rujiwatra A,Thammajak N,Sarakonsri T.Influence of alkali reagents on phase formation and crystal morphology of hydrothermally derived lead titanate[J].J.Cryst Grow.,2006,289:224-230.
    [38]Rujiwatra A,Wongtaewan C,Pinyo W,et al.Sonocatalyzed hydrothermal preparation of lead titanate nanopowders[J].Mater.Lett.,2007,61:4522-4524.
    [39]Liu Huibiao,Li Yuliang,Xiao Shengqiang,et al.Synthesis of organic one-dimensional nanomateriais by solid-phase reaction[J].J.Am.Chem.Soc.,2003,125:10794-10795.
    [40]Yu Jiaguo,Yu J C,Ho W,et al.A simple and general method for the synthesis of multicomponent Na_2V_6O_(16)·3H_2O single-crystal nanobelts[J].J.Am.Chem.Soc.,2004,126:3422-3423.
    [41]Lu Xiaofeng,Zhang Daliang,Wang Ce,et al.Large-scale synthesis of necklace-like single-crystalline PbTiO_3 nanowires[J].Macromol.Rapid.Commun.,2006,27:76-80.
    [42]Deng Yu,Wang Jinlong,Zhu Kerong,et al.Synthesis and characterization of single-crystal PbTiO_3 nanorods[J].Mater.Lett.,2005,59:3272-3275.
    [43]Cheng H F,Lin T F,Hu C T,et al.Effect of sintering aids on microstructures and PTCR characteristics of Sr_(0.2)Ba_(0.8)TiO_3 ceramics[J].J Am Ceram Soc.,1993,76(4):827-832.
    [44]Moulson A J,Herbert T M.Electroceramics:materials,properties and applications[M].London:Chapman and Hall,1990.
    [45]钟维烈.钛电体物理学[M].北京:科学出版社,1996.
    [46]Wu Di,Li A D.Preparation of Ba_(0.5)Sr_(05)TiO_3 thin films by sol-gel method with rapid thermal annealing[J].Appl.Surf.Sci.,2000,165:309-314.
    [47]章天金,王玮.Ba_(0.64)Sr_(0.36)TiO_3薄膜的介电与热释电性能的研究[J].硅酸盐学报,2002,30(4):443-446.
    [48]孙晓红,郑春明,章福祥,等.β-环糊精作为超分子壳制备BaTiO_3纳米晶体[J].无机化学学报,2008,24:93-97.
    [49]Bansal V,Poddar P,Ahmad A,et al.Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles[J].J Am.Chem.Soc.,2006,128:11958-11963.
    [50]冯秀丽,王公应.乙醇热法合成纳米钛酸钡及其形成机理的研究[J].功能材料,2007,38:2118-2121.
    [51]孙旭峰,朱启安,赵蓉芳,等.微乳液-共沉淀-煅烧法制备不同形貌的钛酸钡纳米粒子[J].硅酸盐学报,2008,36(6):751-755.
    [52]邓湘云,王晓慧,李龙土.纳米晶钛酸钡陶瓷尺寸效应的研究[J].稀有金属材料与工程,2008,37(1):810-842.
    [53]莫雪魁,李艳君,高以磊,等.纳米钛酸钡粉体的水热合成研究[J].中国粉体技术,2007,3:36-39.
    [54]罗光华,丁士华,杨秀玲,等.温度和水的加入量对sol-gel法制备钛酸钡的影响[J].西华大学学报(自然),2007,26(4):32-34.
    [55]赵玉玲,蔡军,魏坤,等.共沉淀法制备纳米钛酸钡的进一步研究[J].精细化工,2008,25(9):853-857.
    [56]李丽华,黄金亮,张柯,等.熔盐法合成片状BaBi_4Ti_4O_(15)粉体[J].硅酸盐学报,2006,34(9):1043-1046.
    [57]Afanasiev P.Molten salt synthesis of barium molybdate and tungstate microcrystals[J].Mater.Lett.,2007,61:4622-4626.
    [58]张冰,曹传宝,许亚杰,等.熔盐法合成莫来石晶须[J].无机化学学报,2008,24:93-97.
    [59]Bernadette A,Hernandez S,Chang,KiSeog,et al.Examination of size-induced ferroele-ctric phase transitions in template synthesized PbTiO_3 nanotubes and nanofibers[J].Chem.Mater.,2005,17:5909-5919.
    [60]Buscaglia M T,Buscaglia V,Alessio R.Coating of BaCO_3 Crystals with TiO_2:versatile approach to the synthesis of BaTiO_3 tetragonal nanoparticles[J].Chem.Mater.,2007,19:711-718.
    [61]Chang T,Huang J,Lin H.Effect of drying temperature on structure,phase transformation of sol-gel-derived lead zirconate titanate powders[J].J.Alloy.Compd.,2006,414:224-229.
    [62]Xu Guang,Weng Wenjian,Yao Jianxi,et al.Low temperature synthesis of lead zirconate titanate powder by hydroxide co-precipitation[J].Microelectron.Eng.,2003,66:568-573.
    [63]Dhage S R,Khollam Y B,Potdar H S,et al.Chemical co-precipitation of mixed(Pb+Ti) oxalates precursor for the synthesis of PbTiO_3 powders[J].Chem.Mater.,2005,17:5909-5919.
    [64]Zhang Fan,Karaki T,Adachi M,et al.Synthesis of nanosized(Pb,Sr)TiO_3 perovskite powders by coprecipitation processing[J].Powder Technol.,2005,159:13-16.
    [65]Fang Jiye,Wang Jphn,Gan Leongming,et al.Comparative study on phase development of lead titanate powders[J].Mater.Lett.2002,52:304-312.
    [66]Yang Jun,Lin Cuikun,Wang Zhenling,et al.In(OH)_3 and In_2O_3 nanorod bundles and spheres:microemulsion-mediated mydrothermal synthesis and luminescence properti-es[J].Inorg.Chem.,2006,45:8973-8979.
    [67]Sun Lingna,Guo Qingrong,Wu Xinglong,et al.Synthesis and photoluminescent properties of strontium tungstate nanostructures[J].J.Phys.Chem.C,2007,111:532-537.
    [68]Maiti K,Chakraborty I,Bhattacharya S C,et al.Physicochemical studies of octadecyltri-methylammonium bromide:a critical assessment of its solution behavior with reference to formation of micelle,and microemulsion with n-Butanol and n-Heptane[J].J.Phys.Chem.B,2007,111:14175-14185.
    [69]Zhang Xin,Chan Kwong-yu.Water-in-oil microemulsion synthesis of platinum ruthenium nanoparticles,their characterization and electrocatalytic properties[J].Langmuir,2008,24:4320-4328.
    [70]Tian Weiguo,Wang Panpan,Ren Ling,et al.Controllable synthesis of NiC_2O_4·2H_2O nanorods precursor and applications in the synthesis of nickel-based nanostructures[J].J.Solid State Chem.,2007,180:3551-3559.
    [71]Ahmed J,Ahmad T,Ramanujachary K V,et al.Development of a microemulsion-based process for synthesis of cobalt(Co) and cobalt oxide(Co_3O_4) nanoparticles from submicrometer rods of cobalt oxalate[J].J.Colloid lnterf.Sci.,2008,321:434-441.
    [72]Wu Jianming,Yan Hong,Zhang Xuehu,et al.Magnesium hydroxide nanoparticles synthesized in water-in-oil microemulsions[J].J.Colloid Interf.Sci.,2008,324:167-171.
    [73]Jiang Wanquan,Gong Xiuqing,Chen Zuyao,et al.Preparation of barium strontium titanate Ba_(1-x)Sr_xTiO_3(0≤x≤0.2) single-crystal nanorods by a novel combined method[J].Ultrason Sonochem.,2007,14:208-212.
    [74]Kongtaweelert S,Sinclair D C,Panichphant S P.Phase and morphology investigation of Ba_xSr_(1-x)TiO_3(x=0.6,0.7 and 0.8) powders[J].Current Applied Physics,2006,6:474-477.
    [75]黄国军,黄新友.Pechini法制备超细BST粉体及其陶瓷的研究[J].电子元件与材料,2006,25(10):47-49.
    [76]朱启安,张超,张聪,等.固相研磨-低温煅烧法制备钛酸钡纳米粉体[J].功能材料,2007,38(5):714-720.
    [77]Jung D S,Hong S K,Cho J S,et al.Morphologies and crystal structures of nano-sized Ba_(1-x)Sr_xTiO_3primary particles prepared by flame spray pyrolysis[J].Mater Res.Bull,2008,43:1789-1799.
    [78]Su Kai,Nuraje N,Yang N L.Open-bench method for the preparation of BaTiO_3,SrTiO_3,an Ba_(1-x)Sr_xTiO_3 nanocrystals at 80℃[J].Langmuir,2007,23:11369-11372.
    [79]苏勉曾,谢高阳,申泮文,等译.[J].WEST A R.固体化学及其应用[M],1989,上海:复旦大学出版社,407,27,405.
    [80]Maensiri S,Nuansing W,Zeng T,et al.Nanofibers of barium strontium titanate(BST) by sol-gel processing and electrospinning[J].J.Colloid lnterf.Sci.,2006,297:578-583.
    [81]Mao Chaoliang,Dong Xianlin,Zeng tao,et al.Formation and control of mechanism for the preparation of ultra-fine barium strontium titanate powders by the citrate precursor method[J].Mater Res.Bull,2007,42:1602-1610.
    [82]Qi Jianquan,Wang Yu,Chen Wanping,et al.Direct large-scale synthesis of perovskite barium strontium titanate nano-particles from solutions[J].J.Solid State Chem.,2005,178:279-284.
    [83]Qi Jianquan,Li Longtu,Wang Yongli,et al.Preparation of nanoscaled BaTiO_3 powders by DSS method near room temperature under normal pressure[J].J.Cryst.Growth.,2004,260:551-556.
    [84]朱启安,孙旭峰,张聪,等.室温研磨-微波加热合成钛酸钡纳米粒子[J].功能材料,2007,38(6):1009-1012.
    [85]Zhu Yujun,Wang Dong,Yuan Fulong,et al.Direct NO decomposition over La_(2-x)Ba_xNiO_4catalysts containing BaCO_3 phase[J].Appl.Catal.B:Environ,2008,82:255-263.
    [86]Wada S,Tsurumi T,Chikamori H,et al.Preparation of nm-sized BaTiO_3 crystallites by a LTDS method using a highly concentrated aqueous solution[J].J.Cryst.Grow.,2001,229:433-439.
    [87]Afanasiev P.Molten salt synthesis of barium molybdate and tungstate microcrystals[J].Mater.Lett.,2007,61:4622-4626.
    [88]张栋杰,姚熹.BaTiO_3铁电微晶.立方-四方相变热力学分析[J].硅酸盐学报,2003,31(5):441-444.
    [89]孙康,吴剑辉,马跃宇.在熔融介质中合成钛酸钡基础研究[J].材料学报,2000,14(5):60-62
    [90]Gorokhovsky A V,Escalante-Garcia J I,Sanches-Monjaras T,et al.Synthesis of barium titanate powders and coatings by treatment of TiO_2 with molten mixtures of Ba(NO_3)_2,KNO_3 and KOH[J].Mater.Lett,2004,58:2227-2230.
    [91]白玉霞,王淑兰,厉英.NaOH-KOH熔盐中合成BaTiO_3反应过程电导率的变化[J].无机材料学报,2002,17(3):609-612.
    [92]Chen Kunyuan,Chen Yuwen.Preparation of barium titanate ultrafine particles from rutile titania by a hydrothermal conversion[J].Powder Technol,2004,141:69-74.
    [93]Habib A,Wang J L,Zhu K R.Effect of temperature,time and particle size of Ti precursor on hydrothermal synthesis of barium titanate[J].Mat.Sci.Eng.B,2008,152:60-65.
    [94]刘丹,严永科,周和平.熔盐法制备钛酸钡系晶体的形貌控制[J].稀有金属材料与工程,2007,36(1):498-501.
    [95]Deng Y,Wang J L,Zhu K R,et al.[J].Mater.Lett.,2005,59:3272-3275.
    [96]彭关勋,沈湘黔,危亚辉.球形Ni(OH)_2生长过程中的Ostwald熟化作用[J].电源技术,2008,32(2):106-108.
    [97]薛中会,戴树玺,张兴堂,等.牛血清白蛋白Langmuir膜控制方解石形成取向生长的球形微晶[J].无机化学学报,2008,25(9):1049-1054.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700