用户名: 密码: 验证码:
基于钼八阴离子构筑的无机有机杂化材料的合成、结构和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多酸簇具有无与伦比的物理和化学性质,可作为构筑新颖多样功能材料的一类基本无机建筑块。本论文的工作主要是设计合成基于八钼酸盐的无机有机杂化化合物。我们分别采用“一锅法”和步控式分步合成方法合成20个化合物,这些化合物可潜在应用于具有半导体性质或者发光性质的材料。另外,我们利用元素分析、红外光谱、热重分析、紫外可见光谱、荧光光谱来表征这些化合物。
     1.在水热条件下,我们利用“一锅法”将(NH_4)_6Mo_7O_(24)·6H_2O和有机配体还有过渡金属离子混合合成12个过渡金属化合物修饰的八钼酸盐杂化材料。Cu~II(HL~1)_2(H_2O)_2(Mo_8O_(26)) (1) Cu~II(L~1)_2(Mo_8O_(26))_(0.5) (2) Ni~II(HL~2)_2(H_2O)_2(β-Mo_8O_(26)) (3) [Cu~II(HL~2)_2(Mo_8O_(26))]·2H_2O (4) [Cu_2~II(L~2)_4(Mo_8O_(26))]·3H_2O (5) Cu_3~I(L~2)_2(Mo_8O_(26))_(0.5)Cl (6) Cu_4~I(L~2)_4(Mo_8O_(26)) (7) Cu_2~II(L3)_4(Mo_8O_(26)) (8) [Zn(HL~4)_2(H_2O)(Mo_8O_(26))]-2H_2O (9) Cu_2~II(HL~4)_4(Mo_8O_(26))_2 (10) [Cu~IIL~4(H_2O)(Mo_8O_(26))_(0.5)]·2H_2O (11) [Cu~IIL~4(H_2O)(Mo_8O_(26))_(0.5)]·2H_2O (12)单晶X射线表明除了化合物2和12的多酸阴离子呈θ或γ构型,其他化合物中均呈β构型的过渡金属化合物修饰八钼酸盐形成无机有机杂化化合物。紫外可见漫反射光谱表明含有CuI的化合物含有较低禁带宽度,而且有发光性质。并且,化合物6还具有光导性质。
     2.我们合成了三个新颖的共存不同同分异构体或不同构型多钼酸盐的化合物。{[Ni(Mo_8O_(26))(H_2L~5)_2(H_2O)](Mo_8O_(26))(H_2L~5)}·2H_2O (13) {[Co(Mo_8O_(26))(H_2L~5)_2(H_2O)](Mo_8O_(26))[Co(H_2O)_6]}·6H_2O (14) [CuI_6L_(24)(Mo_8O_(26))(Mo_6O_(19))] (15)晶体结构分析表明化合物13是一个共存γ-[Mo_8O_(26)N_2]和γ-[Mo_8O_(28)]的1D+1D超分子结构;化合物14中共存γ-[Mo_8O_(26)]~(4-)和β-[Mo_8O_(26)]~(4-)阴离子;化合物15中既包含β-[Mo_8O_(26)]~(4-)也包含[Mo_6O_(19)]~(2-)。量子化学计算结果表明,在溶液中,从β-[Mo_8O_(26)]~(4-)转化为[Mo_6O_(19)]~(2-)是自发过程。化合物15的禁带宽度为1.69 eV。
     3.我们采用“自下而上”策略,步控式合成了5个八钼酸盐均为γ构型的无机有机杂化化合物。[(H_2L~2)_2(Mo_8O_(26))]·4H_2O (16) [Cu_2~I(L~2)_3(Mo_8O_(26))_(0.5)] (17) [(H_2BIMB)(BIMB)_(0.5)(Mo_8O_(26))_(0.5)]·H_2O (18) [Ni(L~2)_2(HBIMB)_2(Mo_8O_(26))]·4H_2O (19) [Zn(BIMB)_2(Mo_8O_(26))_(0.5)] (20)在这五个化合物中,化合物16和18是设计的合成子,作为合成新化合物合成的前驱体,当加入金属离子对前驱体后修饰即得到化合物17、19、20。
Polyoxometalate (POM) clusters have an unparalleled range of physical and chemical properties, acting as a set of versatile inorganic building blocks that can be reliably utilized in the formation of new materials. Our work is focused on the design and preparation of octamolybdate-based inorganic-organic hybrid materials. We have employed“one-pot”synthetic method and step-wise“bottom-up”synthetic strategy to synthesize twenty compounds with potential applications in semiconducting and photoluminescent materials. Furthermore, the compounds were characterized by elemental analysis, FT-IR, TGA, UV-vis spectra, fluorescence spectrometry.
     1. Under hydrothermal conditions, we employ the“one-pot”method to synthesize twelve transition-metal complex-modified octamolybdate hybrid materials by mixing (NH_4)_6Mo_7O_(24)·6H_2O, organic ligands (L~1 = 3-((1H-imidazol-1-yl)methyl)pyridine; L~2 = 3-((1H-1,2,4-triazol-1-yl)methyl)pyridine; L3 = 2-(2-Pyridyl)imidazole and L4 = 2-(1-(Pyridine-3-ylmethyl)-1H-imidazol-2-yl)pyridine) and transition metals (Cu, Ni, Zn). Cu~II(HL~1)_2(H_2O)_2(Mo_8O_(26)) (1) Cu~II(L~1)_2(Mo_8O_(26))_(0.5) (2) Ni~II(HL~2)_2(H_2O)_2(β-Mo_8O_(26)) (3) [Cu~II(HL~2)_2(Mo_8O_(26))]·2H_2O (4) [Cu_2~II(L~2)_4(Mo_8O_(26))]·3H_2O (5) Cu_3~I(L~2)_2(Mo_8O_(26))_(0.5)Cl (6) Cu_4~I(L~2)_4(Mo_8O_(26)) (7) Cu_2~II(L3)_4(Mo_8O_(26)) (8) [Zn(HL~4)_2(H_2O)(Mo_8O_(26))]-2H_2O (9) Cu_2~II(HL~4)_4(Mo_8O_(26))_2 (10) [Cu~IIL~4(H_2O)(Mo_8O_(26))_(0.5)]·2H_2O (11) [Cu~IIL~4(H_2O)(Mo_8O_(26))_(0.5)]·2H_2O (12) Single crystal X–ray diffraction results reveal that all the polyanions exhibitβisomer except thatθorγisomers in 2 and 12 respectively. The octamolybdate anions are modified by transition-metal complexes. The UV-vis reflectance spectra reveal that the compounds containing CuI ions not only have lower optical band gaps but also photoluminescent property. More interestingly,compound 6 is photoconductive.
     2. Three novel compounds coexisting different isomers or forms of polymolybdate have been successfully synthesized. {[Ni(Mo_8O_(26))(H_2L~1)_2(H_2O)](Mo_8O_(26))(H_2L~1)}·2H_2O (13) {[Co(Mo_8O_(26))(H_2L~1)_2(H_2O)](Mo_8O_(26))[Co(H_2O)_6]}·6H_2O (14) [CuI_6L_(24)(Mo_8O_(26))(Mo_6O_(19))] (15) Crystal structure analysis reveals that 13 is a 1D+1D supramolecular structure coexisting bothγ-[Mo_8O_(26)N_2] andγ-[Mo_8O_(28)] units; 14 hasγ-[Mo_8O_(26)]~(4-) as well asβ-[Mo_8O_(26)]~(4-) anions and 15 is a (3,4,6)-connected 2D network containing bothβ-[Mo_8O_(26)]~(4-) and [Mo_6O_(19)]~(2-) anions. According to quantum chemical calculations,the transformation fromβ-[Mo_8O_(26)]~(4-) to [Mo_6O_(19)]~(2-) is spontaneous in aqueous solution. Compound 15 shows a relatively lower optical band gap 1.69 eV.
     3. We have successfully explored the“bottom-up”strategy to step-wisely synthesize five compounds with octamolybdate anion exhibitingγisomer. [(H_2L~1)_2(Mo_8O_(26))]·4H_2O (16) [Cu_2~I(L~1)_3(Mo_8O_(26))_(0.5)] (17) [(H_2BIMB)(BIMB)_(0.5)(Mo_8O_(26))_(0.5)]·H_2O (18) [Ni(BIMB)_2(HBIMB)_2(Mo_8O_(26))]·4H_2O (19) [Zn(BIMB)_2(Mo_8O_(26))_(0.5)] (20) Among them,compounds 16 and 18 are the designed synthons which act as precursors for the formation of compounds 17,19,20 which were obtained by post-modifying the synthons with metal ions. The optical band gap property for the five compounds and the photoluminescence of 20 were also investigeted.
引文
[1]Moulton B, Zaworotko M J, From Molecules to Crystal Engineering :Supramolecular Isomerism and Polymorphism in Network Solids[J]. Chem Rev, 2001, 101:1629–1658.
    [2]Cotton F A, Lin C, Murillo C A, Supramolecular Arrays Based on Dimetal Building Units[J]. Acc Chem Res, 2001, 34:759–771.
    [3]Shivaiah V, Das S K, Polyoxometalate-Supported Transition Metal Complexes and Their Charge Complementarity : Synthesis and Characterization of [M(OH)6Mo6O18{Cu(Phen)(H2O)2}2][M(OH)6Mo6O18{Cu(Phen)(H2O)Cl}2]·5H2O(M=Al3+, Cr3+)[J]. Inorg Chem, 2005, 44(24):8846–8854.
    [4]]Misono M, Nojiri N, Recent Progress in catalytic technology in Japan [J]. Appl Catal, 1990, 64(l-2):1-30.
    [5]Harrup M K, Hill C L, Polyoxometalate catalysis of the aerobic oxidation of hydrogen-sulfide to sulfur [J]. Inorg Chem, 1994, 33(24):5448-5455.
    [6]Smegal J A, Hill C L, Hydrocarbon functionalization by the (iodosylbenzene)manganese(IV) Porphyrin complexes from the (tetraphenylporphinato)manganese(III)-iodosylbenzene catalytic hydrocarbon Oxidation system. Mechanism and reaction chemistry[J]. J Am Chem Soc, 1983, 105(11):3515-3521.
    [7]Schardt B C, Hollander F J, Hill C L, Isolation, Purification, and charaeterization of high-valent complexes fro mamanganese Porphyrin based catalytic hydrocarbon activation system.Crystal and molecular structure of mu.-oxo-bis[azido(tetraphenylporphinato)manganese(IV) [J]. J Am Chem Soc, 1982, 104(14):3964-3972.
    [8]Camenzind M J, Hollander F J, Hill C L, Syntheses, ground electronic state, and crystal and molecular structure of the monomeric manganese(Vl) porphyrin complex dimethoxy(5, 10, 15, 20-tetraphenylporphinato)manganese(IV)[J]. Inorg Chem, 1982, 21(12):4301-4308.
    [9]Hill C L, Williamson M M, Electronic and structural properties of reactive metalloporphyrin with N-oxide axial ligands.Crystal and moleeular structure of bis(2, 6-lutidine N-oxide)(tetraphenylporphinato)manganese(III)perchlorate[J]. Inorg Chem, 1985, 24(19):3024-3030.
    [10]Hill C L, Stable, self-assembling, equilibrating catalysts for green chemistry[J].Angew Chem Int Ed, 2004, 43(4):402-404.
    [11]Hill C L, Smegal J A, Henly T J, Catalytic replacement of unactivated alkane Carbon-hydrogen bonds with carbon-X bonds (X = nitrogen, oxygen, chlorine, bromine, oriodine).Coupling of intermolecular hydrocarbon activation by MnIIITPPX complexes with phase-transfer catalysis[J]. J Org Chem, 1983, 48(19):3277-3281.
    [12]Bressan M, Morvillo A, Romanello G, Ruthenium-catalyzed oxygenation of saturated-hydrocarbons by t-butylhydroperoxide[J]. J Mol Catal, 1992, 77(3):283-288.
    [13]Lyons J E, Ellis P E, Seleetive low-temperature hydroxylation of isobutene by molecular-oxygen catalyzed by an iron perahaloporphyrin complex[J].Catal Lett, 1991, 8(1):45-51.
    [14]Mizuno N, HiroseT, Tateishi M, Iwamoto M, A pronounced catalytic activity of PW11CoO395- for epoxidation of alkenes by molecular-oxygen in the presence of aldehyde[J]. Chem Lett, 1993(11):1839-1842.
    [15]Suss-Fink G, GonzaIez L, Shul’Pin G B, Alkane Oxidation with Hydrogen Peroxide Catalyzed Homogeneously by Vanadium-containing Polyphosphomolybdates[J]. Applied Catalysis A-Genral, 2001, 217(1-2):111-117.
    [16]Knapp C, Ui T, Nagai K. Stability of lron in Keggin anion of Heterpoly Acid Catalysts for Selective Oxidation of Isobytane[J]. Catalysis Today, 2001, 71(1-2):111-119.
    [17]Khenkin A M, Weiner L, Neumann R. Selective ortho hydroxylation of nitrobenzene with molecular oxygen catalyzed by the H5PV2Mo10O40 polyoxometalate[J]. J Am Chem Soc, 2005, 127(28):9988-9989.
    [18]Absillis G, Cartuyvels E, Deun R V, et al. Hydrolytic Cleavage of an RNA-Model Phosphodiester Catalyzed by a Highly Negatively Charged Polyoxomolybdate [Mo7O24]6- Cluster[J]. J Am Chem Soc, 2008, 130(51):17400-17408.
    [19]Guo M L, Li H Z, Selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide over tetra-alkylpyridinium octamolybdate catalysts[J]. Green Chem, 2007, 421-423.
    [20]Sun C Y, Liu S X, Liang D D, et al. Highly Stable Crystalline Catalysts Based on a Microporous Metal-Organic Framework and Polyoxometalates [J]. J Am Chem Soc, 2009, 131(5):1883-1888.
    [21]Chen L F, Hu J C, Mal S S, et al. Heterogeneous Wheel-Shaped Cu20-Polyoxotungstate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- Catalyst for Solvent-Free Aerobic Oxidation of n-Hexadecane[J]. Chem. Eur. J. 2009, 15:7490–7497.
    [22]Wu H, [J]. J Biol Chem 1920, 43:189—195.
    [23]Wang M S, Xu G, Zhang Z J, Guo G C, Inorganic–organic hybrid photochromic materials[J]. Chem Commun., 2010, 46:361–376.
    [24]Arnaud-Neu F, Schwing-Weill M J, [J]. Bull. Soc. Chim. Fr. 1973, 3233.
    [25]Yamase T, Photo- and Electrochromism of Polyoxometalates and Related Materials[J]. Chem Rev, 1998, 98(1):307-325.
    [26]Gao G G, Xu L, Qu X S, et al. New Approach to the Synthesis of an Organopolymolybdate Polymer in Aqueous Media by Linkage of Multicarboxylic Ligands[J] Inorg. Chem. 2008, 47(8):3402-3407.
    [27]Dessapt R, Collet M, CouéV et al. Kinetics of Coloration in Photochromic Organoammonium Polyoxomolybdates[J]. Inorg Chem, 2009, 48(2):574–580.
    [28]Wang Z L, Zhang R L, Ma Y, et al. Transparent and flexible phosphomolybdate–agarose composite thin films with visible-light photochromism[J] J Mater Chem, 2010, 20:1107–1111.
    [29]Zhao Z G, Miyauchi M, A novel visible-light-driven photochromic material with high-reversibility:tungsten oxide-based organic–inorganic hybrid microflowers[J]. Chem Commun, 2009, 2204–2206.
    [30]Zhang T R, Liu S Q, Kurth D G, Faul C F J, Organized Nanostructured Complexes of Polyoxometalates and Surfactants that Exhibit Photoluminescence and Electrochromism[J]. Adv Funct Mater, 2009, 19:642–652.
    [31]Mandal S, Selvakannan P R, Pasricha R, et al. Keggin Ions as UV-Switchable Reducing Agents in the Synthesis of Au [J]. J Am Chem Soc, 2003, 125(28):8440-8441.
    [32]Ritchie C, Cooper G J T, Song Y F, et al. Spontaneous assembly and real-time growth of micrometre-scale tubular structures from polyoxometalate-based inorganic solids[J]. Nature Chemistry, 2009, 1: 47-52.
    [33]Song Y F, McMillan N, Long D L, et al. Micropatterned Surfaces with Covalently Grafted Unsymmetrical Polyoxometalate-Hybrid Clusters Lead to Selective Cell Adhesion[J]. J Am Chem Soc, 2009, 131(4):1340–1341.
    [34]Nisar A, Xu X X, Shen S L, et al. Noble Metal Nanocrystal-Incorporated Fullerene-Like Polyoxometalate Based Microspheres[J]. Adv Funct Mater, 2009, 19:860–865.
    [35]高广刚.氮杂环及含羧基类配体官能化多钼酸盐的合成及性质研究[D]. [博士学位论文].长春:东北师范大学化学学院, 2008.
    [36]Gili P, Lorenzo-Luis P A, Mederos A, et al. Crystal structures of two new heptamolybdates and of a pyrazole incorporating aγ-octamolybdate anion [J]. Inorg Chim Acta, 1999, 295:106–114.
    [37]Xiao D R, Hou Y, Wang E B, et al. Hydrothermal synthesis and characterization of an unprecedented eta-type octamolybdate:[{Ni(phen)2}2(Mo8O26)] [J]. Inorg Chim Acta, 2004, 357(9): 2525-2531.
    [38]Xi R, Wang B, Isobe K, et al. Isolation and X-ray Crystal Structure of a New Octamolybdate : [(RhCp*)2(.mu.2-SCH3)3]4[Mo8O26].cntdot.2CH3CN (Cp* = .eta.5-C5Me5)[J]. Inorg. Chem. 1994, 33(4): 833-836.
    [39]Niven M L, Cruywagen J J, Heyns J B B, The 1st Observation of gamma-octamolybdate-synthesis, crystal and molecular structure of [ME3N(CH2)6NME3]2[Mo8O26]·2H2O[J]. J Chem Soc Dalton Trans, 1991, 2007-2011.
    [40]Hagrman D, Zubieta C, Rose D J, et al. Composite solids constructed from one-dimensional coordination polymer matrices and molybdenum oxide subunits:Polyoxomolybdate clusters within [{Cu(4, 4'-bpy)}4Mo8O26] and [{Ni(H2O)2(4, 4'-bpy)2}2Mo8O26] and one-dimensional oxide chains in [{Cu(4, 4'-bpy)}4Mo15O47]·8H2O [J]. Angew Chem Int Ed Engl, 1997, 36(8):873-876.
    [41]Masters A F, Ghellu S F, Brownlee R T, et al. Interconversion of Polyoxometalates[J]. Inorg Chem, 1980, 19(12): 3866-3868.
    [42]Xu J Q, Wang R Z, Yang G Y, et al. Metal-oxo cluster-supported transition metal complexes:hydrothermal synthesis and characterization of [{M(phen)2}2(Mo8O26)] (M = Ni or Co)[J]. Chem Commun, 1999, 983-984.
    [43]Allis D G, Burkholder E, Zubieta J, A new octamolybdate:observation of the theta-isomer in [Fe(tpyprz)2]2[Mo8O26]·3.7H2O (tpyprz = tetra-2-pyridylpyrazine)[J]. Polyhedron 2004, 23(7): 1145-1152.
    [44]Gao G G, Cheng P S, Mak T C W, Acid-Induced Surface Functionalization of Polyoxometalate by Enclosure in a Polyhedral Silver-Alkynyl Cage[J]. J Am Chem Soc, 2009, 131(51): 18257–18259.
    [45]Qiao J, Shi K, Wang Q M, A Giant Silver Alkynyl Cage with Sixty Silver(I) Ions Clustered around Polyoxometalate Templates[J]. Angew Chem Int Ed, 2010, 49: 1765–1767.
    [46]LüJ, Shen E H, Li Y G, et al. A Novel Pillar-Layered Organic-Inorganic Hybrid Based on Lanthanide Polymer and Polyomolybdate Clusters:New Opportunity toward the Design and Synthesis of Porous Framework[J]. Cryst Growth Des, 2005, 5(1): 65-67.
    [47]Zhai Q G, Wu X Y, Chen S M, et al. Construction of Ag/1, 2, 4-Triazole/Polyoxometalates Hybrid Family Varying from Diverse Supramolecular Assemblies to 3-D Rod-Packing Framework[J]. Inorg Chem, 2007, 46(12): 5046-5058.
    [48]Lan Y Q, Li S L, Wang X L, et al. Self-Assembly of Polyoxometalate-Based Metal Organic Frameworks Based on Octamolybdates and Copper-Organic Units: from CuII, CuI, II to CuI via Changing Organic Amine[J]. Inorg Chem, 2008, 47(18):8179–8187.
    [49]Wei Y, Xu B, Barnes C L, et al. An Efficient and Convenient Reaction Protocol to Organoimido Derivatives of Polyoxometalates[J]. J Am Chem Soc, 2001, 123(17):4083–4084.
    [50]Hao J, Xia Y, Wang L S, et al. Unprecedented Replacement of Bridging Oxygen Atoms in Polyoxometalates with Organic Imido Ligands[J]. Angew Chem Int Ed, 2008, 47:1–7.
    [51]Xue S J, Xiang C S, Wei Y G, et al. Synthesis, Crystal Structure, Spectroscopic, and Herbicidal Activity Studies of a Series of Designed Fluoro-Functionalized Phenylimido Derivatives of Hexametalate Cluster[J]. Cryst Growth Des, 2008, 8(7):2437–2443.
    [52]Song Y F, Long D L, Cronin L, Noncovalently Connected Frameworks with Nanoscale Channels Assembled from a Tethered Polyoxometalate–Pyrene Hybrid[J]. Angew Chem Int Ed, 2007, 46: 1–6.
    [53]Gili P, Lorenzo-Luis P A, Mederos A, et al. Crystal structures of two new heptamolybdates and of a pyrazole incorporating a gamma-octamolybdate anion[J]. Inorg Chim Acta, 1999, 295(1):106–114.
    [54]Wu C D, Lu C Z, Chen S M, et al. Synthesis and characterization of two new polyoxomolybdate compounds: [Cu(imi)2(H2O)4][Himi]2[(imi)2Mo8O26] and [Himi]3[H3O][SiMo12O40]·H2O[J]. Polyhedron, 2002, 22(23):3091–3095.
    [55]Khan M I, Chen Q, Salta J, et al. Retention of Structural Cores in the Synthesis of High-Nuclearity Polyoxoalkoxomolybdate Clusters Encapsulating [Na(H2O)3]+ and [MoO3] Moieties. Hydrothermal Syntheses and Structures of (NH4)7[NaH12Mo16O52]·4H2O and (Me3NH)4K2[H14Mo16O52]·8H2O and Their Structural Relationships to the Class of Superclusters[XHnMo42O109{(OCH2)3CR}7]m-(X=Na(H2O)3+: n=13, m=19; n=15, m=7. X=MoO3:n=14, m=9; n=13, m=10)[J]. Inorg Chem, 1996, 35: 1880–1901.
    [56]Long D L, K?gerler P, Farrugia L J, et al. Restraining Symmetry in the Formationof Small Polyoxomolybdates:Building Blocks of Unprecedented Topology Resulting From Shrink-Wrapping [H2Mo16O52]10--Type Clusters[J]. Angew Chem Int Ed, 2003, 42: 4180–4183.
    [57]Müller A, Todea A M, B?gge H, et al. Formation of a‘‘less stable’’polyanion directed and protected by electrophilic internal surface functionalities of a capsule in growth:[{Mo6O19}2-∈{MoVI72FeIII30O252(CH3COO)20(H2O)92}]4-[J]. Chem Commun, 2006, 3066–3068.
    [58]Mishra P P, Pigga J, Liu T B, Membranes Based on“Keplerate”-Type Polyoxometalates:Slow, Passive Cation Transportation and Creation of Water Microenvironment[J]. J Am Chem Soc, 2008, 130(5): 1548–1549.
    [59]Wang S, Lin X, Wan Y, et al. A Large, Bowl-Shaped {Mo51V9} Polyoxometalate[J]. Angew Chem Int Ed, 2007, 46: 3490–3493.
    [60]Mitra T, MiróP, Tomsa A-R, Gated and Differently Functionalized (New) Porous Capsules Direct Encapsulates’Structures:Higher and Lower Density Water[J]. Chem Eur J, 2009, 15: 1844–1852.
    [61]Sch?ffer C, B?gge H, Merca A, A Spherical 24-Butyrate Aggregate with a Hydrophobic Cavity in a Capsule with Flexible Pores:Confinement Effects and Uptake–Release Equilibria at Elevated Temperatures[J]. Angew Chem Int Ed, 2009, 48: 8051–8056.
    [62]Hill C L, Prosser-McCartha C M, Homogeneous catalysis by transition-metal oxygen anion clusters[J]. Coord Chem. Rev, 1995, 143: 407-455.
    [63]Katsoulis D E, A survey of applications of polyoxometalates[J]. Chem Rev, 1998, 98 (1): 359-387.
    [64]Coronado E, Galán-Mascarós J R, Giménez-Saiz C, et al. Metallic conductivity in a polyoxovanadate radical salt of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF):Synthesis, structure, and physical characterization of beta-(BEDT-TTF)5[H3V10O28]·4H2O[J]. Adv Mater, 2004, 16(4): 324.
    [65]CouéV, Dessapt R, Doeuff M B, et al. Synthesis, characterization, and photochromic properties of hybrid organic-inorganic materials based on molybdate, DABCO, and piperazine[J]. Inorg Chem, 2007, 46(7): 2824-2835.
    [66]Müller A, Peters F, Pope M T et al. Polyoxometalates:Very large clusters - Nanoscale magnets[J]. Chem Rev, 1998, 98(1): 239-271.
    [67]Burkholder E, Zubieta J, Solid state coordination chemistry:construction of 2D networks and 3D frameworks from phosphomolybdate clusters and binuclear CuII complexes. The syntheses and structures of[{Cu2(tpypyz)(H2O)2}(Mo5O15)(HOPO3)2]·nH2O [n = 2, 3; tpypyz = tetra(2-pyridyl)pyrazine][J]. Chem Commun, 2001, 2056-2057.
    [68]Wu C D, Lu C Z, Zhuang H H, et al. Hydrothermal assembly of a novel three-dimensional framework formed by [GdMo12O42]9- anions and nine coordinated GdIII cations[J]. J. Am. Chem. Soc., 2002, 124: 3836-3836.
    [69]Xu L, Lu M, Xu B, et al. Towards main-chain-polyoxometalate containing hybrid polymers:A highly efficient approach to bifunctionalized organoimido derivatives of hexamolybdates[J]. Angew Chem Int Ed, 2002, 41(21): 4129-4132.
    [70]Chen L, Jiang F, Lin Z, et al. A basket tetradecavanadate cluster with blue luminescence[J]. J Am Chem Soc, 2005, 127(24): 8588-8589.
    [71]Long D L, Burkholder E, Cronin L, Polyoxometalate clusters, nanostructures and materials:From self assembly to designer materials and devices [J]. Chem Soc Rev, 2007, 36(1): 105-121.
    [72]Kamata K, Nakagawa Y, Yamaguchi K, et al.1, 3-Dipolar Cycloaddition of Organic Azides to Alkynes by a Dicopper-Substituted Silicotungstate[J]. J Am Chem Soc, 2008, 130:15304-15310.
    [73]Hagrman P J, Hagrman D, Zubieta J, Organic-inorganic hybrid materials:From "simple" coordination polymers to organodiamine-templated molybdenum oxides[J]. Angew Chem Int Ed, 1999, 38:2639-2684.
    [74]Jin H, Qi Y F, Wang E B, et al. A novel copper(I) halide framework templated by organic-inorganic hybrid polyoxometalate chains formed in situ:A new route for the design and synthesis of porous frameworks[J]. Eur J Inorg Chem, 2006, 4541-4545.
    [75]Sha J Q, Peng J, Zhang Y, et al. Assembly of Multiply Chain-Modified Polyoxometalates:From One-to Three-Dimensional and from Finite to Infinite Track[J]. Cryst Growth Des, 2009, 9(4):1708-1715;
    [76]Yuan L, Qin C, Wang X L, et al. Two Extended Organic-inorganic Assemblies Based on Polyoxometalates and Copper Coordination Polymers with Mixed 4, 4'-Bipyridine and 2, 2 '-Bipyridine Ligands[J]. Eur. J. Inorg. Chem., 2008, 4936-4942.
    [77]Xu Y, Xu J Q, Zhang K L, et al. Keggin unit supported transition metal complexes : hydrothermal synthesis and characterization of [Ni(2, 2'-bipy)3]1.5[PW12O40Ni(2, 2'-bipy)2(H2O)]·0.5H2O and [Co(1, 10'-phen)3]1.5[PMo12O40Co(1, 10'-phen)2(H2O)]·0.5H2O[J]. Chem Commun, 2000, 153-154.
    [78]Kitamura A, Ozeki T, Yagasaki A, beta-Octamolybdate as a building block. Synthesis and structural characterization of rare earth molybdate adducts[J]. InorgChem, 1997, 36(19):4285-4279.
    [79]Chae H K, Klemperer W G, Loyo D E P, et al. Synthesis and structure of a high-nuclearity oxomolybdenum(v) complex, [(C5Me5RHIII)8(MoV12O36)(MoVIO4)]2+ [J]. Inorg Chem, 1992, 31(15):3187-3189.
    [80]Zheng S T, Zhang J, Yang G Y, Designed synthesis of POM-organic frameworks from {Ni6PW9} building blocks under hydrothermal conditions[J]. Angew Chem Int Ed, 2008, 47(21):3909-3913.
    [81]Tian A X, Ying J, Peng J., et al. Assemblies of Copper Bis(triazole) Coordination Polymers Using the Same Keggin Polyoxometalate Template[J]. Inorg Chem, 2009, 48(1):100-110.
    [82]Streb C, Ritchie C, Long D L, et al. Modular assembly of a functional polyoxometalate-based open framework constructed from unsupported AgI···AgI interactions" [J]. Angew Chem Int Ed, 2007, 46(10):7579-7582.
    [83]Pichon C, Dolbecq A, Mialane P, et al. Fe-2 and Fe-4 clusters encapsulated in vacant polyoxotungstates:Hydrothermal synthesis, magnetic and electrochemical properties and DFT calculations[J]. Chem–Eur J, 2008, 14(10):3189-3199.
    [84]An H Y, Wang E B, Xiao D R, et al. Chiral 3D architectures with helical channels constructed from polyoxometalate clusters and copper-amino acid complexes[J]. Angew Chem Int Ed, 2006, 45(6):904-908.
    [85]Botar B, K?gerler P, Hill C L, Tetrairon and hexairon Hydroxo/Acetato clusters stabilized by multiple polyoxometalate scaffolds. Structures, magnetic properties, and chemistry of a dimer and a trimer[J]. Inorg Chem, 2007, 46(13):5398-5403.
    [86]Liu Z, Liu P, Chen Y, Wang J, et al. Synthesis and characterization of infinite coordination networks from a hybrid ligand N-(4-pyridylmethyl)imidazole[J]. Inorg Chem Commun, 2005, 8(2):212-215.
    [87]Nishijima K, Nozaki T, Miyasaka H, et al. The 1/2 and 1/4 pi-pi type molecular adducts of bis(N-alkyl-2-oxy-4-(1-naphthoyloxy)benzaldiminato) copper(II) and 1, 3, 5-trinitrobenzene[J]. Inorg Chim Acta, 1995, 254: 131-137.
    [88]Bondi A, [J]. J. Phys. Chem., 1964, 68: 441.
    [89]Zhang X M, Hao Z M, Wu H S, Cuprophilicity-induced cocrystallization of [Cu2(4, 4'-bpy)(CN)2]n sheets and [Cu(SCN)]n chains into a 3-D pseudopolyrotaxane [J]. Inorg Chem, 2005, 44(21):7301-7303.
    [90]Carlucci L, Ciani G, Proserpio D M, Polycatenation, polythreading and polyknotting in coordination network chemistry[J]. Coord Chem Rev, 2003, 246:247-289.
    [91]Carlucci L, Ciani G, Proserpio D M, Borromean links and other non-conventional links in 'polycatenated' coordination polymers:re-examination of some puzzling networks[J]. CrystEngCommun, 2003, 5:269-279.
    [92]Bu X H, Tong M L, Chang H C, et al. A neutral 3D copper coordination polymer showing 1D open channels and the first interpenetrating NbO-type network[J]. Angew Chem Int Ed, 2004, 43(2):192-195.
    [93]Wang X L, Qin C, Wang E B, et al. An unusual polyoxometalate-encapsulating 3D polyrotaxane framework formed by molecular squares threading on a twofold interpenetrated diamondoid skeleton[J]. Chem Commun, 2007, 4245-4247.
    [94]Müller A, K?gerler P, From simple building blocks to structures with increasing size and complexity[J]. Coord Chem Rev, 1999, 182(1):3-17.
    [95]Müller A, Kuhlmann C, B?gge H, et al. (Mo2O42+)-O-v directs the formation and subsequent linking of potential building blocks under different boundary conditions:A related set of novel cyclic polyoxomolybdates[J]. Eur J Inorg Chem, 2001, 2271-2277.
    [96]Liu C M, Zhang D Q, Zhu D B, One- and two-dimensional coordination polymers constructed from bicapped Keggin mixed molybdenum-vanadium heteropolyoxoanions and polynuclear copper(I) clusters bridged by asymmetrical bipyridine (2, 4 '-bipy and 2, 3 '-bipy) ligands[J]. Cryst. Growth Des, 2006, 6(2):524-529.
    [97]Yang H X, Lin J X, Chen J T, et al. A novel 1D chain compound constructed from alternating Wells-Dawson polyanions and mixed-valence hexacopper phosphate cations[J]. Cryst Growth Des, 2008, 8(8):2623-2625.
    [98]Pankove J I, Optical Processes in Semiconductors, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1997, pp. 34.
    [99]Meijerink A, Blasse G, Glasbeek M, Oluminescence, thermoluminescence and EPR studies on Zn4B6O13[J]. J. Phys. Condens. Matter. 1990, 2(29):6303-6313;
    [100]Vyasamudri S Y, Maji T K, Sixfold interpenetrated diamondoid network of Cu(I):Synthesis, structure, selective anion exchange and luminescence properties[J]. Chem Phys Lett, 2009, 473(4-6):312-316.
    [101]Frisch M J, Trucks G W, et al. Gaussian 03, Revision C.02; Gaussian, Inc.:Pittsburgh, PA, 2003.
    [102]Gan X, Fu W F, Lin Y Y, et al. Synthesis, structures and photophysical properties of polynuclear copper(I) iodide complexes containing phosphine and 4, 4'-bipyridine ligands[J]. Polyhedron, 2008, 27(9-10):2202-2208.
    [103]Konarev D V, Khasanov S S, Kovalevsky Y A, et al. Supramolecular approach to the synthesis of [60]fullerene-metal dithiocarbamate complexes, {(M-II(R2dtc2)(x)·L}·C-60 (M = Zn, Cd, Hg, Fe, and Mn; x=1 and 2). The study of magnetic properties and photoconductivity[J]. Cryst Growth Des, 2008, 8(4):1161-1172.
    [104]Konarev D V, Kovalevsky A Y, Lopatin D V, et al. Synthesis, crystal structure and photoconductivity of the first [60]fullerene complex with metal diethyldithiocarbamate:{Cu-II(dedtc)2}2·C-60[J]. Dalton Trans, 2005, 1821-1825.
    [105]Herres-Pawlis S, Verma P, Haase R, Phenolate Hydroxylation in a Bis(mu-oxo)dicopper(III) Complex:Lessons from the Guanidine/Amine Series[J]. J Am Chem Soc, 2009, 131(3):1154-1169.
    [106]Hong S J, Hill L M R, Gupta A K, et al. Effects of Electron-Deficient beta-Diketiminate and Formazan Supporting Ligands on Copper(I)-Mediated Dioxygen Activation[J]. Inorg Chem, 2009, 48(10):4514-4523.
    [107]Konarev D V, Kovalevsky A Y, Khasanov S S, et al. Synthesis, crystal structures, magnetic properties and photoconductivity of C-60 and C-70 complexes with metal dialkyldithiocarbamates M(R2dtc)x:where M = Cu-II, Cu-I, Ag-I, Zn-II, Cd-II, Hg-II, Mn-II, Ni-II, and Pt-II; R = Me, Et, and nPr [J]. Eur J Inorg Chem, 2006, 1881-1895.
    [108]Luo J H, Hong M C, Wang R H, et al. A novel 1D ladder-like organic-inorganic hybrid compound [(Cu(biz)2)]2[{Cu(biz)2}2Mo8O26] (biz = benzimidazole)[J]. Inorg Chem Commun, 2003, 6(6): 702-705;
    [109]Wang R Z, Xu J Q, Yang G Y, et al. A metal-oxo cluster-supported transition metal complex: synthesis, structure and properties of [Cu(phen)2]2[{Cu(phen)}2Mo8O26]·H2O[J]. Polyhedron, 1999, 18(23):2971-2975.
    [110]Devi R N, Burkholder E, Zubieta J, Hydrothermal synthesis of polyoxotungstate clusters, surface-modified with M(II)-organonitrogen subunits[J]. Inorg Chim Acta, 2003, 348(1):150-156.
    [111]Lisnard L, Dolbecq A, Mialane P, et al. Hydrothermal syntheses and characterizations of 0D to 3D polyoxotungstates linked by copper ions[J]. Inorg Chim Acta, 2004, 357(3):845-852.
    [112]Lin B Z, Li Z, He L W, et al. A sinusoidal chain constructed from decorated Keggin clusters and {Cu(enMe)2}2+ bridging groups in [Cu(enMe)2(H2O)] [{Cu(enMe)2}{Cu(enMe)2(H2O)W12O40H2}]·nH2O[J]. Inorg Chem Commun, 2007, 10(6):600-604.
    [113]Bu W M, Ye L, Yang G Y, et al. One- and two-dimensional framework materials constructed from the mixed Mo/V tetra-capped Keggin structure clusters and M(en)2 (M = Ni, Cu) complexes groups[J]. Inorg. Chem. Commun. 2001, 4(1):1-4.
    [114]Modec B, Bren?i? J V, Zubieta J, The solvatothermal synthesis and the crystal structure of polymeric N-methylpyridinium octamolybdate(VI) : (Me-NC5H5)4n [Mo8O26]n[J]. Inorg Chem Commun, 2003, 6(5):506-512.
    [115]Bridgeman A J, The electronic structure and stability of the isomers of octamolybdate[J]. J Phys Chem A, 2002, 106(50):12151-12160.
    [116]Day V W, Fredrich M F, Klemperer W G, et al. Structure and dynamic stereochemistry of alpha-Mo8O264-[J]. J Am Chem Soc, 1977, 99(3):952-953.
    [117]Klemperer W G, Shum W, Sytheses and interconversion of isomeric alpha-Mo8O264- and beta-Mo8O264-ions[J]. J Am Chem Soc, 1976, 98(25):8291-8293.
    [118]Fucks J, Hartl H, Anion Structure of tetrabutylammonium octamolybdate [N(C4H9)4]4Mo8O26[J]. Angew Chem Int Ed Engl, 1976, 15(6):375-376.
    [119]Sun C Y, Wang E B, Xiao D R, et al. The first example of a structure containing both alpha- and beta-octamolybdates : synthesis and structure of a new three-dimensional supramolecular network [Co(2, 2 '-bipy)(3)](4)[Mo8O26]2·5H2O (2, 2'-bipy=2, 2'-bipyridine)[J]. J Mol Struct, 2005, 741(1-3):149-153.
    [120]Lan Y Q, Li S L, Wang X L, et al. Supramolecular isomerism with polythreaded topology based on [Mo8O26]4- isomers[J]. Inorg Chem, 2008, 47(2):529-534.
    [121]Stover A K, Gutnick J R, Sarjeant A N, et al. Mo16O53F212- : A new polyoxofluoromolybdate anion[J]. Inorg Chem, 2007, 46(11):4389-4391.
    [122]Wang W J, Xu L, Wei Y G, et al. A novel hybrid crystal of chiral racemic complexes coexisting with two kinds of polyoxomolybdates:synthesis and structure of [Co(bpy)3]2[Mo6O19] [beta-(H2Mo8O26)]·4H2O[J]. J Solid State Chem, 2005, 178(3):608-612.
    [123]Koo B K, Lee U, Hydrothermal synthesis and crystal structure of a polyoxomolybdate aggregate constructed from hexamolybdate, octamolybdate, and cobalt(III) complex ion [J]. Inorg Chim Acta, 2006, 359(7):2067-2071;
    [124]Müller A, Todea A M, B?gge H, et al. Formation of a "less stable" polyanion directed and protected by electrophilic internal surface functionalities of a capsule in growth:[{Mo6O19}2-subset of {(Mo72Fe30O252)-Fe-VI-O-III(ac)20(H2O)92}]4-[J]. Chem Commun, 2006, 3066-3068.
    [125]Modec B, Bren?i? J V, Zubieta J, The solvatothermal synthesis and the crystalstructure of polymeric N-methylpyridinium octamolybdate(VI) : (Me-NC5H5)4n [Mo8O26]n[J]. Inorg Chem Commun, 2003, 6(5):506-512.
    [126]Michailovski A, Patzke G R, Hydrothermal synthesis of molybdenum oxide based materials:Strategy and structural chemistry[J]. Chem Eur J, 2006, 12(36):9122-9134.
    [127]Klemperer W G, Shum W, Synthesis and interconversion of isomeric alpha-Mo8O264- and beta-Mo8O264- ions[J]. J Am Chem Soc, 1976, 98(25):8291-8293.
    [128]DeBurgomaster P, Ouellette W, Liu H X, et al. Hydrothermal chemistry of vanadium oxides with aromatic di- and tri-phosphonates in the presence of secondary metal copper(II) cationic complex subunits[J]. CrystEngComm, 2010, 12: 446-469.
    [129]Cheetham A K, Rao C N R, Feller R K, Structural diversity and chemical trends in hybrid inorganic-organic framework materials[J]. Chem Comm 2006, 4780-4795.
    [130]Allis D G, Rarig R S, Burkholder E, et al. A three-dimensional bimetallic oxide constructed from octamolybdate clusters and copper-ligand cation polymer subunits. A comment on the stability of the octamolybdate isomers[J]. J Mol Struct, 2004, 688(1-3):11-31.
    [131]Meng J X, Lu Y, Li Y G, et al. Base-Directed Self-Assembly of Octamolybdate-Based Frameworks Decorated by Flexible N-Containing Ligands[J]. Cryst Growth Des, 2009, 9(9):4116-4126.
    [132]Atencio R, Briceno A, Silva P, et al. Sequential transformations in assemblies based on octamolybdate clusters and 1, 2-bis(4-pyridyl)ethane[J]. New J Chem, 2007, 31(1):33-38.
    [133]Tian C H, Sun Z G, Li J, et al. Synthesis and crystal structures of two new inorganic–organic hybrid polyoxomolybdate complexes: [Himi]4[{Co(imi)2(H2O)2}Mo7O24]·4H2O and [Zn(imi)4]2[(imi)2Mo8O26]·6H2O[J]. Inorg Chem Commun, 2007, 10(7):757-761;
    [134]Martin-Zarza P, Arrieta T M, Munoz-Roca M C, et al. Synthesis and characterization of new octamolybdates containing imidazole, 1-methyl- or 2-methyl-imidazole co-ordinatively bound to molybdenum[J]. J Chem Soc Dalton Trans, 1993, 1551-1558.
    [135]Zhang L, Wei Y, Wang C, et al. Hexatungstate subunit as building block in the hydrothermal synthesis of organic–inorganic hybrid materials:synthesis, structure and optical properties of Co2(bpy)6(W6O19)2 (bpy=4, 4′-bipyridine)[J]. J Solid State Chem, 2004, 177(10):3433-3438.
    [136]Liao J H, Juang J S, Lai Y C, Supermolecular architecture of apolypseudo-rotaxane:[Cd(BPE)(alpha-Mo8O26)][Cd(BPE)(DMF)4]·2DMF (BPE=1, 2-bis(4-pyridyl)ethane, DMF = N, N-dimethylformamide)[J]. Cryst Growth Des, 2006, 6(2):354-356.
    [137]Xia Y, Wu P F, Wei Y G, et al. Synthesis, crystal structure, and optical properties of a polyoxometalate-based inorganic-organic hybrid solid, (n-Bu4N)2[Mo6O17( NAr)2] (Ar = o-CH3OC6H4) [J]. Cryst Growth Des, 2006, 6(1):253-257.
    [138]Song Y F, Long D L, Cronin L, Noncovalently connected frameworks with nanoscale channels assembled from a tethered polyoxometalate-pyrene hybrid[J]. Angew Chem Int Ed, 2007, 46(21):3900-3904.
    [139]Li J, Huth I, Chamoreau L M, et al. Insertion of Amides into a Polyoxometalate[J]. Angew Chem Int Ed, 2009, 48(11):2035-2038.
    [140]Coronado E, Gatteschi D, Trends and challenges in molecule-based magnetic materials[J]. J Mater Chem, 2006, 16(26):2513-2515.
    [141]Brechin E K, Cronin L, The Marriage of Inorganic and Organic Building Blocks for the Assembly of Rotaxanes[J]. Angew Chem Int Ed, 2009, 48(38): 6948-6949.
    [142]Mitchell S G, Khanra S, Miras H N, et al. The trinity of polyoxometalates:connecting {M12} Keggin and {M18} Dawson clusters to triangles[J]. Chem Commun, 2009, 2712-2714.
    [143]Izzet G, Ishow E, Delaire J, et al. Photochemical Activation of an Azido Manganese-Monosubstituted Keggin Polyoxometalate : On the Road to a Mn(V)?Nitrido Derivative[J]. Inorg Chem, 2009, 48(24):11865–11870.
    [144]Abbas H, Streb C, Pickering A L, et al. Molecular growth of polyoxometalate Architectures based on [-Ag{Mo8}Ag-] synthons : Toward designed cluster assemblies[J]. Cryst Growth Des, 2008, 8(2):635-642.
    [145]Yang G S, Lan YQ, Zang HY, et al. Two eight-connected self-penetrating porous metal-organic frameworks:configurational isomers caused by different linking modes between terephthalate and binuclear nickel building units[J]. CrystEngCommun, 2009, 11(2):274-277.
    [146]Pan Z R, Song Y, Jiao Y, et al. Syntheses, structures, photoluminescence, and magnetic properties of phenanthrene-based carboxylic acid coordination polymers[J]. Inorg Chem, 2008, 47(12):5162-5168.
    [147]Zheng S L, Yang, J H, Yu X L, et al. Syntheses, structures, photoluminescence, and theoretical studies of d10 metal complexes of 2, 2'-dihydroxy-[1, 1'] binaphthalenyl-3, 3 '-dicarboxylate[J]. Inorg Chem, 2004, 43(3):830-838.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700