用户名: 密码: 验证码:
太阳能光伏并网发电系统的优化设计与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界能源危机和环境问题使得开发利用可再生能源和各种绿色能源以实现可持续发展成为人类必须采取的措施。而随着太阳能电池和电力电子技术的不断进步,太阳能光伏发电得到了长足的发展并已成为新能源利用的主流之一。当前,光伏发电不断向低成本、高效率和高功率密度方向发展,太阳能光伏利用的主要形式将是并网发电系统。高性能的数字信号处理器芯片DSP的出现,使得一些先进的控制策略应用于光伏并网的控制成为可能。
     本论文研究太阳能光伏并网发电系统,从成本、可靠性和效率的角度出发,主要对系统的结构和控制算法进行了深入地探究。
     论文首先确定了光伏并网发电系统的电网接口标准和所需设计的逆变器规格,然后对现阶段最具代表性的光伏并网逆变系统结构进行了分析对比,通过归纳总结,提出了一种双全桥光伏并网逆变器结构。在此基础上对逆变器每一细节进行了深入研究:提出了基于虚拟电阻法的输出滤波器性能优化,得到低成本、高可靠性和高效率的逆变器结构。
     论文研究了光伏阵列模块,根据入射太阳光光照强度与所产生电流之间的关系,对光伏阵列模块的相关特性,如部分遮挡、光伏模块终端的电压/电流纹波,进行了理论研究,通过仿真软件对光伏阵列模块的各种特性进行了仿真模拟。根据光伏阵列模块的数学模型,本文提出了一种新的最大功率点跟踪MPPT(Maximum Power Point Tracking)算法——基于开关面零均值动态准滑模MPPT控制算法,以滑模面周期积分为零代替滑模面为零,解决了滑模控制开关频率不固定,滑模MPPT控制会在最大功率点附近抖动的问题;结合局部扫描法,使得MPPT控制简单易行,响应迅速,鲁棒性较强,开关频率固定,适用于部分遮挡和光照强度变化剧烈的场合,使得光伏并网发电系统能够尽可能大地从光伏阵列模块中获得太阳能能量,通过仿真和实验分析验证了所提方法的具有高精度和高效性。
     为了使直流端电压尽可能的小,论文对直流端电压参考值的选取进行了研究,提供了直流端电压的计算方法,减小了MOSFET管的开关损耗,保护了直流端的电解电容。在此基础上,提出了基于单周期离散比例积分PI(Proportion Integral)的直流端电压控制,使得交流跟踪电流参考值基于光伏模块产生的电流值,这样可以方便地调节光伏模块的工作点。
     论文提出了基于Walsh的特定消谐脉宽调制的电网电流控制器,减小了光伏并网逆变器的开关次数和系统损耗,并可控制输出电网电流谐波。为了减小注入电网的电流谐波,论文还简要地对死区时间效应进行了比较分析,研究了不同的死区时间对电网电能质量的影响,为死区时间补偿提供了理论依据。从用电安全与电能质量考虑,研究了快速安全的孤岛效应检测控制方法,分析了太阳能光伏发电系统直接并网时的安全保护问题,保证了整个系统的高效安全运行。
     在理论研究的基础上,本论文研制出光伏并网发电系统实验样机,同时比较了实际实现与设计之间的差别。对光伏并网发电系统的整个系统性能,包括电网与逆变器接口性能以及光伏模块与逆变器接口性能进行了多项实验研究。实验结果验证了太阳能光伏并网发电系统拓扑结构及控制算法的正确性、可行性和高效性。
     最后对论文进行了总结,并提出了一些有待于进一步研究的问题。
The problem of conventional energy crisis and environment in the world makes it necessary to exploit the renewable and green energy sources, in order to cover the future demands. Meanwhile, solar "photovoltaic" power has made great progress and become one of the most effective clean and renewable energy with the advance of solar cell and power electronics. Recently, the photovoltaic system constantly develops with the tendency of lower cost, higher efficiency and higher power density techniques, following the higher and higher performance requirement of key equalizer equipments. The main application of solar energy will be the grid-connected photovoltaic system. With coming into using of the high-performance Digital Signal Processor (DSP) chip, it is possible that some advanced control strategies can be applied on the grid-connected PV system.
     The thesis addresses the solar grid-connected photovoltaic system. With considering the cost, reliability and efficiency, it mainly focuses on the optimal design and control strategies of grid-connected photovoltaic system. Therefore, it develops new and cheap concepts for converting electrical energy, from the PV module to the grid.
     One method, among many, to make PV power more competitive is achieved by developing inexpensive and reliable inverters. According to the standards of grid interface and PV module interface determined by the project, research has been conducted on thirteen kinds of popular inverter topologies. By generalizations and comparisons, a dual full bridge inverter topology is presented. On such basis, the inverter, with belonging auxiliary circuits, is designed. And an optimization method of LCL output filter is proposed. As a whole, the inverter is developed with low cost, high reliability and high efficient structure.
     The research contains an analysis of the PV module, a specification based on the analysis and inner P-N junction principle. A mathematical model for the PV module is built, and therefore the relationship between sunlight irradiation and generated current is determined. Theory research is also carried on other characteristics of PV module such as partial shadow and ripple at the PV module terminal. The module is established in simulation software and all kinds of associated properties are simulated. Based on the developed model, a novel maximal power point tracking (MPPT) algorithm, fixed-frequency quasi-sliding control algorithm based on switching surfacezero averaged dynamics, is developed, which guarantees the grid-connected photovoltaic system get most amount of energy from PV module. The precision and efficiency are verified by simulation and experiment.
     The selection of the DC-link voltage reference is carefully analyzed, in order to keep it as low as possible. It is desirable for lowering the switching losses of the MOSFETs, and protecting DC-link electrolytic capacitor. Based on this result, one cycle discrete PI controller is proposed to control the DC-link voltage, for which the current reference is the one achieved from PV's current. Therefore, the working point of PV system can be adjusted easily.
     The grid current controller is designed, in order to inject a sinusoidal current, with low harmonics into the grid. This controller is designed by using selective harmonic elimination pulse width modulation (SHE-PWM) base on Walsh transform, because the switching frequency is lower compared with other controllers under the same current harmonic distortion. Some additional parts to enhance the quality of the grid current are also discussed, such as blanking time compensation and detection of islanding operation by means of voltage and frequency monitoring presented, which guarantees the grid-connected PV system operates in safety.
     On the basis of theoretical research, a prototype of grid-connected PV system is realized, and the difference between the designed goal and actual system is shown. The evaluation includes measurements on the interfaces between the grid and inverter, and between the PV module and the inverter. The test results show that the system is close to keep all the demands, and with correction, feasibility and efficiency.
     Finally, this paper makes some conclusions, and presents some issues for future research.
引文
[1] 王长贵.新能源和可再生能源的现状和展望.太阳能光伏产业发展论坛论文集.2003,9:4-9.
    [2] 赵玉文.21世纪我国光伏产业发展战略思考.合肥工业大学讲座.2002.
    [3] 赵玉文.太阳能光伏技术的发展概况.第五届全国光伏技术学术研讨会论文集.1998.
    [4] Benner JP, Kazmerski L. Photovoltaics gaining greater visibility. Spectrum, IEEE. 1999,36(9): 34-42.
    [5] 林安中,王斯成.国内外太阳电池和光伏发电的进展与前景.太阳能学报,增刊.1999:68-74.
    [6] 梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述.电网技术.2003,27(12):71-75.
    [7] Green MA. Third generation photovoltaics: comparative evaluation of advanced solar conversion options. Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE. 2002: 1330-1334.
    [8] 赵争鸣,刘建政,孙晓瑛.太阳能光伏发电及其应用.北京:科学出版社,2005.
    [9] Isaac RH.太阳能电池与太阳能电子线路.上海:上海科技文献,1986.
    [10] Rahman S, Khallat MA, Chowdhury BH. A discussion on the diversity in the applications of photovoltaic systems. Energy Conversion, IEEE Transaction on. 1988,3(4): 738-746.
    [11] Palz W. PV for the new century status and prospects for PV in Europe. Renewable Energv World. 2000. 3(2): 24.
    [12] 薛钰芝,张力,林纪宁.太阳能光伏技术的研究与发展.大连铁道学院学报.2003,24(4):71-74.
    [13] 张扬,高辉.太阳能利用与环境可持续发展是统一框架下的系统工程——美洲百万太阳能屋顶计划启示.新能源.2000,22(9):51.
    [14] Maycock PD. International photovoltaic markets, developments and trends forecast to 2010. Photovoltaic Energy Conversion, Conference Record of the Twenty Fourth ;IEEE Photovoltaic Specialists Conference, IEEE First World Conference on. 1994, 1:694-699.
    [15] Taylor R, Arent D, Baldwin S, et al. Opportunities and issues in international photovoltaic market development. Photovoltaic Specialists Conference, Conference Record of the Twenty Fifth IEEE. 1996: 1465-1468.
    [16] 黄讯.我国光伏发电的现状及市场展望.中国环保产业.2003,5:20-21.
    [17] 赵玉文.我国太阳能光伏产业发展形式和思考.世界科技研究与发展.2003,25(4):31-38.
    [18] Ball GJ, Hudson RM, Behnke MR. Recent application and performance of large, grid-connected commercial PV systems. Photovoltaic Specialists Conference, 2002 Conference Record of the Twenty-Ninth IEEE. 2002: 1710-1713.
    [19] Shea JJ. Understanding FACTS-concepts and technology of flexible AC transmission systems [Book Review]. Electrical Insulation Magazine, IEEE. 2002, 18(1): 46-46.
    [20] Myrzik JMA, Calais M. String and module integrated inverters for single-phase grid connected photovoltaic systems-a review. Power Tech Conference Proceedings, IEEE Bologna. 2003, 2:8 pp..
    [21] 王兆安,黄俊.电力电子技术.北京:机械工业出版社,2002.
    [22] Hudson RM, Behnke MR, West R, et al. Design considerations for three-phase grid connected photovoltaic inverters. Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE. 2002: 1396-1401.
    [23] 曹仁贤.光伏发电系统中逆变电源的原理与实现.太阳能.1998,2:17-19.
    [24] 张超,何湘宁.一种用于光伏发电系统的新型高频逆变器.电力系统自动化.2005,29(19):51-53.
    [25] 杨海柱,金新民.最大功率跟踪的光伏并网逆变器研究.北方交通大学学报.2004,28(2):65-68.
    [26] Arab AH, Driss BA, Amimeur R, et al. Photovoltaic systems sizing for algeria. Solar Energy. 1995, 54(2): 99-104.
    [27] Mehmet A, Isa Q, Adel K. Matching of separately excited DC motors to photovoltaic generator for maximum power output. 1998.
    [28] Dag H, Alvarado FL. Toward improved uses of the conjugate gradient method for power system applications. Power Systems, IEEE Transactions on. 1997, 12(3):1306-1314.
    [29] Samimi J, Soleimani EA, Zabihi MS. Optimal sizing of photovoltaic systems in varied climates. Solar Energy. 1997, 60(2): 97-107.
    [30] Tsai-Fu W, Chien-Hsuan C, Yu-Hai C. A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications. Industrial Electronics, IEEE Transactions on. 2000, 47(2): 287-296.
    [31] Khaehintung N, Sirisuk P. Implementation of maximum power point tracking using fuzzy logic controller for solar-powered light-flasher applications. Circuits and Systems: 2004 MWSCAS'04 The 2004 47th Midwest Symposium on. 2004, 3:iii-171-174.
    [32] Veerachary M, Senjyu T, Uezato K. Feedforward maximum power point tracking of PV systems using fuzzy controller. Aerospace and Electronic Systems, IEEE Transactions on. 2002, 38(3): 969-981.
    [33] Khaehintung N, Sirisuk P, Kurutach W. A novel ANFIS controller for maximum power point tracking in photovoltaic systems. Power Electronics and Drive Systems, PEDS The Fifth International Conference on. 2003, 2: 833-836.
    [34] Premrudeepreechacharn S, Patanapirom N. Solar-array modelling and maximum power point tracking using neural networks. Power Tech Conference Proceedings, IEEE Bologna. 2003, 2:5 pp.
    [35] 陈国呈.PWM变频调速及软开关电力变换技术.北京:机械工业出版社,2001.
    [36] 王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,2004.
    [37] 雷元超,陈春根.滞环比较PWM跟踪控制分析.水电能源科学.2004,(3):83-85.
    [38] 赵振波,李和明.采用电流滞环调节器的电压矢量控制PWM整流器系统.电工技术学报.2004,1:31-34.
    [39] 张凯,康勇,熊健.一种单片机无差拍控制逆变器系统的研究.电力电子技术. 1999, 5: 12-14.
    [40] Kyoungsoo R, Rahman S. Two-loop controller for maximizing performance of a grid-connected photovoltaic-fuel cell hybrid power plant. Energy Conversion, IEEE Transaction on. 1998, 13(3): 276-281.
    [41] Antunes F, Torres AM. A three-phase grid-connected PV system. Industrial Electronics Society, IECON, 26th Annual Confjerence of the IEEE. 2000, 1: 723-728.
    [42] Narri Y, Mummadi V. Adaptive controller for PV supplied buck-boost converter. Power Electronics and Drive Systems, PEDS'99 Proceedings of the IEEE International Conference on. 1999, 2: 789-793.
    [43] Meza C, Biel D, Martinez J, et al. Boost-buck inverter variable structure control for grid-connected photovoltaic systems. Circuits and Systems, ISCAS, IEEE International Symposium on. 2005, 2: 1318-1321.
    [44] Premrudeepreechacharn S, Poapornsawan T. Fuzzy logic control of predictive current control for grid-connected single phase inverter. Photovoltaic Specialists Conference, Conference Record of the Twenty-Eighth IEEE. 2000:1715-1718.
    [45] J DA, M SZ. Fuzzy Logic Modeling of a Grid-connected Wind/Photovoltaic System with Battery Storage. Power Engineering, Large Engineering systems Conference. 2004:129—135.
    [46] Qingrong Z, Liuchen C. Study of advanced current control strategies for three-phase grid-connected pwm inverters for distributed generation. Control Applications, CCA, Proceedings of 2005 IEEE Conference on. 2005: 1311-1316.
    [47] Nguyen van N. A Graphical Approach to Switching Losses and Harmonics Distortion For Carrier SVPWM Methods In Multilevel Inverters. Power Electronics and Drives Systems, PEDS International Conference on. 2005, 1:192-197.
    [48] TSUKAMOTO O, OKAYASU T, YAMAGISHI K. Study on Islanding of Dispersed Photovoltaic Power Systems Connected to a Utility Power Grid. Solar Energy. 2001,70(6): 505—511.
    [49] Shyh-Jier H, Fu-Sheng P. An active islanding-detection method for power conditioning subsystem of utility interactive photovoltaic system. Power Engineering Society Summer Meeting, IEEE. 2000, 3: 1750-1755.
    [50] JOHN S, RUSSELL B, JERRY G. Development and Testing of an Approach to Anti-Islanding in Utility-Interconnected Photovoltaic Systems. Albuquerque, NM: Sandia National Laboratory; Aug. 2000.
    [51] Kern GA. SunSine300, utility interactive AC module anti-islanding test results. Photovoltaic Specialists Conference, Conference Record of the Twenty-Sixth IEEE.1997: 1265-1268.
    [52] 赵为,余世杰.光伏并网发电系统的孤岛效应与防止策略.太阳能学报,增刊.2003:94—97.
    [53] Ghali FMA. A combined technique for elimination of islanding phenomenon [grid-connected power systems]. Photovoltaic Specialists Conference, Conference Record of the Twenty Fifth IEEE. 1996: 1473-1476.
    [54] Kitamura A, Okamoto M, Hotta K, et al. Islanding prevention measures: demonstration testing at Rokko Test center for Advanced Energy Systems. Photovoltaic Specialists Conference, Conference Record of the Twenty Third IEEE. 1993: 1063-1067.
    [55] Smith GA, Onions PA, Infield DG. Predicting islanding operation of grid connected PV inverters. Electric Power Applications, IEE Proceedings-. 2000, 147(1): 1-6.
    [56] Ropp ME, Begovic M, Rohatgi A. Analysis and performance assessment of the active frequency drift method of islanding prevention. Energy Conversion, IEEE Transaction on. 1999, 14(3): 810-816.
    [57] Woyte A, Belmans R, Nijs J. Testing the islanding protection function of photovoltaic inverters. Energy Conversion, IEEE Transaction on. 2003, 18(1): 157-162.
    [58] Kotsopoulos A, Duarte JL, Hendrix MAM, et al. Islanding behaviour of grid-connected PV inverters operating under different control schemes. Power Electronics Specialists Conference, pesc 02 IEEE 33rd Annual. 2002, 3: 1506-1511.
    
    [59] Wills RH, Hall FE, Strong SJ, et al. The AC photovoltaic module. 1996: 1231-1234.
    
    [60] Wills RH, Krauthamer S, Bulawka A, et al. The AC photovoltaic module concept. 1997, 3: 1562-1563 vol.1563.
    [61] Achille E, Martire T, Glaize C, et al. Optimized DC-AC boost converters for modular photovoltaic grid-connected generators. Industrial Electronics, 2004 IEEE International Symposium on. 2004, vol. 2: 1005-1010.
    [62] Chuanwen J, Smith M, Jr., Smedley KM, et al. Cross regulation in flyback converters: analytic model and solution. Power Electronics, IEEE Transactions on. 2001, 16(2): 231-239.
    [63] Gang C, Yim-Shu L, Hui SYR, et al. Actively clamped bidirectional flyback converter. Industrial Electronics, IEEE Transactions on. 2000, 47(4): 770-779.
    [64] Mohan N, Undeland TM. Power Electronics: Converters, Applications and Design. 3rd edition: John Wiley & Sons, Inc., Isbn: 0-471-58408-8, 2003.
    [65] Kjaer SB, Blaabjerg F. Design optimization of a single phase inverter for photovoltaic applications. Power Electronics Specialist Conference, 2003 PESC '03 2003 IEEE 34th Annual. 2003, vol.3: 1183-1190.
    [66] Shimizu T, Wada K, Nakamura N. A flyback-type single phase utility interactive inverter with low-frequency ripple current reduction on the DC input for an AC photovoltaic module system. Power Electronics Specialists Conference, 2002 pesc 02 2002 IEEE 33rd Annual. 2002, vol.3: 1483-1488.
    [67] Myrzik JMA. Novel inverter topologies for single-phase stand-alone or grid-connected photovoltaic systems. Power Electronics and Drive Systems, 2001 Proceedings, 2001 4th IEEE International Conference on. 2001, vol.1: 103-108.
    [68] Nagao M, Harada K. Power flow of photovoltaic system using buck-boost PWM power inverter. Power Electronics and Drive Systems, 1997 Proceedings, 1997 International Conference on. 1997, vol.1: 144-149.
    [69] Mekhilef S, Rahim NA, Omar AM. A new solar energy conversion scheme implemented using grid-tied single phase inverter. IEEE Proceedings of TENCON 2000. 2000, vol.3: 524-527.
    [70] Martins DC, Demonti R. Photovoltaic energy processing for utility connected system. Industrial Electronics Society, 2001 IECON '01 The 27th Annual Conference of the IEEE. 2001, vol.2: 1292-1296.
    [71] Martins DC, Demonti R. Grid connected PV system using two energy processing stages. Photovoltaic Specialists Conference, 2002 Conference Record of the Twenty-Ninth IEEE. 2002: 1649-1652.
    [72] Meinhardt M, O'Donnell T, Schneider H, et al. Miniaturised"Low Profile" module integrated converter for photovoltaic applications with integrated magnetic components. IEEE proc of the Fourteenth Annual Applied Power Electronics Conference and Exposition, 1999 APEC'99.1999,vol.1: 305-311.
    [73] Lohner A, Meyer T, Nagel A. A new panel-integratable inverter concept for grid-connected photovoltaic systems. Industrial Electronics, 1996 ISIE'96, Proceedings of the IEEE International Symposium on. 1996, vol.2:827-831.
    [74] Kazimierczuk MK, Czarkowski D. Resonant Power Converters: WILEY-interscience, Isbn: 0-471-04706-6, 1995.
    [75] Prapanavarat C, Barnes M, Jenkins N. Investigation of the performance of a photovoltaic AC module. Generation, Transmission and Distribution, IEE Proceedings-.2002, 149(4): 472-478.
    [76] de Haan SWH, Oldenkamp H, Wildenbeest EJ. Test results of a 130 W AC module; a modular solar AC power station. Photovoltaic Energy Conversion, 1994, Conference Record of the Twenty Fourth ; IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference on. 1994, vol.l: 925-928.
    [77] Bhat AKS, Dewan SD. Resonant inverters for photovoltaic array to utility interface. Aerospace and Electronic Systems, IEEE Transactions on. 1988, 24(4): 377-386.
    [78] Bhat AKS, Dewan SB. Analysis and design of a high-frequency link DC to utility interface using square-wave output resonant inverter. Power Electronics, IEEE Transactions on. 1988, 3(3): 355-363.
    [79] 袁立强.具有MPPT功能的光伏水泵系统的控制器的研究.清华大学硕士学位论文,2001.
    [80] 黄锡坚.硅太阳电池及其应用.北京:中国铁路出版社,1985.
    [81] C.J.Winter, L.L.Vant-Hull, R.L.Sizmann. Solar Power Plants:Springerverlag,Isbn: 0-3871-8897-5, 1991.
    [82] 施玉川.太阳能基础与技术.西安:西安交通大学,2003.
    [83] Ikegami T, Maeaono T, Nakanishi F, et al. Estimation of equivalent circuit parameters of PV module and its application to optimal operation of PV system. Solar Energy Materials & Solar Cells. 2001, 67: 389-395.
    [84] Mehmet A, Mohammed AAA. A new model for I-V characteristic of solar cell generators and its applications. Solar Energy Materials & Solar Cells. 1995, 37:123-132.
    [85] 苏建徽,余世杰,赵为,et al.硅太阳电池工程用数学模型.太阳能学报.2001,22(4):409-412.
    [86] Bendel C, Wagner A. Photovoltaic measurement relevant to the energy yield. Proceedings of 3rd World Conference on Photovoltaic Energy Conversion. 2003, 3:2227-2230.
    [87] King DL, Hansen BR, Kratochvil JA, et al. Dark current-voltage measurements on photovoltaic modules as a diagnostic or manufacturing tool. 1997:1125-1128.
    [88] Patterson DJ. Electrical system design for a solar powered vehicle. Power Electronics Specialists Conference, PESC '90 Record, 21st Annual IEEE. 1990: 618-622.
    [89] Bodur M, Ermis M. Maximum power point tracking for low power photovoltaic solar panels. Proceedings 7th Mediterranean Electrotechnical Conference. 1994: 758-761.
    [90] Hussein KH, Muta I, Hoshino T, et al. Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions. Generation, Transmission and Distribution, IEE Proceedings-. 1995, 142(1): 59-64.
    [91] Tae-Yeop K, Ho-Gyun A, Seung Kyu P, et al. A novel maximum power point tracking control for photovoltaic power system under rapidly changing solar radiation. Industrial Electronics, Proceedings ISIE IEEE International Symposium on. 2001, 2: 1011-1014.
    [92] Masoum MAS, Dehbonei H, Fuchs EF. Theoretical and experimental analyses of photovoltaic systems with voltageand current-based maximum power-point tracking. Energy Conversion, IEEE Transaction on. 2002, 17(4): 514-522.
    [93] Dong-Yun L, Hyeong-Ju N, Dong-Seok H, et al. An improved MPPT converter using current compensation method for small scaled PV-applications. Applied Power Electronics Conference and Exposition, APEC '03 Eighteenth Annual IEEE. 2003, 1: 540-545.
    [94] Kobayashi K, Matsuo H, Sekine Y. A novel optimum operating point tracker of the solar cell power supply system. IEEE 35th Annual Power Electronics Specialists Conference, PESC 04 2004, 3: 2147-2151.
    [95] Bekker B, Beukes HJ. Finding an optimal PV panel maximum power point tracking method. AFRICON, 7th AFRICON Conference in Africa. 2004, 2: 1125-1129.
    
    [96] Noguchi T, Togashi S, Nakamoto R. Short-current pulse based adaptive maximum-power-point tracking for photovoltaic power generation system. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics, ISIE. 2000, 1: 57-162.
    [97] Mutoh N, Matuo T, Okada K, et al. Prediction-data-based maximum-power-point-tracking method for photovoltaic power generation systems. IEEE 33rd Annual Power Electronics Specialists Conference, pesc 02 2002, 3: 1489-1494.
    [98] Yuvarajan S, Shanguang X. Photo-voltaic power converter with a simple maximum-power-point-tracker. Proceedings of the 2003 International Symposium on Circuits and Systems, ISCAS '03 2003, 3: III-399-III-402.
    [99] Hohm DP, Ropp ME. Comparative study of maximum power point tracking algorithms using an experimental, programmable, maximum power point tracking test bed. Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference. 2000: 1699-1702.
    [100] Wenkai W, Pongratananukul N, Weihong Q, et al. DSP-based multiple peak power tracking for expandable power system. Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, APEC '03. 2003, 1: 525-530.
    [101] Kobayashi K, Takano I, Sawada Y. A study on a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions. Power Engineering Society General Meeting, IEEE. 2003, 4: 2617.
    [102] Carpita M, Marchesoni M. Experimental study of a power conditioning system using sliding mode control. Power Electronics, IEEE Transactions on. 1996, 11(5): 731-742.
    [103] Nicolas B, Fadel M, Cheron Y. Sliding mode control of DC-to-DC converters with input filter based on the Lyapunov-function approach. Proc Eur Power Electron Conf (EPE).1995: 1338-1343.
    [104] Ruiz JM, Lorenzo S, Lobo I, et al. Minimal UPS structure with sliding mode control and adaptative hysteresis band. Proceeding Int Conference Ind Electron Control Instrum(IECON). 1990, 2: 1063-1067.
    [105] Chiarelli C, Malesani L, Pirondini S, et al. Single-phase, three level, constant frequency current reference hysteresis control for UPS applications. Proc Eur Power Electron Conf(EPE). 1993: 180-185.
    [106] Malesani L, Rossetto L, Spiazzi G, et al. An AC power supply with sliding-mode control. Industry Applications Magazine, IEEE. 1996, 2(5): 32-38.
    [107] 高为炳.变结构控制的理论及设计方法.北京:科学出版社,1996.
    [108] Shih-Liang J, Ying-Yu T. Discrete sliding-mode control of a PWM inverter for sinusoidal output waveform synthesis with optimal sliding curve. Power Electronics, IEEE Transactions on. 1996, 11(4): 567-577.
    [109] Muthu S, Kim JMS. Discrete-time sliding mode control for output voltage regulation of three-phase voltage source inverters. Thirteenth Annual Conference Proceedings of Applied Power Electronics Conference and Exposition (APEC'98). 1998, 1: 129-135.
    [110] 陈国呈.PWM变频调速技术.北京:机械工业出版社,1998.
    [111] Patel HS, Hoft RG. Generalized technique of harmonic elimination and voltage control in thyristor inverter: Part Ⅱ-harmonic elimination. IEEE-IA. 1973, 9(3): 310-317.
    [112] Sasaki H, Machida T. A new method to eliminate ac harmonic currents by magnetic compensation-consideration on basic design. IEEE Trans Power Appplication System.1971, 90(5): 2009-2015.
    [113] 官二勇,宋平岗,叶满园,et al.电流源型逆变器SHE-PWM开关角度的计算方法研究.中国电机工程学报.2005,25(17):62-65.
    [114] Swift F, Kamberis A. A new Walsh domain technique of harmonic elimination and voltage control in pulse-width modulated inverters. Power Electronics, IEEE Transactions on. 1993, 8(2): 170-185.
    [115] G.F.Franklin, J.D.Powell, A.Emami-Naeini. Feedback control of dynamic system. 3rd edition:Addison Wesley, Isbn: 0-201-53487-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700