用户名: 密码: 验证码:
采用光纤耦合及光放大接收的星地光通信系统及关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地面光纤通信的发展,特别是光放大器及波分复用技术的成熟,1550nm波段的空间激光通信在未来的高速卫星通信中极具发展前景。在1550nm波段的空间激光通信中,空间激光到单模光纤的耦合及光放大接收是关键技术。本论文对采用光纤耦合及光放大接收的星地激光通信系统的一些关键技术进行了研究,包括空间激光到单模光纤的耦合、光放大接收星地激光通信系统信道衰落特性及抗衰落技术等内容。
     空间激光到单模光纤的耦合是光放大接收空间激光通信的一个关键技术。根据矩阵光学理论,建立了自由空间激光到单模光纤的耦合模型。分析了光纤定位误差、光学系统像差、透镜的材料色散、瞄准误差、大气湍流等多种因素对空间激光到单模光纤耦合的影响。通过模拟湍流波前,研究了湍流引起的耦合功率衰落特性,及自适应光学耦合系统的性能。采用光纤章动跟踪方法,进行了空间激光到单模光纤耦合的实验验证。对采用自动角度跟踪的耦合系统,提出一种采用高斯模板匹配的跟踪算法,可降低强湍流下耦合功率的衰落深度。
     分析了采用单模光纤耦合及光放大接收的卫星激光通信系统中,发射机、接收机的瞄准误差对通信系统性能的影响。同时考虑发射机、接收机的瞄准误差,建立了前置光放大接收卫星激光通信系统链路的优化模型,根据该模型可按平均误码率或突发误码率要求对通信系统天线参数进行优化设计,给出了光学天线的最优参数。
     研究了星地下行激光通信中的抗衰落技术。对于多孔径接收阵列,引入子接收孔径之间的距离参数,提出对发射机的瞄准误差具有抑制作用的分布式多孔径阵列接收方案。分析了分布式多孔径光放大接收阵列的性能,并对其信号合并方式进行研究。当实际的发射机瞄准误差大于最优设计值时,通过将集中式阵列改为分布式阵列,可以大大降低发射机瞄准误差引起的信号衰落。
     采用数值模拟方法及光束漂移闪烁机理,对地面—卫星上行连接的强度闪烁特性进行了研究。分析了湍流波前倾斜校正发射系统中由于超前瞄准引起的非等晕误差的影响。对于多光束发射,由于不同发射孔径处的湍流波前倾斜具有强相关性,因此各子发射光束之间由湍流波前倾斜引起的光束漂移具有强相关性,分析了这种相关性对多光束发射抗衰落性能的影响。
With the development of optical fiber communications, especially the maturity of the optical amplifiers and the WDM technology, space optical communication at 1550 nm becomes a promising solution for future high speed satellite communication. Receiving technology with optical amplifiers and coupling space light into single mode fiber are key technologies in space optical communication at 1550nm. In this dissertation, the technologies of space optical communication systems with optical amplified receivers, including the aspects of coupling space light into single mode fiber, characteristics of fading channel and anti-fading technologies are studied.
     Coupling space light into single mode fiber is a key technology in optically preamplified space optical communication systems. Based on matrix optics method, a model for coupling free space light into single mode fiber is established. The influences of fiber assembing misalignments、aberration of optical systems、material dispersion of lens、pointing error and atmospheric turbulence on coupling efficiency are analyzed. Active coupling experiments are also demonstrated by using of fiber nutation tracking techniques. Turbulence-induced fading of coupled optical power is investgated by simulating distorted optical wave-front, and the coupling performance with adaptive optics is alse analyzed. For angle-tracked coupling systems, an gaussian template matching tracking algorithm is proposed to reduce signal fading depth in the situation of strong turbulence.
     The influence of pointing error on communication performance is analyzed in fiber coupled and optically preamplified space optical communication systems. Considering the pointing errors of transmitter and receiver, a model for optimizing optically preamplified satellite optical communication systems are established according to average bit error rate or burst error rate, and the optimal antenna parameters are given.
     Anti-fading technologies are studied in satellite-to-ground optical downlink. The parameter of distance between sub-apertures is introduced in multi-aperture receiver, and a distributed multi-aperture receiver array is proposed to reduce the fading induced by pointing error of transmitter. The performance of distributed multi-aperture optically preamplified receiver array is analyzed. Signal combining methods are also studied. When the actual rms pointing error is larger than the optimal designed value in traditional centralized array, the signal fading depth can be reduced greatly by changing the traditional centralized array into distributed array.
     Characteristics of fading channel for ground-to-satellite optical uplink is studied based on numerical simulation and beam wander scintillation mechanism. The influence of anisoplanatism error due to point-ahead angle is also analyzed. For multiple-beam uplink, because of the strong spatial correlation of turbulence-induced wave-front tilt, beam wander of sub-beam is strong correlative, the influence of this correlation on the anti-fading performance of multiple-beam uplink is analyzed.
引文
[1] Mecherle G S, Horstein M. Comparison of radio frequency and optical architect-tures for deep-space communications via a relay satellite. Proc. SPIE, 1994, 2123:36-53
    [2] Hemmati H, Layland J, Lesh J R. Comparative study of optical and RF communication systems for a Mars Mission:II. Unified value metrics. Proc. SPIE, 1997, 2990:200-214
    [3] Carbonneau T H, Wisely D R. Opportunities and challenges for optical wireless; the competitive advantage of free space telecommunications links in today's crowded marketplace. Proc. SPIE, 1998, 3232:119-128
    [4] Gatenby P V, Grant M A. Optical intersatellite links. IEEE J.Electronics & Communication Engineering, 1991, Vol. 3, No. 6:280-288
    [5] Boroson D M. Overview of Lincoln laboratory development of lasercom technologies for space. Proc. SPIE, 1993,1866:30-39
    [6] Hemmati H. Overview of laser communications research at JPL.Proc. SPIE, 2001, 4273:190-193
    [7] Busch T E, Oleski P J, Dorrian K W. Overview of laser communication technologies at Rome laboratory. Proc. SPIE, 1994, 2123:24-33
    [8] Wilson K E, Lesh J R, Araki K, et al. Overview of the ground to orbit lasercomm demonstration (GOLD). Proc. SPIE, 1997, 2990:23-30
    [9] Wilson K E, Lesh J R. GOPEX: A laser uplink to the Galileo spacecraft on its way to Jupiter. Proc. SPIE, 1993,1866:138-146
    [10] Baister G C, Gatenby P V.Lewis J.SOUT optical intersatellite communication terminal elegant breadboard. Proc. IEE Optoelectron, 1995, Vol. 142, No. 6:279-287
    
    [11] Kim I I, Riley B, Wong N M. Lessons leaned from the STRV-2 satellite-to-ground lasercom experiment. SPIE, 2001,4272:1-15
    
    [12] Pribil K. Laser communication terminals:a key building block for the new broadband satellite networks. Proc SPIE,1998, 3408:172-177
    
    [13] Nielsen T T, Oppenhauser G.In orbit test result of an operational optical intersatellite link between ARTEMIS and SP0T4, SILEX. Proc. SPIE, 2002, 4638:1-15
    [14] Romba J, Sodnik Z, Reyes M, et al. ESA's bidirectional Space-to-Ground Laser Communication Experiments. Proc. SPIE, 2004, 5550:287-298
    [15] Araki T, Nakamori S, Hisada Y, et al. Present and future of optical intersatellite communication research at NASDA. Proc. SPIE, 1994, 2123:2-13
    [16] Araki K, Arimoto Y, Shikatani M, et al. Performance evaluation of laser communication equipment onboard the ETS-VI satellite. Proc. SPIE, 1996, 2699:52-59
    [17] Toyoshima M, Yamakawa S, Yamawaki T.Ground-to-satellite optical link test between Japanese laser communications terminal and European geostationary satellite ARTEMIS. Proc. SPIE,2004, 5338:1-15
    [18] Jono T, Takayawa Y, Kura N, et al.OICETS on-orbit laser communication experiments.Proc.SPIE,2006,610503:610503-1-610503-11
    [19] Lutz E, Bischi H, Ernst H, et al. Development and future applications of satellite communications. 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2004, 2342-2346
    [20] Toyoshima M. Trends in satellite communications and the role of optical free-space communications. Journal of Optical Networking, 2005, Vol. 4, No. 6:300-311
    
    [21] Hemmati H, Wright M, Sanii B, et. al. Multi-gigabit data-rate optical communications depicting LEO-to-GEO and GE0-to-Ground links. Proc. SPIE, 2002,4635: 95-301
    [22] Shimer S, Gray R. High bandwidth optical intersatellite link technologies. MWP ' 99, International Topical Meeting on Microwave Photonics, 1999,101-104
    [23] Chan V W S. Optical space communications. IEEE J. Selected Topics in Quantum Electronics. 2000, Vol. 6, No. 6:959-975
    [24] Baister G, Gatenby P.Laurent B, et al. Optical communications terminals for multi-media applications. Proc. SPIE, 1998, 3266:135-145
    [25] Mendez A J, Gagliardi R M. Lasercom crosslinking for satellite clusters. Proc. SPIE, 2001,4272:50-59
    [26] Leeb W, Kalmar A, Kudielka K, et al. Optical terminals for microsatellite swarms. Proc. SPIE, 2002, 4635:202-214
    [27] Kimura K, Inagaki K, Karasawa Y. Global satellite communication network using double-layered inclined-orbit constellation with optical intersatellite links. Proc. SPIE, 1996, 2699:12-23
    [28] Karafolas N, Baroni S. Optical WDM networking in broadband satellite constellations. Lasers and Electro-Optics Society 2000 Annual Meeting, 13th Annual Meeting, 2000,100-101
    [29] Dawood A S, Visser S J. HEO satellite constellation for providing broadband services. The 9th Asia-Pacific Conference on Communications, 2003,863-868
    [30] Gebhart M, Schrotter P, Birnbacher U, et al. Satellite communications, free space optics and wireless LAN combined: worldwide broadband wireless access independent of terrestrial infrastructure. Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference,2004,449-452
    [31] Chan V W S. Optical satellite networks. IEEE J. Lightwave Technology, 2003, Vol. 21, No.11:2811-2827
    [32] Shaik K, Hemmati H. Wavelength selection criteria for laser communications. Proc. SPIE, 1995, 2381:342-357
    [33] Rockwell D A, Mecherle G S. Wavelength selection for optical wireless communications systems. Proc. SPIE, 2001,4530:27-35
    [34] Dorrian K W, Busch T E, Oleski P J. Evaluation of a master oscillator power amplifier (MOPA) laser diode for satellite communications. Proc. SPIE, 1994,2123:243-253
    [35] Goltsos W C. Radiation-induced loss studies in Er-doped fiber amplifier systems. Proc. SPIE, 1996,2699:304-309
    [36] Caussanel M, Signoret P, Gasiot J, et al. Extrapolation of radiation-induced EDFA gain degradation at space dose rate. Electronics Letters, 2005, Vol. 41, No. 4:168-170
    [37] Araki T, Nakamori S, Tajima Y. High power optical amplifier for optical inter-orbit communications. Proc. SPIE,1996,2699:266-277
    [38] Araki T, Nakamori S, Furuya M, et al. Latest results and trade-off of high power optical fiber amplifiers for optical inter-orbit communications. Proc.SPIE, 1998,3266:42-48
    [39] Wood T H. Highly-reliable high power optical amplifiers at 1.55 um. Proc. SPIE, 2006, 6124:61240Q-1-61240Q-9
    [40] Livas J C, Alexander S B, Kintzer E S, et al. Gbps-class optical communications systems for free-space applications. Proc. SPIE, 1993, 1866:148-157
    [41] Atia W A, Bondurant R S. Demonstration of return-to-zero signaling in both OOK and DPSK formats to improve receiver sensitivity in an optically preamplified receiver. Lasers and Electro-Optics Society 1999 12th Annual Meeting, 1999, 226-227
    [42] Caplan D O, Atia W A.A Quantum-Limited optically-matched communcation link. OFC2001, MM2
    [43] Pfennigbauer M, Strasser MM, Pauer M, et al. Dependence of optically preamplified receiver sensitivity on optical and electrical filter bandwidths-measurement and simulation. IEEE Photonics Technology Letters, 2002, Vol.14, No.6:831-833
    [44] Philips A J, Cryan R A, Senior J M. Novel laser intersatellite communication system employing optically preamplified PPM receivers. Proc. IEE Communication, 1995, Vol.142, No.1:15-20
    [45] Stevens M L, Boroson D M, Caplan D O.A novel variable-rate pulse-position modulation system with near quantum limited performance. LEOS'99, 1999, 301-302
    [46] 樊国丽,赵尚弘,周万银.光纤放大器的研究动态.半导体技术,2005,Vol.30,No.11:1-3
    [47] 郭金生.几种光放大器比较.中国有线电视,2004,No.03:67-69
    [48] Spellmeyer N W. Communications performance of a multimode EDFA. IEEE Photonics Technology Letters. 2000, Vol.12, No.10:1337-1339
    [49] Shaklan S, Roddier F. Coupling starlight into single-mode fiber optics. Appl. Opt.,1988, Vol.27, No.11:2334-2338
    [50] Vosteen L L A, Ahlers B. Darwin infrared nulling interferometer demonstrator. Proc. SPIE, 2005, 5905:59050B-1-59050B-8
    [51] Perrin G S, Foresto V C D, Ridgway S T, et al. Fibered recombination unit for the infrared-optical telescope array. Proc. SPIE, 1995, 2476:120-128
    [52] Lawson P R, Ahmed A, Gappinger R O, et al. Terrestrial planet finder interferometer technology status and plans. Proc. SPIE, 2006, 6268:626828-1-626828-8
    [53] Sato K, Nishikawa J, Yoshizawa M, et al. Experiments with the fiber-connected interferometer for the MIRA project. Proc. SPIE, 2000, 4006:1102-1106
    [54] Swanson E A, Bondurant R S. Using fiber optics to simplify free-space lasercom systems. Proc. SPIE, 1990, 1218:70-82
    [55] Swanson E A, Bondurant R S. Fiber-based receiver for free-space coherent optical communications systems. OFC, 1989, 6-9
    [56] Kalmar A, Kudielka K H, Lee W R. Experimental demonstration of a selftracking 16-aperture receive telescope array for laser intersatellite communications. Proc. SPIE, 1998, 3266:70-78
    [57] Weyrauch T, Vorontsov M A, Gowens J W, et al. Fiber coupling with adaptive optics for free-space optical communication. Proc. SPIE, 2002, 4489:177-184
    [58] Koyama Y, Aizono M, Morikawa E, et al. Evaluation of a high-power optical amplifier for intersatellite links. Proc. SPIE, 2003, 4975:164-171
    [59] Koyama Y, Morikawa E, Shiratama K, et al. Optical terminal for NeLS in-orbit demonstration. Proc. SPIE, 2004, 5338:29-36
    [60] Koyama Y, Morikawa E, Kunimori H, et al. Components development for NeLS optical terminal. Proc. SPIE, 2005, 5712:217-224
    [61] Arnon S. Recent research and development on laser communication in Israel. Proc. SPIE, 2004, 5550:145-157
    [62] Song D Y, Cho J W, Hurh Y S, et al. 4×10-Gb/s terrestrial optical free space transmission over 1.2 km using an EDFA preamplifier with 100 GHz channel spacing. OFC, 2OOO, THJI
    [63] Jeong M C, Lee J S, Kim S Y, et al. 8×10-Gb/s Terrestrial optical free-space transmission over 3.4 km using an optical repeater. IEEE Photonics Technology Letters, 2003, Vol.15, No.1:171-173
    [64] Sayano K, Nguyen I, Chan J K. Demonstration of multi-channel optical CDMA for free space communications. Proc. SPIE, 2001, 4272:38-49
    [65] Szajowski P F, Nykolak G, Auborn J J, et al. 2.4km free-space optical communication 1550nm transmission link operating 2.5Gb/s-Experimental results. Proc. SPIE, 1998, 3532:29-40
    [66] Szajowski P F, Nykolak G, Auborn J J, et al. High-power optical amplifiers enable 1550-nm terrestrial free-space optical data links operating at WDM 2.5-Gb/s data rates. Proc. SPIE, 1999, 3850:2-10
    [67] Nykolak G, Szajowski P F, Cashion A, et al.A 40 Gb/s DWDM free-space optical transmission link over 4.4km. Proc. SPIE, 2000, 3932:16-20
    [68] Nykolak G, Raybon G, Mikkelsen B, et al. 160-Gb/s free-space transmission link. Proc. SPIE, 2001, 4214:11-13
    [69] Wagner R E, Tomlinson W J. Coupling efficiency of optics in single-mode fiber components. Appl. Opt.,1982, Vol.21, No.15:2671-2688
    [70] 齐晓玲,蔡志岗,徐宇科等.光耦合理论及其在通信元器件中的应用.光学学报,2004,Vol.24,NO.4:521-526
    [71] 刘宏展,刘立人,徐荣伟等.矩阵理论在半导体激光器耦合中的应用.光学学报,2005,Vol.25,No.6:825-828
    [72] Ruilier C.A study of degraded light coupling into single-mode fibers. Proc. SPIE, 1998, 3350:319-329
    [73] Wallner O, Winzer P J, Leeb W R. Alignment tolerances for plane wave to single-mode fiber coupling and their mitigation by use of pigtailed collimators. Appl. Opt., 2002, Vol.41, No.4:637-644
    [74] Lazzaroni M, Zocchi F E. Optical coupling from plane wave to step-index single-mode fiber. Optic Communications, 2004, Vol. 237, No.1-3:37-43
    [75] Thibault S, Lacoursière J. Advanced fiber coupling technologies for space and astronomical applications. Proc. SPIE, 2004, 5578:40-51
    [76] Toyoshima M. Maximum fiber coupling efficiency and optimum beam size in the presence of random angular jitter for free-space laser systems and their applications. J. Opt. Soc. Am. A, 2006, Vol. 23, No. 9:2246-2250
    [77] 卢亚雄,杨亚培,陈淑芬.激光束的传输与变换.成都,电子科技大学出版社,1999
    [78] 王仕璠,朱自强.现代光学原理.成都,电子科技大学出版社,1998
    [79] 杨华军.数学物理方法与计算机仿真.北京,电子工业出版社,2005
    [80] 李景镇.光学手册.陕西科学技术出版社,1985
    [81] 胡卫生,曾庆济.自聚焦棒透镜准直系统的装配误差引起的附加耦合损耗分析.中国激光,1999,Vol.26,No.3:221-224
    [82] Dikmelik Y, Davidson F W. Fiber coupling efficiency for free-space optical communication through atmosphere turbulence. Proc. SPIE, 2004, 5338:76-80
    [83] Wilks S C, Morris J R, Brase J M, et al. Modeling of adaptive optics-based free-space communications systems. Proc. SPIE, 2002, 4821:121-128
    [84] Tatarski V I.湍流大气中波的传播理论.温景蒿译,北京,科学出版社,1978
    [85] 顾德门 J w.统计光学.北京,科学出版社,1992
    [86] Andrews L C, Phillips R L, Yu P T. Optical scintillation and fade statistics for a satellite-communication system. Appl. Opt.,1995, Vol. 34, No. 33:7742-7751
    [87] Lawrence R S, Strohbehn J W. A survey of clear-air propagation effects relevant to optical communications. Proc. IEEE, 1970, Vol.5, No.10:1523-1545
    [88] 汪建业,饶瑞中,刘晓春.大气相干长度的对比实验研究.中国激光,2005,Vol.32,No.1:64-66
    [89] 李双喜,傅元芬,黄寅亮等.我国天文台及潜在台址所在地区Fried参数γ_0的计算与统计分析.天文学报,2002,Vol.43,No.1:106-110
    [90] Shaik K S. Atmospheric propagation effects relevant to optical communications. TDA progress Report, 1988, 180-200
    [91] 向劲松,陈彦,胡渝.大气湍流对空间光耦合至单模光纤的影响.强激光与粒子束,2006,Vol.18,No.3:377-380
    [92] Roddier N. Atmospheric wavefront simulation using Zernike polynomials. Opt. Eng., 1990, Vol.29, No.10:174-1180
    [93] 向劲松,胡渝.湍流引起的空间光到单模光纤耦合功率的衰落.激光杂志,2006,Vol.27,No.4:12-13
    [94] 向劲松,幺周石,胡渝.大气湍流中空间光至单模光纤耦合的跟踪算法.强激光与粒子束,2006,Vol.18,No.9:1460-1464
    [95] Barry J D, Mecherle G S. Beam pointing error as a significant design parameter for satellite-borne, free-space optical communication systems. Opt. Eng., 1985, Vol. 24, No. 6:1049-1054
    [96] Koepf G A, Peters R, Marshalek R G. Analysis of burst error occurrence on optical intersatellite link (ISL) design. Proc. SPIE, 1986, 616:129-136
    [97] Arnon S, Rotman S, Kopeika N S. Beam width and transmitter power adaptive to tracking system performance for free-space optical communication. Appl. Opt., 1997, Vol. 36, No. 24:6095-6101
    [98] Arnon S, Kopeika N S. Adaptive bandwidth for satellite optical communication. Proc. IEE Optoelectron, 1998, Vol.145, No.2:109-115
    [99] Arnon S, Rotman S, Kopeika N S. Optimum transmitter optics aperture for satellite optical communication. IEEE Transactions on Aerospace And Eletronic Systems, 1998, Vol.34, No.2:590-596
    [100] Toyoshima M, Jono T, Nakagawa K, et al. Optimum intersatellite link design in the presence of random pointing jitter for free-space laser communication systems. Proc. SPIE, 2002, 4635:95-102
    [101] 荣键,胡渝,钟晓春.ATP跟踪精度与最佳信号光发射角的研究.中国激光,2005,Vol.32,No.2:221-223
    [102] Chen C C, Gardner C S. Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links. IEEE Trans. on Comm., 1989, Vol.37, No.3:252-260
    [103] Polishuk A, Arnon S. Optimization of laser satellite communication system with an optical preamplifier. J. Opt. Soc. Am. A, 2004, Vol.21, No.7:1307-1315
    [104] Polishuk A, Arnon S. Impact of the random jitter on laser satellite communication system with an optical preamplifier. Proc. SPIE, 2004, 5160:319-328
    [105] Arnon S. Performance of a laser msatellite network with an optical preamplifier. J. Opt. Soc. Am.A, 2005, Vol.22, No.4:708-715
    [106] 雷建设.光纤放大器中一些问题的研究:[博士学位论文].上海:上海大学,2001
    [107] 杨祥林.光放大器及其应用.北京,电子工业出版社,2000
    [108] Keiser G.光纤通信.李玉权等译,北京,电子工业出版社,2002
    [109] Duncan T M, Ebben T H. Measurement of pointing error distributions in tracking loops of optical intersatellite links. Proc. SPIE, 1987, 756:54-61
    [110] 向劲松,胡渝.对准误差对前置光放大卫星激光通信系统性能的影响.中国激光,2006,Vol.33,No.2:225-229
    [111] 周概容.概率论与数理统计.北京:高等教育出版社(第一版),1984
    [112] 向劲松,胡渝.带前置光放大的卫星激光通信系统的优化.电子科技大学学报,2006,Vol.35.NO.4:433-436
    [113] Banakh V A, Falits A V, Turbulent statistics of laser beam intensity on ground-to-satellite optical link. Proc. SPIE, 2002, 4678:132-143
    [114] Kim I I, Mitchell M, Korevaar E. Measurement of scintillation for free-space laser communication at 785 nm and 1550 nm. Proc. SPIE, 1999, 3850:49-62
    [115] Kopeika N S, Bordogna J. Background noise in optical communication Systems. Proc. IEEE, 1970, Vol.58, No.10:1571-1577
    [116] Gagliardi R M,Karp S.光通信技术与应用.陈根祥等译,北京:电子工业出版社,1998
    [117] Purvinskis R, Giggenbach D, Henniger H, et al. Multiple wavelength free-space laser communications. Proc. SPIE, 2003, 4975:12-19
    [118] Wainright E, Refai H H, Sluss J J. Wavelength diversity in free-Space optics to alleviate fog effects. Proc. SPIE, 2005, 5712:110-118
    [119] Trisno S, Smolyaninov I I, Milner S D. Delayed diversity for fade resistance in optical wireless communications through turbulent media. Proc. SPIE, 2004, 5596:385-394
    [120] Lee E J, Chan V W S. Part1: Optical communication over the clear turbulent atmospheric channel using diversity. IEEE J. Selected Areas in Communications, 2004, Vol.22, No.9:1896-1906
    [121] Razavi M, Shapiro J H. Wireless optical communications via diversity reception and optical preamplification. IEEE Transactions on Wireless Communications, 2005, Vol.4, No.3:975-983
    [122] Reyes M, Alonso A, Chueca S, et al. Propagation statistics of ground-satellite optical links with different turbulence conditions. Proc. SPIE, 2004, 5572:211-222
    [123] Pan F, Ma J, Tan L, et al. Scintillation characterization of multiple transmitters for ground-to-satellite laser communication. Proc. SPIE, 2005, 5640:448-454
    [124] Vilnrotter V, Lau C W, Srinivasan M, et al. Optical array receiver for communication through atmospheric turbulence. IEEE J. Lightwave Technol., 2005, Vol.23, No.4:1664-1675
    [125] Boroson D M, Bondurant R S, Scozzafava J J. Overview of high rate deep space laser communications options. Proc. SPIE, 5338, 2004:37-49
    [126] Chen C C. Performance analysis of a noncoherently combined large aperture optical heterodyne receiver. IEEE Transactions on Communications, 1990, Vol.38, No.7:1013-1011
    [127] 向劲松,胡渝.星地激光通信中分布式接收阵列的特性研究.光学学报,2006,Vol.26,No.9:1297-1302
    [128] 薛文芳,邵定蓉,李署坚.GPS接收机中伪随机码快速捕获技术的研究.北京航空航天大学学报,2003,Vol.29,No.6:489-492
    [129] Tagami H, Kobayashi T, Miyata Y.A 3-bit soft-decision IC for powerful forward error correction in 10-Gb/s optical communication systems. IEEE J. Solid-state Circuits, 2005, Vol.40, No.8, 1695-1705
    [130] Andrews L C, Phillips R L, Hopen C Y. Scintillation model for a satellite communication link at large zenith angles. Opt. Eng.,2000, Vol.39, No.12: 3272-3280
    [131] Baker G J, Benson R S. Gaussian-beam weak scintillation on ground-to-space paths: compact descriptions and Rytov-method applicability. Opt. Eng.,2005, Vol.44, No.10:106002-1-106002-10
    [132] Yenice Y E, Evans B G. Adaptive beam-size control scheme for ground-to-satellite optical communications. Opt. Eng.,1999, Vol.38, No.11:1889-1895
    [133] Baker G J. Gaussian beam weak scintillation: a tour of the DI region. Proc. SPIE, 2005, 5793:17-27
    [134] Talavera M R G, Alonso A, Chueca S, et al. Ground to space optical communication characterization. Proc. SPIE, 2005, 5892:589202-1-589202-16
    [135] Titterton P J. Power reduction and fluctuations caused by narrow laser beam motion in the far field. Appl. Opt.,1973, Vol.12, 423-425
    [136] 张建柱,李有宽.大气湍流对部分相干平顶高斯光束的影响.强激光与粒子束,2005,Vol.17,No.2:197—202
    [137] 陈京元.大气湍流间歇性及其对光波传播的影响:[博士学位论文].中国工程物理研究院
    [138] 饶长辉,姜文汉,凌宁.低阶模式校正自适应光学系统的非等晕限制.光学学报,2000,Vol.20,No.11:1486-1493
    [139] Whiteley M R, Welsh B M. Effect of finite outer scale on the temporal properties of atmospheric tilt aberrations. Proc. SPIE, 1998, 3432:2-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700