用户名: 密码: 验证码:
热休克、顺铂和量子点的遗传毒性以及对蛋白表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境中的多种理化因素,包括紫外线、离子辐射和香烟烟雾等,都会对机体产生多种形式的损伤。特别是对于遗传信息载体-DNA的损伤,会引起DNA结构的改变和遗传物质的损失,即产生所谓的遗传毒性。近年来,随着这一领域的研究逐渐深入,人们对细胞内DNA损伤产生及响应机制已经有了一个初步的了解。但由于我们所知有限,这一领域还存在着大量悬而未决的科学问题,通过对这些问题的解答,将使我们在DNA损伤方面的认知得到进一步加深。
     热休克是否引起DNA损伤一直存在争议,我们实验室前期发现热休克不能诱导DNA双链断裂的特异性指标-γH2AX焦点的产生,但其它实验室却得到相反的结果。我们针对这一问题开展了进一步的研究,结果发现不同的热休克处理方式对产生的细胞毒性包括遗传毒性也各不相同,而不同的细胞系对热休克处理的响应也各不相同。45℃热休克引起细胞不同程度的死亡。在遗传毒性方面,五种热休克处理方式诱导细胞内γH2AX焦点产生的能力也各不相同,只有金属浴不论在42℃还是45℃下,FL细胞或是CHL细胞中都能够诱导γH2AX焦点的产生。两种细胞的表现方式也有所不同,CHL细胞对热休克处理的响应比FL细胞更加灵敏。而且我们发现γH2AX焦点产生与细胞存活率并无必然联系,因此γH2AX焦点不能作为热休克引起细胞死亡的判断标准。
     顺铂是一种临床常用的抗癌药物,主要用于生殖系统癌症和头颈部癌症的治疗,但其作用机制仍未明确。系统生物学的方法能够为我们提供一个高通量的、系统全面的研究平台。近年来,已经有多个研究小组利用蛋白质组学的方法对顺铂的细胞损伤机制进行了研究,但作为一种以DNA损伤为主的药物,引起的主要应答反应集中在细胞核内,因此我们利用蛋白质组学的方法对核蛋白组进行了表达谱分析,并最终筛选到了19个顺铂处理后引起表达量发生改变的蛋白质。这些蛋白包括核纤层蛋白、mRNA表达调控蛋白、细胞周期相关蛋白和生物大分子合成相关蛋白等,功能涉及细胞基本代谢和生理过程的多个方面。我们对其中部分蛋白进行了表达验证,并通过对Fas基因两种变异剪切产物的表达量检测,证实顺铂处理确实引起了HeLa细胞中变异剪切现象的发生。
     纳米技术是一种开发应用纳米材料的新型技术,纳米材料因其物理结构上的特殊性,在应用方面有着极大的优势,但它是否会对机体产生毒害作用尚未明确。量子点作为一种荧光纳米材料,广泛应用于细胞成像等生物医学领域。细胞存活率检测结果显示PEG包被的CdSe/ZnS核/壳量子点对细胞基本不产生毒害作用。我们同时对量子点的细胞毒性进行了蛋白质组学分析,共找到了21个差异表达的蛋白质点,占蛋白总数的0.5%。其中5个蛋白质点得到质谱鉴定,包括两个锌指蛋白、两个角蛋白和一个过氧化物酶。鉴于量子点处理后的HSF细胞中只有0.5%的蛋白质表达量受到显著影响,结合细胞存活率的检测结果,可以认为这种量子点的细胞毒性较小,是一种比较安全的纳米材料。
Life could be threatened by a lot physical or chemical stresses in the environment, including ultraviolet,ionizing radiation and cigarette smokes.Such stress can cause damage,especially DNA damage in cells,which is called genotoxicity.Due to the extensive and insightful research about DNA damage in recent years,we have now acquired a rather large body of knowledge about the mechanisms involved in DNA damage induction and signaling.However,many questions remain unanswered,which warrant further detailed investigation.
     There have been controversies about whether heat shock could induce DNA damage.While we previously found heat shock could not induceγH2AX foci formation,which is regarded as a marker of DNA double strand breaks,Takahashi et al suggested otherwise.In order to clarify this discrepancy,the effects of five different heating methods onγH2AX foci formation were examined.We found that the cytotoxicity effects of different heating methods varied differently,and different cell types showed different heat shock responses.It was found that during a 24 h period, heating at 42℃for 30 min did not cause significant loss of cell viability,while 45℃caused various degrees of decrease in cell viability.The ability of these five methods to induceγH2AX foci was quite distinct,with only heat block inducedγH2AX foci at both 42℃and 45℃in both FL and CHL cells.The two cell types also respond differently to the different heating methods,with CHL being more sensitive to heat shock.However,expression ofγH2AX may not be used as a surrogate of cell killing.
     Cisplatin is an effective anti-cancer drug widely used in clinical treatment of reproductive system cancers as well as head and neck cancers;however,the underlying mechanisms are not fully clear yet.Systems biology approaches provide us new platforms to conduct study at whole genome or proteome level.Several groups have used proteomic technologies to explore the anti-cancer mechanisms of cisplatin,and identified some responsive proteins.However,as DNA is the primary target of cisplatin,and many cellular events induced by cisplatin took place in nucleus,we analyzed the nuclear proteome expression pattern after cisplatin treatment.A total of 19 proteins were eventually successfully identified among those differentially expressed proteins.These include nuclear lamina proteins,mRNA processing-related proteins,cell cycle-related proteins and synthesis-related enzymes,all of which were involved in basal metabolism and biological process in cells.The changed expression pattern of these proteins were further validated by Western blot or immunofluorescent microscopy,and cisplatin-induced alternative splicing was confirmed by RT-PCR analysis of Fas gene transcripts.
     Nanotechnology is a fast growing area,and nanomaterials have great application potentials due to their unique physical and chemical properties.However,the potential toxic effects of the nanomaterials are not clear,and it has attracted a lot attention recently.Quantum dots(QD) are semi-conductive nanomaterials that can be used for cell imaging.In this study,we also evaluated the potential toxic effects of quantum dots using proteomic approach.Results of cell survival test showed that poly(ethyleneglycol)-coated CdSe/ZnS core/shell quantum dots did not significantly affect the cell viability of human skin fibrobalsts(HSF).By proteomic analysis,a total of 21 proteins were found differentially expressed after 8 nM and 80 nM PEG-QD440 and PEG-QD680 treatment.MS analysis identified 5 proteins,including two zinc finger proteins,two keratins and Peroxiredoxin-2.Since 21 proteins only count for about 0.5%of the total proteins in HSF cells,it indicated that PEG-QD may not elicit significant adverse effects in cells.PEG-Qdots could be a promising agent in biological and medical applications.
引文
[1]P.Ritossa[Problems of prophylactic vaccinations of infants.],Riv 1st Sieroter Ital 37(1962) 79-108.
    [2]A.Tissieres,H.K.Mitchell and U.M.Tracy Protein synthesis in salivary glands of Drosophila melanogaster:Relation to chromosome puffs,J Mol Biol 85(1974)389-398.
    [3]C.Jolly and R.I.Morimoto Role of the heat shock response and molecular chaperones in oncogenesis and cell death,J Natl Cancer Inst 92(2000) 1564-1572.
    [4]I.J.Benjamin and D.R.McMillan Stress(heat shock) proteins:molecular chaperones in cardiovascular biology and disease,Circ Res 83(1998)117-132.
    [5]M.J.Schlesinger Heat shock proteins,J Biol Chem 265(1990) 12111-12114.
    [6]Y.Mallouk,M.Vayssier-Taussat,J.V.Bonventre and B.S.Polla Heat shock protein 70 and ATP as partners in cell homeostasis(Review),Int J Mol Med 4(1999)463-474.
    [7]A.C.Wagner,H.Weber,L.Jonas,H.Nizze,M.Strowski,F.Fiedler,H.Printz,H.Steffen and B.Goke Hyperthermia induces heat shock protein expression and protection against cerulein-induced pancreatitis in rats,Gastroenterology 111(1996) 1333-1342.
    [8]M.W.Dewhirst,B.L.Viglianti,M.Lora-Michiels,M.Hanson and P.J.Hoopes Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,Int J Hyperthermia 19(2003) 267-294.
    [9]A.Kallies,G.Gebauer and L.Rensing Heat shock effects on second messenger systems of Neurospora crassa,Arch Microbiol 170(1998) 191-200.
    [10]D.Sheikh-Hamad,A.Garcia-Perez,J.D.Ferraris,E.M.Peters and M.B.Burg Induction of gene expression by heat shock versus osmotic stress,Am J Physiol 267(1994) F28-34.
    [11]E.J.Hall and L.Roizin-Towle Biological effects of heat,Cancer Res 44(1984) 4708s-4713s.
    [12]K.V.Lukacs,O.E.Pardo,M.J.Colston,D.M.Geddes and E.W.Alton Heat shock proteins in cancer therapy,Adv Exp Med Biol 465(2000) 363-368.
    [13]N.Taneja,M.Davis,J.S.Choy,M.A.Beckett,R.Singh,S.J.Kron and R.R.Weichselbaum Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy,J Biol Chem 279(2004)2273-2280.
    [14]J.Braun and GM.Hahn Enhanced cell killing by bleomycin and 43 degrees hyperthermia and the inhibition of recovery from potentially lethal damage,Cancer Res 35(1975) 2921-2927.
    [15]A.Nueda,F.Hudson,N.F.Mivechi and W.S.Dynan DNA-dependent protein kinase protects against heat-induced apoptosis,J Biol Chem 274(1999) 14988-14996.
    [16]R.L.Warters and B.W.Lyons Inhibition of replicon cluster ligation into chromosomal DNA at elevated temperatures,J Cell Physiol 142(1990) 365-371.
    [17]R.L.Warters and O.L.Stone The effects of hyperthermia on DNA replication in HeLa cells,Radiat Res 93(1983) 71-84.
    [18]R.S.Wong and W.C.Dewey Molecular studies on the hyperthermic inhibition of DNA synthesis in Chinese hamster ovary cells,Radiat Res 92(1982) 370-395.
    [19]H.Kaneko,K.Igarashi,K.Kataoka and M.Miura Heat shock induces phosphorylation of histone H2AX in mammalian cells,Biochem Biophys Res Commun 328(2005) 1101-1106.
    [20]A.Takahashi,H.Matsumoto,K.Nagayama,M.Kitano,S.Hirose,H.Tanaka,E.Mori,N.Yamakawa,J.Yasumoto,K.Yuki,K.Ohnishi and T.Ohnishi Evidence for the involvement of double-strand breaks in heat-induced cell killing,Cancer Res 64(2004) 8839-8845.
    [21]R.S.Wong,J.R.Dynlacht,B.Cedervall and W.C.Dewey Analysis by pulsed-field gel electrophoresis of DNA double-strand breaks induced by heat and/or X-irradiation in bulk and replicating DNA of CHO cells,Int J Radiat Biol 68(1995) 141-152.
    [22]C.R.Hunt,R.K.Pandita,A.Laszlo,R.Higashikubo,M.Agarwal,T.Kitamura,A.Gupta,N.Rief,N.Horikoshi,R.Baskaran,J.H.Lee,M.Lobrich,T.T.Paull,J.L.Roti Roti and T.K.Pandita Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status,Cancer Res 67(2007) 3010-3017.
    [23]C.Zhou,Z.Li,H.Diao,Y Yu,W.Zhu,Y.Dai,F.F.Chen and J.Yang DNA damage evaluated by gammaH2AX foci formation by a selective group of chemical/physical stressors,Mutat Res 604(2006) 8-18.
    [24]Z.Dong,H.Hu,W.Chen,Z.Li,G Liu and J.Yang Heat shock does not induce gammaH2AX foci formation but protects cells from N-methyl-N'-nitro-N-nitrosoguanidine-induced genotoxicity,Mutat Res 629(2007) 40-48.
    [25]E.P.Rogakou,C.Boon,C.Redon and W.M.Bonner Megabase chromatin domains involved in DNA double-strand breaks in vivo,J Cell Biol 146(1999) 905-916.
    [26]P.H.Clingen,J.Y Wu,J.Miller,N.Mistry,F.Chin,P.Wynne,K.M.Prise and J.A.Hartley Histone H2AX phosphorylation as a molecular pharmacological marker for DNA interstrand crosslink cancer chemotherapy,Biochem Pharmacol 76(2008) 19-27.
    [27]J.P.Banath and P.L.Olive Expression of phosphorylated histone H2AX as a surrogate of cell killing by drugs that create DNA double-strand breaks,Cancer Res 63(2003) 4347-4350.
    [28]H.H.Kampinga and A.Laszlo DNA double strand breaks do not play a role in heat-induced cell killing,Cancer Res 65(2005) 10632-10633;author reply10633.
    [29]B.Rosenberg,L.VanCamp,J.E.Trosko and V.H.Mansour Platinum compounds:a new class of potent antitumour agents,Nature 222(1969) 385-386.
    [30]V.M.Gonzalez,M.A.Fuertes,C.Alonso and J.M.Perez Is cisplatin-induced cell death always produced by apoptosis?,Mol Pharmacol 59(2001) 657-663.
    [31]N.P.Johnson,J.L.Butour,G.Villani,F.L.Wimmer,M.Defais,V.Pierson and V.Brabec Metal antitumor compounds:the mechanism of action of platinum complexes.Prog.,Clin.Biochem.Med.10(1989) 1-24.
    [32]M.Frankenberg-Schwager,D.Kirchermeier,G.Greif,K.Baer,M.Becker and D.Frankenberg Cisplatin-mediated DNA double-strand breaks in replicating but not in quiescent cells of the yeast Saccharomyces cerevisiae,Toxicology 212(2005) 175-184.
    [33]K.Chvalova,V.Brabec and J.Kasparkova Mechanism of the formation of DNA-protein cross-links by antitumor cisplatin,Nucleic Acids Res 35(2007) 1812-1821.
    [34]A.L.Pinto and S.J.Lippard Sequence-dependent termination of in vitro DNA synthesis by cis-and trans-diamminedichloroplatinum(Ⅱ),Proc Natl Acad Sci U S A82(1985)4616-4619.
    [35]CM.Sorenson and A.Eastman Mechanism of cis-diamminedichloroplatinum(Ⅱ)-induced cytotoxicity:role of G2 arrest and DNA double-strand breaks,Cancer Res 48(1988) 4484-4488.
    [36]B.A.Donahue,M.Augot,S.F.Bellon,D.K.Treiber,J.H.Toney,S.J.Lippard and J.M.Essigmann Characterization of a DNA damage-recognition protein from mammalian cells that binds specifically to intrastrand d(GpG) and d(ApG) DNA adducts of the anticancer drug cisplatin,Biochemistry 29(1990) 5872-5880.
    [37]D.Fink,S.Aebi and S.B.Howell The role of DNA mismatch repair in drug resistance,Clin Cancer Res 4(1998) 1-6.
    [38]M.Yamada,E.O'Regan,R.Brown and P.Karran Selective recognition of a cisplatin-DNA adduct by human mismatch repair proteins,Nucleic Acids Res 25(1997)491-496.
    [39]J.C.Huang,D.B.Zamble,J.T.Reardon,S.J.Lippard and A.Sancar HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease,Proc Natl Acad Sci U S A 91(1994) 10394-10398.
    [40]K.J.Campbell,J.M.Witty,S.Rocha and N.D.Perkins Cisplatin mimics ARF tumor suppressor regulation of RelA(p65) nuclear factor-kappaB transactivation,Cancer Res 66(2006) 929-935.
    [41]N.Pabla,S.Huang,Q.S.Mi,R.Daniel and Z.Dong ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis,J Biol Chem 283(2008) 6572-6583.
    [42]Z.H.Siddik Cisplatin:mode of cytotoxic action and molecular basis of resistance,Oncogene 22(2003) 7265-7279.
    [43]X.Wang,J.L.Martindale and N.J.Holbrook Requirement for ERK activation in cisplatin-induced apoptosis,J Biol Chem 275(2000) 39435-39443.
    [44]M.L.Smith,I.T.Chen,Q.Zhan,I.Bae,C.Y.Chen,T.M.Gilmer,M.B.Kastan,RM.O'Connor and A.J.Fornace,Jr.Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen,Science 266(1994) 1376-1380.
    [45]G.W.Makin,B.M.Corfe,GJ.Griffiths,A.Thistlethwaite,J.A.Hickman and C.Dive Damage-induced Bax N-terminal change,translocation to mitochondria and formation of Bax dimers/complexes occur regardless of cell fate,Embo J 20(2001)6306-6315.
    [46]B.Del Bello,M.A.Valentini,F.Zunino,M.Comporti and E.Maellaro Cleavage of Bcl-2 in oxidant-and cisplatin-induced apoptosis of human melanoma cells,Oncogene 20(2001) 4591-4595.
    [47]M.Muller,S.Wilder,D.Bannasch,D.Israeli,K.Lehlbach,M.Li-Weber,S.L.Friedman,RR.Galle,W.Stremmel,M.Oren and RH.Krammer p53 activates the CD95(APO-1/Fas) gene in response to DNA damage by anticancer drugs,J Exp Med 188(1998) 2033-2045.
    [48]V.Filippov,M.Filippova and RJ.Duerksen-Hughes The early response to DNA damage can lead to activation of alternative splicing activity resulting in CD44 splice pattern changes,Cancer Res 67(2007) 7621-7630.
    [49]M.S.Marengo and D.A.Wassarman A DNA damage signal activates and derepresses exon inclusion in Drosophila TAF1 alternative splicing,Rna 14(2008) 1681-1695.
    [50]A.H.Fox,Y.W.Lam,A.K.Leung,C.E.Lyon,J.Andersen,M.Mann and A.I.Lamond Paraspeckles:a novel nuclear domain,Curr Biol 12(2002) 13-25.
    [51]V.Filippov,E.L.Schmidt,M.Filippova and RJ.Duerksen-Hughes Splicing and splice factor SRp55 participate in the response to DNA damage by changing isoform ratios of target genes,Gene 420(2008) 34-41.
    [52]D.L.Black Mechanisms of alternative pre-messenger RNA splicing,Annu Rev Biochem 72(2003) 291-336.
    [53]Y.Chen,X.Zhou,N.Liu,C.Wang,L.Zhang,W.Mo and G Hu Arginine methylation of hnRNP K enhances p53 transcriptional activity,FEBS Lett 582(2008) 1761-1765.
    [54]D.E.Coling,D.Ding,R.Young,M.Lis,E.Stofko,K.M.Blumenthal and R.J.Salvi Proteomic analysis of cisplatin-induced cochlear damage:methods and early changes in protein expression,Hear Res 226(2007) 140-156.
    [55]A.H.Fox,C.S.Bond and A.I.Lamond P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner,Mol Biol Cell 16(2005)5304-5315.
    [56]R.Myojin,S.Kuwahara,T.Yasaki,T.Matsunaga,T.Sakurai,M.Kimura,S.Uesugi and Y.Kurihara Expression and functional significance of mouse paraspeckle protein 1 on spermatogenesis,Biol Reprod 71(2004) 926-932.
    [57]S.Matsuoka,B.A.Ballif,A.Smogorzewska,E.R.McDonald,3rd,K.E.Hurov,J.Luo,C.E.Bakalarski,Z.Zhao,N.Solimini,Y.Lerenthal,Y.Shiloh,S.P.Gygi and S.J.Elledge ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage,Science 316(2007) 1160-1166.
    [58]K.Manju,B.Murahkrishna and V.K.Parnaik Expression of disease-causing lamin A mutants impairs the formation of DNA repair foci,J Cell Sci 119(2006)2704-2714.
    [59]B.Liu,J.Wang,K.M.Chan,W.M.Tjia,W.Deng,X.Guan,J.D.Huang,K.M.Li,P.Y.Chau,D.J.Chen,D.Pei,A.M.Pendas,J.Cadinanos,C.Lopez-Otin,H.F.Tse,C.Hutchison,J.Chen,Y.Cao,K.S.Cheah,K.Tryggvason and Z.Zhou Genomic instability in laminopathy-based premature aging,Nat Med 11(2005) 780-785.
    [60]Y.Liu,A.Rusinol,M.Sinensky,Y.Wang and Y Zou DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A,J Cell Sci 119(2006)4644-4649.
    [61]A.di Masi,M.R.D'Apice,R.Ricordy,C.Tanzarella and G.Novelli The R527H mutation in LMNA gene causes an increased sensitivity to ionizing radiation,Cell Cycle 7(2008) 2030-2037.
    [62]H.Scherthan Knockout mice provide novel insights into meiotic chromosome and telomere dynamics,Cytogenet Genome Res 103(2003) 235-244.
    [63]L.Orlandi,G.Colella,A.Bearzatto,G.Abolafio,C.Manzotti,M.G.Daidone and N.Zaffaroni Effects of a novel trinuclear platinum complex in cisplatin-sensitive and cisplatin-resistant human ovarian cancer cell lines:interference with cell cycle progression and induction of apoptosis,Eur J Cancer 37(2001) 649-659.
    [64]A.Wedrychowski,J.S.Bhorjee and R.C.Briggs In vivo crosslinking of nuclear proteins to DNA by cis-diamminedichloroplatinum(Ⅱ) in differentiating rat myoblasts,Exp Cell Res 183(1989) 376-387.
    [65]E.Logarinho,T.Resende,C.Torres and H.Bousbaa The human spindle assembly checkpoint protein Bub3 is required for the establishment of efficient kinetochore-microtubule attachments,Mol Biol Cell 19(2008) 1798-1813.
    [66]E.M.Kim and D.J.Burke DNA damage activates the SAC in an ATM/ATR-dependent manner,independently of the kinetochore,PLoS Genet 4(2008)e1000015.
    [67]R.F.Service Nanotoxicology.Nanotechnology grows up,Science 304(2004) 1732-1734.
    [68]T.Zhang,J.L.Stilwell,D.Gerion,L.Ding,O.Elboudwarej,P.A.Cooke,J.W.Gray,A.P.Alivisatos and F.F.Chen Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements,Nano Lett 6(2006)800-808.
    [69]S.Kim,Y.T.Lim,E.G.Soltesz,A.M.De Grand,J.Lee,A.Nakayama,J.A.Parker,T.Mihaljevic,R.G Laurence,D.M.Dor,L.H.Cohn,M.G.Bawendi and J.V.Frangioni Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,Nat Biotechnol 22(2004) 93-97.
    [70]C.Kirchner,T.Liedl,S.Kudera,T.Pellegrino,A.Munoz Javier,H.E.Gaub,S.Stolzle,N.Fertig and W.J.Parak Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles,Nano Lett 5(2005) 331-338.
    [71]K.Le Moguen,H.Lincet,P.Marcelo,E.Lemoisson,N.Heutte,M.Duval,L.Poulain,J.Vinh,P.Gauduchon and B.Baudin A proteomic kinetic analysis of IGROV1 ovarian carcinoma cell line response to cisplatin treatment,Proteomics 7(2007) 4090-4101.
    [72]A.Hartwig Zinc finger proteins as potential targets for toxic metal ions:differential effects on structure and function,Antioxid Redox Signal 3(2001) 625-634.
    [73]N.Miyamoto,H.Izumi,R.Miyamoto,T.Kubota,A.Tawara,Y.Sasaguri and K.Kohno Nipradilol and timolol induce forkhead transcription factor Foxo3a and peroxiredoxin 2 expression and protect trabecular meshwork cells from oxidative stress,Invest Ophthalmol Vis Sci(2009).
    [74]Y.Soini,J.P.Kallio,P.Hirvikoski,H.Helin,P.Kellokumpu-Lehtinen,S.W.Kang,T.L.Tammela,M.Peltoniemi,P.M.Martikainen and V.L.Kinnula Oxidative/nitrosative stress and peroxiredoxin 2 are associated with grade and prognosis of human renal carcinoma,Apmis 114(2006) 329-337.
    [75]J.Lovric,S.J.Cho,F.M.Winnik and D.Maysinger Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death,Chem Biol 12(2005) 1227-1234.
    [76]S.C.Murphy,B.U.Samuel,T.Harrison,K.D.Speicher,D.W.Speicher,M.E.Reid,R.Prohaska,P.S.Low,M.J.Tanner,N.Mohandas and K.Haldar Erythrocyte detergent-resistant membrane proteins:their characterization and selective uptake during malarial infection,Blood 103(2004) 1920-1928.
    [1]T.Stiff,M.O'Driscoll,N.Rief,K.Iwabuchi,M.Lobrich and P.A.Jeggo ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation,Cancer Res 64(2004) 2390-2396.
    [2]S.Bergink,N.G Jaspers and W.Vermeulen Regulation of UV-induced DNA damage response by ubiquitylation,DNA Repair(Amst) 6(2007) 1231-1242.
    [3]W.P.Roos,L.F.Batista,S.C.Naumann,W.Wick,M.Weller,C.F.Menck and B.Kaina Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion 06-methylguanine,Oncogene 26(2007) 186-197.
    [4]B.S.Shi,Z.N.Cai,J.Yang and Y.N.Yu N-methyl-N'-nitro-N-nitrosoguanidine sensitivity,mutator phenotype and sequence specificity of spontaneous mutagenesis in FEN-1-deficient cells,Mutat Res 556(2004) 1-9.
    [5]J.K.Wiencke and J.W.Yager Specificity of arsenite in potentiating cytogenetic damage induced by the DNA crosslinking agent diepoxybutane,Environ Mol Mutagen 19(1992) 195-200.
    [6]E.C.Friedberg,A.J.Bardwell,L.Bardwell,W.J.Feaver,R.D.Kornberg,J.Q.Svejstrup,A.E.Tomkinson and Z.Wang Nucleotide excision repair in the yeast Saccharomyces cerevisiae:its relationship to specialized mitotic recombination and RNA polymerase Ⅱ basal transcription,Philos Trans R Soc Lond B Biol Sci 347(1995) 63-68.
    [7]T.Lindahl Instability and decay of the primary structure of DNA,Nature 362(1993)709-715.
    [8]M.L.Michaels and J.H.Miller The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine(7,8-dihydro-8-oxoguanine),J Bacteriol 174(1992) 6321-6325.
    [9]B.K.Tye,P.O.Nyman,I.R.Lehman,S.Hochhauser and B.Weiss Transient accumulation of Okazaki fragments as a result of uracil incorporation into nascent DNA,Proc Natl Acad Sci U S A 74(1977) 154-157.
    [10]D.T.Beranek Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents,Mutat Res 231(1990) 11-30.
    [11]P.Fortini and E.Dogliotti Base damage and single-strand break repair:mechanisms and functional significance of short-and long-patch repair subpathways,DNA Repair(Amst) 6(2007) 398-409.
    [12]H.E.Krokan,R.Standal and G.Slupphaug DNA glycosylases in the base excision repair of DNA,Biochem J 325(Pt 1)(1997) 1-16.
    [13]P.J.McHugh,V.J.Spanswick and J.A.Hartley Repair of DNA interstrand crosslinks:molecular mechanisms and clinical relevance,Lancet Oncol 2(2001)483-490.
    [14]M.L.Dronkert and R.Kanaar Repair of DNA interstrand cross-links,Mutat Res 486(2001) 217-247.
    [15]M.M.Cox,M.F.Goodman,K.N.Kreuzer,D.J.Sherratt,S.J.Sandler and K.J. Marians The importance of repairing stalled replication forks,Nature 404(2000)37-41.
    [16]D.R Batty and R.D.Wood Damage recognition in nucleotide excision repair of DNA,Gene 241(2000) 193-204.
    [17]E.Evans,J.G.Moggs,J.R.Hwang,J.M.Egly and R.D.Wood Mechanism of open complex and dual incision formation by human nucleotide excision repair factors,Embo J 16(1997) 6559-6573.
    [18]B.Koberle,J.R.Masters,J.A.Hartley and R.D.Wood Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours,Curr Biol 9(1999) 273-276.
    [19]M.L.Hegde,T.K.Hazra and S.Mitra Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells,Cell Res 18(2008)27-47.
    [20]M.O.Bradley and K.W.Kohn X-ray induced DNA double strand break production and repair in mammalian cells as measured by neutral filter elution,Nucleic Acids Res 7(1979) 793-804.
    [21]B.Demple and M.S.DeMott Dynamics and diversions in base excision DNA repair of oxidized abasic lesions,Oncogene 21(2002) 8926-8934.
    [22]E.A.Kouzminova and A.Kuzminov Fragmentation of replicating chromosomes triggered by uracil in DNA,J Mol Biol 355(2006) 20-33.
    [23]A.Kuzminov Single-strand interruptions in replicating chromosomes cause double-strand breaks,Proc Natl Acad Sci U S A 98(2001) 8241-8246.
    [24]S.D.Kathe,G.P.Shen and S.S.Wallace Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase Ⅱ in HeLa cell nuclear extracts,J Biol Chem 279(2004) 18511-18520.
    [25]W.Zhou and P.W.Doetsch Effects of abasic sites and DNA single-strand breaks on prokaryotic RNA polymerases,Proc Natl Acad Sci U S A 90(1993) 6601-6605.
    [26]J.T.Heeres and P.J.Hergenrother Poly(ADP-ribose) makes a date with death,Curr Opin Chem Biol 11(2007) 644-653.
    [27]K.W.Caldecott Single-strand break repair and genetic disease,Nat Rev Genet 9(2008)619-631.
    [28]T.Rich,R.L.Allen and A.H.Wyllie Defying death after DNA damage,Nature 407(2000) 777-783.
    [29]M.P.Longhese,I.Guerini,V.Baldo and M.Clerici Surveillance mechanisms monitoring chromosome breaks during mitosis and meiosis,DNA Repair(Amst) 7(2008) 545-557.
    [30]S.Keeney and M.J.Neale Initiation of meiotic recombination by formation of DNA double-strand breaks:mechanism and regulation,Biochem Soc Trans 34(2006) 523-525.
    [31]F.Paques and J.E.Haber Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae,Microbiol Mol Biol Rev 63(1999)349-404.
    [32]P.Soulas-Sprauel,P.Rivera-Munoz,L.Malivert,G.Le Guyader,V.Abramowski,P.Revy and J.P.de Villartay V(D)J and immunoglobulin class switch recombinations:a paradigm to study the regulation of DNA end-joining,Oncogene 26(2007) 7780-7791.
    [33]I.H.Ismail,S.Nystrom,J.Nygren and O.Hammarsten Activation of ataxia telangiectasia mutated by DNA strand break-inducing agents correlates closely with the number of DNA double strand breaks,J Biol Chem 280(2005) 4649-4655.
    [34]L.Zou and S.J.Elledge Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes,Science 300(2003) 1542-1548.
    [35]J.H.Lee and T.T.Paull ATM activation by DNA double-strand breaks through the Mrell-Rad50-Nbsl complex,Science 308(2005) 551-554.
    [36]T.T.Paull and J.H.Lee The Mrell/Rad50/Nbs1 complex and its role as a DNA double-strand break sensor for ATM,Cell Cycle 4(2005) 737-740.
    [37]M.Wakabayashi,C.Ishii,H.Inoue and S.Tanaka Genetic analysis of CHK1 and CHK2 homologues revealed a unique cross talk between ATM and ATR pathways in Neurospora crassa,DNA Repair(Amst) 7(2008) 1951-1961.
    [38]A.Kulkarni and K.C.Das Differential roles of ATR and ATM in p53,Chk1,and histone H2AX phosphorylation in response to hyperoxia:ATR-dependent ATM activation,Am J Physiol Lung Cell Mol Physiol 294(2008) L998-L1006.
    [39]M.Hitomi,K.Yang,A.W.Stacey and D.W.Stacey Phosphorylation of cyclin Dl regulated by ATM or ATR controls cell cycle progression,Mol Cell Biol 28(2008) 5478-5493.
    [40]B.Pardo,B.Gomez-Gonzalez and A.Aguilera DNA repair in mammalian cells:DNA double-strand break repair:how to fix a broken relationship,Cell Mol Life Sci 66(2009) 1039-1056.
    [41]J.K.Moore and J.E.Haber Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae,Mol Cell Biol 16(1996) 2164-2173.
    [42]S.Kuhfittig-Kulle,E.Feldmann,A.Odersky,A.Kuliczkowska,W.Goedecke,A.Eggert and P.Pfeiffer The mutagenic potential of non-homologous end joining in the absence of the NHEJ core factors Ku70/80,DNA-PKcs and XRCC4-LigIV,Mutagenesis 22(2007) 217-233.
    [43]R.D.Romberg Chromatin structure:a repeating unit of histones and DNA,Science 184(1974) 868-871.
    [44]T.J.Richmond and C.A.Davey The structure of DNA in the nucleosome core,Nature 423(2003) 145-150.
    [45]E.P.Rogakou,D.R.Pilch,A.H.Orr,VS.Ivanova and W.M.Bonner DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139,J Biol Chem 273(1998) 5858-5868.
    [46]E.P.Rogakou,C.Boon,C.Redon and W.M.Bonner Megabase chromatin domains involved in DNA double-strand breaks in vivo,J Cell Biol 146(1999) 905-916.
    [47]S.Burma,B.P.Chen,M.Murphy,A.Kurimasa and D.J.Chen ATM phosphorylates histone H2AX in response to DNA double-strand breaks,J Biol Chem 276(2001) 42462-42467.
    [48]J.A.Downs,N.F.Lowndes and S.P.Jackson A role for Saccharomyces cerevisiae histone H2A in DNA repair,Nature 408(2000) 1001-1004.
    [49]J.P.Madigan,H.L.Chotkowski and R.L.Glaser DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis,Nucleic Acids Res 30(2002) 3698-3705.
    [50]E.R.Foster and J.A.Downs Histone H2A phosphorylation in DNA double-strand break repair,Febs J 272(2005) 3231-3240.
    [51]I.H.Ismail and M.J.Hendzel The gamma-H2A.X:is it just a surrogate marker of double-strand breaks or much more?,Environ Mol Mutagen 49(2008) 73-82.
    [52]C.H.Bassing,K.F.Chua,J.Sekiguchi,H.Suh,S.R.Whitlow,J.C.Fleming,B.C.Monroe,D.N.Ciccone,C.Yan,K.Vlasakova,D.M.Livingston,D.O.Ferguson,R.Scully and F.W.Alt Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX,Proc Natl Acad Sci U S A 99(2002)8173-8178.
    [53]O.Fernandez-Capetillo,A.Lee,M.Nussenzweig and A.Nussenzweig H2AX:the histone guardian of the genome,DNA Repair(Amst) 3(2004) 959-967.
    [54]G.S.Stewart,B.Wang,C.R.Bignell,A.M.Taylor and S.J.Elledge MDC1 is a mediator of the mammalian DNA damage checkpoint,Nature 421(2003) 961-966.
    [55]A.Kinner,W.Wu,C.Staudt and G.Iliakis Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin,Nucleic Acids Res 36(2008) 5678-5694.
    [56]M.Stucki,J.A.Clapperton,D.Mohammad,M.B.Yaffe,S.J.Smerdon and S.P.Jackson MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks,Cell 123(2005) 1213-1226.
    [57]A.Celeste,S.Petersen,P.J.Romanienko,O.Fernandez-Capetillo,H.T.Chen,O.A.Sedelnikova,B.Reina-San-Martin,V.Coppola,E.Meffre,M.J.Difilippantonio,C.Redon,D.R.Pilch,A.Olaru,M.Eckhaus,R.D.Camerini-Otero,L.Tessarollo,F.Livak,K.Manova,W.M.Bonner,M.C.Nussenzweig and A.Nussenzweig Genomic instability in mice lacking histone H2AX,Science 296(2002) 922-927.
    [58]C.J.Bakkenist and M.B.Kastan DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation,Nature 421(2003) 499-506.
    [59]C.Redon,D.R.Pilch,E.P.Rogakou,A.H.Orr,N.F.Lowndes and W.M.Bonner Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage,EMBO Rep 4(2003) 678-684.
    [60]J.Kao,M.T.Milano,A.Javaheri,M.C.Garofalo,S.J.Chmura,R.R.Weichselbaum and S.J.Kron gamma-H2AX as a therapeutic target for improving the efficacy of radiation therapy,Curr Cancer Drug Targets 6(2006) 197-205.
    [61]A.Celeste,S.Difilippantonio,M.J.Difilippantonio,O.Fernandez-Capetillo,D.R.Pilch,O.A.Sedelnikova,M.Eckhaus,T.Ried,W.M.Bonner and A.Nussenzweig H2AX haploinsufficiency modifies genomic stability and tumor susceptibility,Cell 114(2003) 371-383.
    [62]P.H.Clingen,J.Y Wu,J.Miller,N.Mistry,F.Chin,P.Wynne,K.M.Prise and J.A.Hartley Histone H2AX phosphorylation as a molecular pharmacological marker for DNA interstrand crosslink cancer chemotherapy,Biochem Pharmacol 76(2008) 19-27.
    [63]C.E.Redon,J.S.Dickey,W.M.Bonner and O.A.Sedelnikova[gamma]-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin,Advances in Space Research 43(2009) 1171-1178.
    [64]A.R.Collins,A.A.Oscoz,G.Brunborg,I.Gaivao,L.Giovannelli,M.Kruszewski,C.C.Smith and R.Stetina The comet assay:topical issues,Mutagenesis 23(2008) 143-151.
    [65]Y.R.Yang,S.L.Liu,Z.Y.Qin,F.J.Liu,Y.J.Qin,S.M.Bai and Z.Y.Chen Comparative proteomics analysis of cerebrospinal fluid of patients with Guillain-Barre syndrome,Cell Mol Neurobiol 28(2008) 737-744.
    [66]B.Zhao and C.L.Poh Insights into environmental bioremediation by microorganisms through functional genomics and proteomics,Proteomics 8(2008)874-881.
    [67]D.P.Tieleman,R.J.Turner,H.J.Vogel and J.H.Weiner Structural proteomics of the cell envelope of Gram-negative bacteria,Biochim Biophys Acta 1778(2008) 1697.
    [68]X.Han,A.Aslanian and J.R.Yates,3rd Mass spectrometry for proteomics,Curr Opin Chem Biol 12(2008) 483-490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700