用户名: 密码: 验证码:
激光显示中散斑抑制和主观散斑跟踪的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光显示具有宽色域、高色饱和度、高对比度、节能等优点,具有广阔的市场前景。但由于光源的高相干性引起的散斑会严重影响图像质量,阻碍了激光显示的实用化,需要寻求解决的方法。本文建立了激光扫描显示系统中散斑产生的模型,研究了主要系统参数对于散斑抑制的影响。对于激光直接投影显示系统,提出了基于光纤振动结合空间偏振调制抑制散斑的方法,研究了光纤振动抑制散斑的效果和空间偏振调制器件参数的选取。激光散斑测量技术具有结构简单、非接触、实时等优点,在鼠标跟踪、表面测量等方面有很广泛的应用,目前关于像面散斑和非高斯散斑的跟踪技术研究还很少,该类方法在弱粗糙表面等一些特殊场合具有很大的优势。本文研究了像面散斑跟踪的参数选择和玻璃表面的像面散斑跟踪,散斑对比度和跟踪范围得到了很大改善。
     本论文的研究工作主要有:
     1.详细阐述了散斑的基本理论。理论和实验研究了光斑形状、大小和透镜孔径等系统参数对于像面散斑时间相关函数的影响,分析了时间相关函数性质对于动态平均法抑制散斑的作用。
     2.分析了激光扫描显示系统中散斑产生的机理,建立了该系统中散斑产生的物理模型,研究了系统主要参数对散斑视觉的影响。研究结果显示:散斑对比度对表面高度标准偏差不太敏感;表面相关长度变小,散斑的对比度下降,由于该种效应造成的平均效应最多可将散斑对比度降为50%左右;散斑对比度随瞳孔孔径变小而减小,基本成正比。不同瞳孔孔径下的人眼观看投影图像,得到的散斑视觉差别不大;不同的距离观察散斑的对比度相差较大,观察距离越远,散斑视觉越不明显;利用在平行于激光束扫描方向压窄激光光斑的方法,能够将散斑的对比度降为原来的1/5左右。实验验证了圆形光斑情形,不同光斑参数的抑制效果。
     3.提出了一种基于光纤振动和空间偏振随机调制抑制散斑的激光显示技术。详细阐述了直接投影激光显示系统的工作原理和器件结构,分析了该系统中散斑产生的机理;归纳了现有的散斑抑制方法;提出了一种基于光纤振动和空间偏振随机调制抑制散斑的方法。实验研究了系统参数对于散斑产生的影响,得到了光纤振动散斑抑制的效果,使用单跟光纤振动将散斑的对比度由50%降低到15%左右。计算研究了空间偏振调制对于散斑抑制和图像质量的影响,给出了器件的设计要求。
     4.详细阐述了散斑跟踪的原理和相关图像的处理方法。研究了像面散斑跟踪的参数选择对跟踪范围和跟踪精度的影响。针对玻璃表面散斑跟踪,散斑对比度低的缺点,利用成像产生的非高斯散斑有效的提高了散斑的对比度。建立了玻璃表面跟踪系统,将散斑对比度由自由传播情形的0.25提高到1.25;同等条件下的跟踪范围由200μm提高到了400μm。
     本论文的创新点主要包括:
     1.分析了激光扫描显示系统中散斑形成机理,建立了完善的散斑物理模型,研究了系统主要参数对于散斑抑制的影响,并对结果给出了合理的解释,结论对于系统的设计有很好的指导作用。
     2.提出了一种基于光纤振动和空间偏振随机调制抑制散斑的激光显示方式。实验研究了系统参数对于散斑产生的影响,得到了光纤振动散斑抑制的效果。计算研究了空间偏振调制对于散斑抑制和图像质量的影响,给出了器件的设计要求。
     3.研究了非高斯散斑的跟踪,解决了玻璃表面跟踪散斑对比度低的难题。建立了玻璃表面跟踪系统。将散斑对比度由自由传播情形的0.25提高到1.25;同等条件下的跟踪范围由200μm提高到了400μm。
Laser display is predicted to have broad market owing to its advantages in wide color gamut, high saturated color, high image contrast and lower energy consumption. But there is a major problem in this system for high coherence of laser beam, which is a phenomena called speckle. Speckle reduces the contrast and resolution of images seriously and hinders the practical use of this system. Some methods should be found to resolve the problem. The model of speckle formation in laser scanning display system has been established, based on which the affect of system parameters on speckle contrast has been analyzed. For the laser projection display, a new apparatus with fiber vibrating combining with spatial polarized modulation has been proposed. It has been researched that the effect of fiber vibrating on speckle reduction and the parameters for the spatial polarized modulation device.
     Laser speckle sensing technology has significant advantages in simplicity, non-contract testing, high precision and real-time testing. It is widely used in computer mouse design and material testing. But there is little research employing image speckle and non-Gauss speckle. In this paper, the parameters for tracking with image speckle are researched. The speckle contrast and tracking range are improved for speckle tracking on the glass surface.
     The main research works are as following:
     1. The statistical properties of speckle are described in detail. The affect of the structure and dimension of laser spot, the diameter of lens on speckle temporal correlation properties is researched by simulation and experiment. It is analyzed that speckle suppression from the average effect of the temporal speckle sequence.
     2. The mechanisms for speckle arising in laser scanning display system are analyzed and the model is established, based on which the affect of system parameters on speckle suppression is researched. The results show that: speckle contrast is not sensitive to the standard deviation of surface height and decreases as the correlation length gets smaller, from which the speckle contrast can be reduced to 50%; speckle contrast reduces as the decreasing of the pupil aperture, which is nearly proportional. But there are slight differences of speckle vision for people with different pupil aperture; speckle contrast has great changes as observing distance increases, it gets smaller; speckle contrast is reduced by 1/5, when laser spot is narrowed in scanning direction. For the results with circular laser spot, some experimental results are given.
     3. The apparatus and mechanism for laser projection display are described in detail and the reasons for speckle arising in this system are analyzed. The methods for speckle suppression are reviewed. A new laser projection system with speckle reduction employing fiber vibrating and spatial polarized modulation is designed. The affection from system parameters on speckle contrast and image quality is researched. The parameters for spatial polarized modulation device are given from simulation research.
     4. The theory for speckle tracking and the method for image processing are described in detail. The affection on tracking precise and range for tracking with image speckle from rough surfaces is researched. For glass surface as a relative smooth surface, with non-Gauss speckle tracking generating by imaging system speckle contrast rises from 0.25 to 1.25 and the tracking range increases from 200μm to 400μm compared with tracking employing free propagation speckle.
     Highlights of the dissertation are as follows
     1. It is the first time to analyze mechanisms of the speckle arising in the laser scanning display system and to establish the speckle physical model. Based on the model, the affection of system parameters on speckle contrast is researched, proper explanations for the results are given. The results show that speckle vision can be suppressed by choosing suitable optical parameters in laser scanning display system, which can give an instruction to speckle reduction.
     2. A new laser projection system with speckle reduction employing fiber vibrating and spatial polarized modulation is designed. The affection from system parameters on speckle contrast and image quality is researched by experimentally and the effect for speckle suppression with fiber vibrating is given. It is the first time to design a spatial polarized modulation device for speckle reduction and the parameters for the device are given by simulation research.
     3. It is the first time to track with non-gauss speckle and to conquer the problem of low speckle contrast upon glass surface. With non-Gauss speckle tracking generating by imaging system speckle contrast rises from 0.25 to 1.25 and the tracking range increases from 200μm to 400μm compared with tracking employing free propagation speckle.
引文
[I]Goodman J W.1975. Statistical properties of laser speckle patterns:Laser Speckle and Related Phenomena[M]. Vol 9. Heidelberg:Springer Berlin,9-75.
    [2]Yu F T, Wang E Y.1973. Speckle reduction in holography by means of random spatial sampling[J]. Appl. Opt.12:1656-1659.
    [3]Cai X O.2001. Reduction of speckle noise in the reconstructed image of digital holography[J]. OPTIK.121:394-399.
    [4]An S, Lapchuk A, Yurlov V, et al.2009. Speckle suppression in laser display using several partially coherent beams[J]. Optics Express.17:92-103.
    [5]Shin S C, Yoo S S, Lee S Y, et al.2006. Removal of hot speckle in rear projection screen using the rotating screen system[J]. Journal of display technology.2:79-84.
    [6]Chen F, Brown G M, Song M M.2000. Overview of three-dimensional shape measurement using optical methods[J]. Optical Engineering.39:10-22.
    [7]Creath K.1985. Phase-shifting speckle interferometry. Appl. Opt..24:3053.
    [8]Peters W H, Ranson W F.1982. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering.21:427-431.
    [9]Leendertz J A.1970. Interferometric displacement measurement on scattering surfaces utilizing speckle effect. Journal of Physics E (Scientific Instruments).3:214-218.
    [10]Fercher A F, Briers J D.1981. Flow visualization by means of single-exposure speckle photography [J]. Optics Communications.37:326-330.
    [11]Cheng H Y, Luo Q M, Wang Z, et al.2003. Efficient characterization of regional mesenteric blood flow by use of laser speckle imaging[J]. Appl. Opt..42(28):5759-5764.
    [12]黄伟.2003.基于激光散斑的跟踪技术和激光扫描显示中散斑机理的研究[D:[博士].合肥:中国科学技术大学.
    [13]蓝信钜.2001.激光技术.科学出版社.
    [14]孙长库,叶声华.2001.激光测量技术.天津大学出版社.
    [15]杨国光.1997.近代光学测试技术.浙江大学出版社.
    [16]Miguel Asmad, Guillermo Baldwin, Cordula Maczeyzik, et al..2005. Experimental study of the surface roughness in metals with different surface finishing by two dimensional correlation of speckle pattern [C]. SPIE.5776:530-537.
    [17]OTSUKA K, ABE K, KO J Y, et al.2002. Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser[J]. Optics Letters.27(15):1339-1341.
    [18]Zdemir S K, Shinohara S, Ito S, et al..2001. Compact optical instrument for surface classification using self-mixing interference in a laser diode [J]. Opt. Eng..40(l):38-43.
    [19]Butters J N, Jones R C, Wykes C.1978. Electronic speckle pattern interferometry[A]. New York:Academic press,111-158.
    [20]Jones R, Wykes C.1983. Holographic and Speckle Interferometry[M]. London: Cambridge University Press.
    [21]Popov P, Pulov S, Pulov V.2004. A laser speckle pattern technique for designing an optical computer mouse[J]. Optics and Lasers in Engineering.42:21-26.
    [22]Sirohi R S.1993. Speckle Metrology[M]. New York:Marcel Dekker.
    [23]Robinson D W, Reid G T.1993. Interferogram Analysis[M]. Bristol:Institute of Physics Publishing.230-261.
    [24]安毓英,曾小东.2001.光学传感与测量.北京:电子工业出版社.
    [25]Rastogi P K.1997. Optical Measurement Techniques and Applications[M]. Boston: Artech House,158-169.
    [26]Hung Y Y.1998. Shearography:a Novel and Practical Approach for Nondestructive Testing[J]. Journal of Non-destructive Testing.8 (2):55-67.
    [27]Yamaguchi I.1981. A laser-speckle strain gauge. Journal of Physics E:Scientific Instruments.14:270-1273.
    [28]Shibata T, Shinohara S, Ikeda H,, et al.1996. Automatic measurement of velocity and length of moving plate using self-mixing laser diode[J]. IEEE TRANSACTIONS ON INSTRUMENTATIONS AND MEASUREMENT.45:499-503.
    [29]毕勇.2009.激光全色显示技术[J].新材料产业.4:61-65.
    [30]Wang L L, Tschudi T, Halldorsson T, Thorsteinn Halldorsson, et al.1998. Speckle reduction in laser projection systems by diffractive optical elements.37:1770-1775.
    [31]Verdet E.1865. Ann. Scientif. I'Ecole Normal Superieure 2,291.
    [32]Strutt J W (Lord Rayleigh).1880. On the resultant of a large number of vibrations of the same pitch and of arbitrary phase. Philos. Mag..10:73-78.
    [33]M. von LAUE.1914. Sitzungsber. Akad. Wiss. (Berlin) 44,1144; M. von LAUE.1916. Mitt. Physik Ges. (Ziirich) 18,90; M. von LAUE.1917. Verhandl. Deut. Phys. Ges.19, 19.
    [34]Rigden J D, Gordon E I.1962. The Granularity of Scattered Optical Maser Light. Proc. IRE 50,2367.
    [35]Oliver B M.1963. Sparkling spots and random diffraction. Proc. IEEE 51220-221.
    [36]Dainty J C.1975. Laser speckle and related phenomena[M]. Berlin:Springer-Verlag.
    [37]Yoshimura T.1986. Statistical properties of dynamic speckles. J. Opt. Soc. Am. A.3:
    1032-1054.
    [38]Goodman J W.2006. Speckle phenomena in optics:Theory and application. Robert & Company.
    [39]Green P E.1968. In radar astronomy, ed. by Evans J V, Hagfors. New York:McGraw Hill Book Co..
    [40]Leith E N.1971. Quasi-holographic techniques in the microwave region[J]. Proc. IEEE. 59:1305-1318.
    [41]Abbott J G, Thurstonea F L.2004. Acoustic speckle:Theory and experimental analysis. Ultrasonic Imaging.1:303-324.
    [42]Ratcliffe J A.1956. In Reports on Progress in Physics, ed. by Strickland A C. London: Physical Society.
    [43]Mandel L.1959. Fluctuations of photon beams:the distribution of the photo-electrons. Proc. Phys. Soc..74:233-243.
    [44]Middleton D.1960. Introduction to statistical communication theory. New York: McGraw Hill Book Co..
    [45]Davenport W B, Root W L.1958. Random signals and noise. New York:McGraw Hill Book Co..
    [46]Beckman P, Spizzichino A.1963. The Scattering of Electromagnetic Waves from Rough Surfaces. London, New York:Pergamon/Macmillan.
    [47]Jakeman E, Pusey P N.1975. Enhanced fluctuations in radiation scattered by a moving random phase screen. J. Phys. A.66:1175-1182.
    [48]Bowhill S A.1961. Statistics of a radio wave diffracted by a random ionosphere. J. Res. Natl. Bur. Stds..65D:275-292.
    [49]Jakeman E, McWhirter J G.1997. Correlation function dependence of the scintillation behind a deep random phase screen. J. Phys. A.10:1599-1643.
    [50]Zujev V E, Banakh V A, Pokasov V V.1988. Optics of turbulent atmosphere. Gidrometeoizdat, Leningrad,139.
    [51]Uozumi J, Asakura T.1981. The first-order statistics of partially developed non-Gaussian speckle patterns. Appl. Opt..20:1454-1466.
    [52]Popov I A, Sidorovsky N A, Veselov L M.1997. Statistical properties of non-Gaussian intensity fluctuations in the image plane of an optical system[J]. Opt. Commun.. 134:289-300.
    [53]Lee J S.1986. Speckle suppression and analysis for aperture radar images[J]. Optical Engineering.25:636-643.
    [54]Achim A, Bezerianos A, Tsakalides P.2001. Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE TRANSACTIONS ON MEDICAL IMAGING.20:772-783.
    [55]Kyoung-ho Ha.2008. Laser display apparatus. US 7,336,686.
    [56]Kikuchi H.1998. Laser light device, laser beacon device laser imager display device. US 5,832,009.
    [57]Kruschwitz B E, Kahen K B, Kurtz A F, et al.2005. Electronic imaging system using organic laser array illuminating an area light valve. US 6,950,454.
    [58]毕勇,许祖彦,房涛等.2007.一种消除散斑的照明系统.CN 101063519.
    [59]Suganuma H.1999. Illuminating method and illuminating device. US 6,249,381.
    [60]Rawson E G.1975. Speckle minimization in projection displays by reducing spatial coherence of the image light. US 4,035,068.
    [61]Kurtz A F, Kruschwitz B E, Ramanujan S.2003. Laser projection display system. US 6,557,429.
    [62]Prudnikov O.2008. Diffuser having shape profile for reducing speckle noise and a laser projection system employing the same. US 0,129,891.
    [63]Michimori A, Aizawa J, Sasagawa T, et al.2007. Image electric projector and image display method. US 0,247,707.
    [64]Chen D, Lebby M S, Jachimowicz K E.1998. Non-speckle liquid crystal projection display. US 6,122,023.
    [65]Wang L L, Tschudi T, Boeddinghaus M, et al.2000. Speckle reduction in laser projection with ultrasonic waves. Opt. Eng..39:1659-1664.
    [66]Burch J M, Tokarski J M J.1968. Production of Multiple Beam Fringes from Photographic Scatterers[J]. Journal of Modern optics.15:101-111.
    [67]Archbold E, Burch J M, Ennos A E.1970. Recording of in-plane Surface Displacement by Double Exposure Speckle Photography [J]. Journal of Modern Optics.17(12):883-898.
    [68]Butters J N, Leendertz J A.1971. Holographic and video techniques applied to engineering measurements. Tran. Inst. Meas. Control.4:349-354.
    [69]Jones R, Wykes C.1989. Holographic and Speckle Interferometry. Cambridge University Press.
    [70]Rastogi P K.2001. Digital Speckle Pattern Interferometry and Related Techniques[M]. Chichester:John Wiley & Sons Ltd.
    [71]孙小勇,周克印,王开福.2007.激光散斑检测中剪切散斑干涉技术和相移ESPI技
    术[C].全国无损检测技术学术会议.
    [72]Peter W H, Ranson W F.1982. Digital imaging technique in experimental stress analysis[J]. Opt. Eng..21(3):427-431.
    [73]Coburn D, Slevin J.1995. Digital correlation system for nondestructive testing of thermally stressed ceramics. Appl. Opt..34:5977-5986.
    [74]Lyons J S, Liu J, Sutton M A.1996. High-Temperature Deformation Measurements Using Digital-image Correlation. Experimental Mechanics.36:64-70.
    [75]Rand J L, Grant, et al.1997. Nontraditional Methods of sensing stress, Strain, and Damage in Materials and Structures. ASTM STP 1318,123-137.
    [76]Luc Chevalier, Sylvain Calloch, Hild F, et al.2001. Digital image correlation used to analyze the multiaxial behaviour of rubber-like materials[J].20(2):160-187.
    [77]Steen G.Hanson, Michael L. Jokobsen, Henrik C. Petersen, et al.2006. Proc. of SPIE. 6341:6341U-1-6341U-6.
    [78]Lioudmila Tchvialeva, Tim K. Lee, Igor Markhvida, et al.2006. Proc. of SPIE.6341: 6341V-1-6341V-6.
    [79]Hombeck L J.1999. A digital light processing update:status and Future applications. SPIE.3634:158-170.
    [80]Liao C D, Tsai J C.2009. The evolution of MEMS display. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS.56:1057-1065.
    [81]宋镜明,阮玉,杨宜等.2004.对光栅光阀(GLV)器件进行数值分析及其在DGE上的应用.光学技术.30:519-521.
    [82]Redmond P A, Denver Y.1999. The advances & technologies of galvanometer based optical scanner[J], SPIE.3787:158-164.
    [83]刘榴娣,常本康,党长民.1993.显示技术.北京:北京理工大学出版社.
    [84]Vladimir N. Ulasjuk, Oleg M Makienko, Alexander V Koshevoy.1964. Quantscope based high-power full-color laser projection display system. SPIE.2407:270.
    [85]Brinkmann Uwe.1997. Solid-state lasers project laser television signals[J]. Laser Focus World, WORLD NEWS.11:52-60.
    [86]Youngmo Hwang, Jinho Lee, Youngjun Park, et al.2001. Inches Full Color Laser Projection Display. SPIE.3296(1998):116-125.
    [87]Yong Hoon Kim, Hang Woo Lee, Seung Na Cha, et al.1997. Full Color Laser Projection Display Using Kr-Ar Laser (white Laser) beam scanning technology. Proc. SPIE.3131:117-121.
    [88]Christhard Deter, Juergen Kraenert.2000. High Resolution Scanning Laser Projection Display with Diode Pumped Solid State Laser Projection Displays. Sixth in a Series, January 2000 San Jose, California:24-25.
    [89]Gunter Hollenmann, Bernd Braun, Peter Heist, et al.2001. High-power laser projection display. Proc. SPIE.4294(2001):36-46.
    [90]李玉翔,姚建铨,蔡彬晶等.2007.激光电视的研究进展及趋势分析.激光杂志.28:1-2.
    [91]Billings Michale, Tisdale Glenn.2001. Development of An Advanced multifunction Head-Up Display Using Digital Micro-mirror Device And Laser Technologies. Proc. SPIE.4362:194-192.
    [92]刘伟奇,魏忠伦,康玉思等.2004.全固态激光彩色视屏显示技术[J].液晶与显示,8.
    [1]Goodman J W.1975. Statistical properties of laser speckle patterns:Laser Speckle and Related Phenomena[M]. Vol 9. Heidelberg:Springer Berlin,9-75.
    [2]刘培森.1987.散斑统计光学基础[M].北京:科学出版社.
    [3]巴特拉柯夫A C(苏).1989.激光测量系统[M].电子工业出版社.
    [4]厄尔夫(Erf R K)(美).1989.散斑计量学[M].机械工业出版社.
    [5]Fujii H, Asakura T.1974. Effect of surface roughness on the statistical distribution of image speckle intensity[J]. Opt. Commun..11:35-38.
    [6]Jakeman E, McWhirter J G, Pusey P N.1976. Enhanced fluctuations in radiation scattered by a moving random phase screen[J]. J. Opt. Soc. Am..66(11):1175-1182.
    [7]Jakeman E, McWhirter J G. 1976. Fluctuations in radiation scattered into the Fresnel Region by a random phase screen in uniform motion[J]. J. Phys. A Math. Gen.. 9:785-797.
    [8]Popov I A, Sidorovsky N A, Veselov L M.1997. Statistical properties of non-Gaussian intensity fluctuations in the image plane of an optical system[J]. Opt. Commun.. 134:289-300.
    [9]Asakura T, Takia N.1981. Dynamic laser speckles and their application to velocity measurements of the diffuser object[J]. Applied Physics.25:179-194.
    [10]Yoshimura T.1986. Statistical properties of dynamic speckles[J]. J. Opt. Soc. Am.. 3:1032-1054.
    [11]Fung A K, Cheng M F.1985. Numerical simulation of scattering from sample and composite random surfaces[J]. J.Opt.Soc.Am..2:2274-2284.
    [12]Chen H, Hu Y Z, Wang H, Wang W Z.2006. Computer simulation of rough surfaces [J]. Lubrication Engineering(润滑与密封).10:52-59 (in Chinese).
    [13]Anwander M, Zagar B G, Weiss B, et al.2000. Noncontacting strain measurements at high temperatures by the digital laser speckle technique[J].40:98-105.
    [14]Sjodahl M.2000. Digital Speckle Photography [M]. Trends in optical non-destructivetesting and inspection. Elsevier,179-196.
    [15]Andrea Di Donato, Lorenzo Scalise, Leonardo Zappelli.2004. Noncontact speckle-based velocity sensor[J]. IEEE Transactions on instrumentation and measurement.53:51-57.
    [16]Hubert W Schreier, Joachim R Braasch, Michael A Sutton.2000. Systematic errors in digital image correlation caused by intensity interpolation[J]. Opt. Eng..39:2915-2921.
    [17]Zhou P, Goodson K E.2001. Subpixel displacement and deformation gradient measurement using digital image/speckle correlation[J]. Opt. Eng..40(8):1613-1620.
    [18]Fincham A M, Spedding G R.1997. Low Cost, High Resolution DPIV for Measurement of Turbulent Fluid Flow[J]. Exp. in Fluids.23:449-462.
    [19]Lourenco J, Krothapalli A.1995. On the Accuracy of velocity Measurements with PIV[J]. Exp. in Fluids.18:421-428.
    [20]Porta P A, Purtin D, McInerney J G.2002. Laser Doppler velocimetry signal generation in a backscatter-modulated laser diode[J]. IEEE Photon. Technol. Lett..14:1719-1721.
    [21]黄伟.2003.基于激光散斑的跟踪技术和激光扫描显示中散斑机理的研究[D]:[博士].合肥:中国科学技术大学.
    [22]Iga K, Koyama F, Kinoshita S.1988. Surface Emitting Semiconductor Lasers[J]. IEEE J. Quantum Electron..24:1845-1855.
    [1]Aylward R P.1999. The Advance & Technologies Of Galvanometer-based Optical Scanners. SPIE 3787:158-164.
    [2]Geels R S,Sakamoto M, Welch D F.1994.90W cw red laser diode bar[C]. Conference on Lasers and Electro-Optics CLEO'94,319-320.
    [3]Wen W Q, Yao J Q, Ding X, et al.2004. LD pumped Nd:YAG/KTP quasi-continuous wave red light with 8.1 W output power. Chin. J. Laser.31(1):1281-1284.
    [4]Yao A Y, Hou W, Bi Y, et al.2005. High-power cw 671 nm output by intracavity frequency doubling of a double-end-pumped Nd:YV04 laser. Appl. Opt..44(33):71 56-7160.
    [5]Ye Q, Shah L, EichenhozlJ.1999. Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd:YCOB crystals. Opt. Commun..1999.164:33-37.
    [6]周睿.2006.高功率连续运转全固态蓝光、红光激光器研究[D]:[博士].天津:天津大学.
    [7]Nakayama N.1996. High-efficiency ZnCdSe/ZnSSe/ZnMgSSe green and blue light-emitting diodes. Physics and Simulation of Optoelectronic Devices IV Meeting, San Jose, CA, USA
    [8]Nakamura S, Senoh M, Nagahama S I, et al.1996. InGaN-Based Multi-Quantum-Well-Structure Laser Diodes. J. Appl. Phys.35:L74-L76.
    [9]Hemmerich A, Zimmermann C, et al.1994. Compact source of coherent blue light. Appl.Opt..33:988-991.
    [10]Kean P N, Standley R W, Dixon G J.1993. Generation of 20 m W of blue laser radiation from a diode-pumped sum-frequency laser. Applied Physics Letters.63:302-304.
    [11]Czeranowsky C, Heuman E, Huber G. 2003. All-solid-state continuous-wave frequency-doubled Nd:YAG BiBO laser with 2.8-W output power at 473 nm Opt. Lett.28:432-434.
    [12]XiaoY P, Lei Xu, Anand A. High-power efficient continuous-wave TEM00 intracavity frequency-doubled diode-pumped Nd:YLF laser[J].2005.Appl. Opt..44(5):803-807.
    [13]徐介平.1982.声光器件的原理、设计和应用[M].北京:科学出版社.
    [14]Li Y J, Katz J.1997. Asymmetric distribution of the scanned field of a rotating reflective polygon[J]. Appl. Opt..36:342-352.
    [15]刘兴占,刘向东.1998.激光扫描镜的应用研究[J].激光技术.22:346-349.
    [16]周崇喜,杜春雷,邓启凌等.1998.衍射光学二维激光扫描器设计制作研究[J].光学学报.19:254-260.
    [17]Fung A K, Cheng M F.1985. Numerical simulation of scattering from sample and composite random surfaces[J]. J. Opt. Soc. Am. A.2:2274-2284.
    [18]Goodman J W.1975. Statistical properties of laser speckle patterns:Laser Speckle and Related Phenomena[M]. Vol 9. Heidelberg:Springer Berlin,9-75.
    [19]Jakeman E, Pusey P N.1975. Enhanced fluctuations in radiation scattered by a moving random phase screen. J. Phys. A.66:1175-1182.
    [20]Popov I A, Sidorovsky N A, Veselov L M.1997. Statistical properties of non-Gaussian intensity fluctuations in the image plane of an optical system[J]. Opt. Commun.. 134:289-300.
    [21]Jakeman E, Tough R A.1988. Non-Gaussian models for the statistics of scattered waves. Adv. Phys..37:471-529.
    [1]毕勇.2009.激光全色显示技术[J].新材料产业.4:61-65.
    [2]王天及,杨世宁,李耀堂.2004.现代显示技术的进展.光电子技术与信息.17(4):1-7.
    [3]LU K, SALEH B E A.1990. Theory and design of the liquid crystal TV as an optical spatial phase modulator[J]. Opt. Engng..29(10):240-246.
    [4]Douglass M R.2003. DMD reliability:a MEMS success story[J]. Proc. SPIE.4980: 1-11.
    [5]Pfeiffer M.2000. An overview with focus on LC on Silicon (LCOS) display[M]. U.S.A.: Three-Five systems Inc..
    [6]Shin S C, Yoo S S, Lee S Y, et al.2006. Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser[J]. DISPLAYS.27:91-96.
    [7]Suganuma H.1999. Illuminating method and illuminating device. US 6,249,381.
    [8]Borish I M, Crisdale E.1999.视光学手册.上海医科大学出版社.
    [9]Goodman J W.1975. Statistical properties of laser speckle patterns:Laser Speckle and Related Phenomena[M]. Vol 9. Heidelberg:Springer Berlin,9-75.
    [10]Kyoung-ho Ha.2008. Laser display apparatus. US 7,336,686.
    [11]Kikuchi H.1998. Laser light device, laser beacon device laser imager display device. US 5,832,009.
    [12]Kruschwitz B E, Kahen K B, Kurtz A F, et al.2005. Electronic imaging system using organic laser array illuminating an area light valve. US 6,950,454.
    [13]Suganuma H.1999. Illuminating method and illuminating device. US 6,249,381.
    [14]Doumuki T.1999. Lighting system, and image display apparatus. US 4,250,778.
    [15]毕勇,许祖彦,房涛等.2007.一种消除散斑的照明系统.CN 101063519.
    [16]Kurtz A F, Kruschwitz B E, Ramanujan S.2003. Laser projection display system. US 6,557,429.
    [17]Michimori A, Aizawa J, Sasagawa T, et al.2007. Image electric projector and image display method. US 0,247,707.
    [18]Chen D, Lebby M S, Jachimowicz K E.1998. Non-speckle liquid crystal projection display. US 6,122,023.
    [1]Wei huang, Huaqiao Gui, Liang Lv, et al.2007. A novel optical approach based on speckle effect produced by VCSEL for tracking on glass surface[C]. Proc. SPIE.6838: 16-22.
    [2]Goodman J W.1975. Statistical properties of laser speckle patterns:Laser Speckle and Related Phenomena[M]. Vol 9. Heidelberg:Springer Berlin,9-75.
    [3]刘培森.1987.散斑统计光学基础[M].北京:科学出版社.
    [4]Asakura T, Takai N.1981. Dynamic laser speckles and their application to velocity measurements of the diffuse object. Appl. Phys..25:179-194.
    [5]Fujii H, Asakura T.1974. Effect of surface roughness on the statistical distribution of image speckle intensity. Opt. Commu..11:35-38.
    [6]Fujii H, Asakura T, Shindo Y.1976. Measurement of Surface Roughness Properties by Using Image Speckle Contrast. J. Opt. Soc. Am..66:1217-1222.
    [7]Welford W T.1975. First order statistics of speckle produced by weak scattering media. 7:413-416.
    [8]Escamilla H M.1983. Speckle contrast in the diffraction field of a weak random-phase screen when the illuminated region contains a few correlation areas. Opt. Acta.30: 1655-1664.
    [9]黄伟.2003.基于激光散斑的跟踪技术和激光扫描显示中散斑机理的研究[D]:[博士].合肥:中国科学技术大学.
    [10]Born & Wolf.1999. Principles of Optics. Cambridge University Press.
    [11]Nayar S K, Ikeuchi K, Kanade T.1989. Extracting Shape and Reflectance of Hybrid Surfaces by Photometric Sampling. IEEE INTERNATIONAL WORKSHOP ON INDUSTRIAL APPLICATIONS OF MACHINE INTELLIGENCE AND VISION. 169-175.
    [12]Wolff L B.1992. Diffuse reflectance model for dielectric surfaces. SPIE.1822:60-73.
    [13]Nayar S K, Ikeuchi K, Kanade T.1991. Surface reflection:physical and geometrical perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence.13:611-634.
    [14]Popov I A, Sidorovsky N A, Veselov L M.1997. Statistical properties of non-Gaussian intensity fluctuations in the image plane of an optical system[J]. Opt. Commun.. 134:289-300.
    [15]Leendenz J A, Butters J N.1973. An image-shearing speckle-pattern interferometer for measuring bending moments[J]. J. Phys. E..6:1107-1112.
    [16]Bruck H A, McNeil S R, Sutton M A, et al.1989. Digital image correlation using newton-rapshon method of partial differential correction[J]. Experimental Mechanics. 29(3):261-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700