用户名: 密码: 验证码:
从卫星TerraSAR-X图像反演海面风场和海表流场方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
德国于2007年6月15日发射的TerraSAR-X卫星是国际上第一颗具有全极化、高空间分辨率、沿轨干涉工作模式的X波段合成孔径雷达(SAR)业务化卫星。目前,TerraSAR-X卫星仅提供多模式高质量地球观测图像产品,尚无反演的海洋环境参数例如海面风场、海表流场等被开发。本文旨在利用TerraSAR-X卫星的独有特性,发展高分辨卫星海面风场和卫星海表流场的反演方法。后者是目前卫星海洋学的空缺,并且其反演方法与海面风场有关。
     目前成熟的从微波散射计和微波合成孔径雷达后向散射系数获取海面风场的反演模式多基于C、Ku和L波段,普遍采用海面归一化后向散射系数(NRCS)与风矢量的经验关系作为卫星SAR海面风场反演的地球物理模式函数。Masuko基于机载实验曾提出X波段SAR反演海面风场的地球物理模式函数。本文利用SIR-C/SAR(X)NRCS数据和ECMWF ERA-40模式风场数据检验该模式,发现存在明显的系统误差。在此基础上,针对X波段VV极化SAR,提出一个新的基于线性方法的海面风场反演经验模式(XMOD),以描述NRCS与海面10m风速、风向及雷达入射角之间的关系,并利用SIR-C/SAR(X)NRCS数据以及ECMWF ERA-40风场数据确定XMOD的线性系数。XMOD模拟出的NRCS与SIR-C/SAR(X)的NRCS相关性为0.91,均方根误差为2.68dB。将XMOD应用于不同工作模式的VV极化TerraSAR-X海表图像以反演海面风场,反演的风速与QuickScat风速相比,二者相关性为0.97,均方根误差为0.92 m/s;与HIRLAM细网格模式风场结果相比,TerraSAR-X风速平均偏高1.10m/s。其中风向采用风条纹或模式结果。
     上述XMOD仅适用于VV极化,为将其扩展到TerraSAR-X HH极化,需要建立极化率模型。基于Thompson和Mouche的极化率模型,本文建立了二个极化率模型PR1和PR2,并分别应用于海面风场反演,PR1和PR2误差分别为0.56m/s和0.09m/s,PR2优于PR1。将极化率模型PR2应用于HH极化TerraSAR-X图像反演海面风场,其结果与QuickScat结果比较,二者相关性为0.96,均方根误差为0.86 m/s。
     TerraSAR-X卫星具有沿轨干涉工作模式,可以获得卫星海表流场数据。由于TerraSAR-X卫星尚未公开ATI数据,本文使用Romeiser 2002年提出的反演方法,采用X-波段机载沿轨干涉SAR数据(ATI)以及X波段航天飞船SRTM数据进行海表流场反演方法研究。利用机载ATI数据进行相位方位向位移校正,相位转换流场,二维流场合成,海浪运动校正后获得反演的海表流场。其中使用了Romeiser开发的SAR正向成像模型M4S软件。反演的海表流场与现场ADCP测量结果和德国航道工程研究院提供的模式结果进行比较,误差分别为0.16m/s和0.04m/s,与Romeiser的结果吻合。用于三维地形测量的SRTM的两个天线在沿轨方向上有7m位移,Romeiser提出可用于ATI海表流场反演。本文采用2000年丹麦小贝尔特海峡的SRTM数据进行相位校正,平地效应校正,非零干涉相位校正,相位转换流场后获得反演的海表流场。反演结果有待印证。
Satellite TerraSAR-X launched on June 15, 2007 by Germany is the first operational Satellite, which is quipped with X-Band synthetic aperture radar (SAR) with the following characteristics: multi polarizations, high spatial resolution and along-track interferometric operation mode. So far only the high quality multi operation mode of TerraSAR-X images over earth can be offered but no the retrieved marine environmental parameters such as sea surface wind fields and sea surface current fields. The aim of this thesis is to develop the retrieval algorithms of high resolution satellite sea surface wind fields (SSW) and sea surface current fields (SSC) using the unique properties of TerraSAR-X.
     So far, the well-rounded retrieval algorithms of SSW from microwave scatterometer and SAR are mainly based on C-, Ku-, and L-band. Generally, the empirical relationship between the normalized radar cross sections (NRCS) and wind vectors is established as the geophysical model function (GMF) to retrieve SSW from SAR images. Masuko proposed an X-band SAR GMF based on airborne experiment. In this thesis, the Masuko model is validated with SIR-C/SAR(X) NRCS and ECMWF ERA-40 data and find that there is an obvious system error. Therefore, a linear X-band VV polarization GMF (XMOD) is developed to describe the relationship between NRCS, 10m height wind speed, wind direction and incidence angle. The global ocean SAR data from SIR-C/SAR(X) missions on April and October 1994 and wind fields From ECMWF ERA-40 are used to tune the linear parameters of XMOD. The correlation and RMS between the simulated NRCS by XMOD and SIR-C/SAR(X) NRCS are 0.91 and 2.68dB respectively. Then the SSW is retrieved from different operation mode of VV polarization TerraSAR-X images. The direct comparison of XMOD results to QuickScat shows that the correlation and the RMS between them are 0.97 and 0.92 m/s respectively. The mean wind speed from TerraSAR-X is 1.10m/s bigger than the results of High Resolution Limited Area Model (HIRLAM). The wind direction used here is extracted from wind streak or model results.
     XMOD mentioned above can only be applied with VV polarization SAR images, to be use the HH polarization SAR data, a polarization ratio model is needed. On the base study of Thompson and Mouche, two polarization ratio models PR1 and PR2 are developed and used to retrieve SSW. The errors of the retrieved results are 0.56m/s and 0.09m/s respectively, i.e. PR2 model is better than PR1 model. SSW is also retrieved from TerraSAR-X images using PR2 model and the correlation and the RMS against the QuickScat results are 0.96 and 0.86 m/s respectively.
     The ATI mode of TerraSAR-X enables SSC measurements. Because the ATI data of TerraSAR-X are not disclosed yet, so the X-band airborne ATI data and SRTM data are used to study the retrieval algorithms of SSC with the method proposed by Romeiser in 2002. The airborne ATI data are processed with the following steps: the correction of ATI phase, conversion of ATI phase into first guess current fields, composition of two dimensional SSC, and then correction for contributions of wave motion with the software of SAR imaging model M4S developed by Romeiser in 2000. Then the retrieved SSC is compared to the results of Acoustic Doppler Current Profiler (ADCP) in situ and German Federal Waterways Engineering and Research Institute (BAW), the errors are 0.16 m/s and 0.04 m/s respectively, which are consistent with Romeiser's results. Because there is 7m separation along-track of the cross-track antennas of SRTM, so Romeiser proposed that the SRTM data can be used to study on SSC retrieval. In this thesis, the SRTM data acquired over Lille Baelt in Denmark in 2002 are processed with the following steps: phase correction, phase correction of the effect of flat earth, the non-zero interferometric phase correction and then the corrected phase is converted to SSC. However, the retrieved SSC is needed to be validated.
引文
[1] Longuet-Higgins G.S., Stewart, R.W.. Radiation stresses in water waves, a physical discussion with applications.Deep Sea Res., 1964, 11:529-562
    [2] Liu, W.T., W. Tang, and P.S. Polito, NASA scatterometer provides global cean-surface wind fields with more structures than numerical weather prediction. Geophys. Res. Letters, 25(6), 761-764, 1998a.
    [3] Meissner, T., D. Smith, and F. Wentz, A 10-year intercomparison between collocated SSM/I oceanic surface wind speed retrievals and global analyses, Journal of Geophysical Research, in press, 2001.
    [4] Wentz, F.J. Smith, D.K. Mears, C.A. Gentemann, C.L.,Advanced algorithms for QuikScat and SeaWinds/AMSR, Geoscience and Remote Sensing Symposium, 2001. IGARSS '01. IEEE 2001 International,2002,Vol. 3, pp.: 1079-1081 vol.3
    [5] Isoguchi O., Shimada M., Preliminary study on developing an L-band wind retrieval model functiuon using ALOS/PALSAR Proc. 'Envisat Symposium 2007', Montreux, Switzerland 23-27 April 2007 (ESA SP-636, July 2007)
    [6] Alpers W. R. and Brummer B. Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite. J. Geophys. Res., 1994, 12613-12621
    [7] Chapron B. T., Elfouhaily and Kerbaol V. A SAR speckle wind algorithm. Processing of the Second ERS-1 Workshop. France: 1994.5-40
    [8] Rosenthal W., Lehner S., Horstmann J. and Koch W. Wind measurements using ERS-1 SAR. Processing of the Second ERS Applications Workshop. 1995.355-358
    [9] Johannessen O. M., et al. Coast Watch-95: ERS-1/2 SAR applications of mesoscale upper ocean and atmospheric boundary layer process off the coast of Norway. IGARSS'96,1996:1158-1161
    [10] Gerling T. W. Structure of the surface wind field from the Seasat SAR. J. Geophys. Res, 1986, 91:2308-2320
    [11] Vachon P. W. and Dobson F. W. Validation of wind vector retrieval from ERS-1 SAR images over the ocean.Global Atmos. Ocean Syst, 1996, 5:177-187
    [12] Lehner S., Horstmann J., Koch W. and Rosenthal W.. Mesoscale wind measurements using recalibrated ERS SAR images.J. Geophys. Res, 1998,103:7847-7856
    [13] Fetterer F., Gineirs D., and Wackerman C. C. Validating a scatteromter wind algorithm for ERS-1 SAR.IEEE Trans. Geosci. Remote Sensing, 1998, 36:479-492
    [14] Horstmann J., Lehner S., Koch W., and Tonboe R.. Computation of wind vectors over the ocean using spaceborne synthetic aperture radar. Johns Hopkins APL Technical Digest, 2000,21:100-107
    [15] Monaldo F. M., Thompson D. R., Beal R. C, Pichel W. G., and P. Clemente-Colon. Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements. IEEE Trans. Geosci. Remote Sensing, 2001, 39:2587-2600
    [16] Leidner M., Hoffman R., and Augenbaum J. SeaWinds scatterometer real-time BUFR geophysical data product. NOAA/NESDIS, 2000, version 2.2.0.
    [17] Wackerman C. C, Rufenach C. L., Shuchman R. A., Johannessen J. A., and Davidson K.. Wind vector retrieval using ERS-1 sythetic aperture radar imagery. J. Geophys. Res, 1996,34:1343-1352
    [18] Choisnard J., Power D., Davidson F., Stone B. Howell C. and Randell C, Comparison of C-band SAR algorithms to derive surface wind vectors and initial findings in their use in marine search and rescue. Can. J. Remote Sensing, Vol. 33, No.l, 2007,1-11.
    [19] SHIMADA T.and KAWAMURA M. An L-band geophysical model function for SAR wind retrieval using JERS-1 SAR, IEEE transactions on geoscience and remote sensing, ISSN 0196-2892, vol. 41, no3,2003, 518-531.
    [20] Jochen Horstmann, Wolfgang Koch, Susanne Lehner, and Rasmus Tonboe 3, Ocean winds from RADARSAT-1 ScanSAR Can. J. Remote Sensing, Vol. 28, No. 3,2002, pp. 524-53
    [21] Duk-jin Kim, and W. M. Moon. Estimation of sea surface wind vector using RADARSAT data. Remote Sensing of Environment, 2002, 80:55-64
    [22] Thompson D. R., and Beal R. C. Mapping high-resolution wind fields using synthetic aperture radar. Johns Hopkins APL Technical Digest, 2000,21:58-67
    [23]Horstmann J.,Koch W.,Lehner S.,and Tonboe R..Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization.IEEE Trans.Geosci.Remote Sensing,2000,38:2122-2131
    [24]Horstmann J.,Koch W.,Lehner S.,and Tonboe R..Ocean winds from RADARSAT-1 ScanSAR.Can.J.Remote Sensing,2002,28:524-533
    [25]中国海洋大学。国防技术报告。《中国海内波卫星遥感研究》,2004。
    [26]Spence T.W.,and R.Legeckis.Satellite and hydrographic observations of low-frequency wave motions associated with a cold core Guif Stream ring.J.Geophys.Res.,1981,86:1945-1953
    [27]Vastano,A.C.,and R.L.Bemstein.Mesoscale features along the First Oyashio Intrusion.J.Geophys.Res.,1984,89:587-596
    [28]Koblinsky C.J.,Simpson J.J.,and Dickey T.D.,An offshore eddy in the California Current system.Progr.Oceanogr.,1984,13:51-69
    [29]Emery,W.J.,Thomas A.C.,Collins M.J.,Crawford W.R.and Mackas D.L.An objective method for computing advective surface velocities from sequential infrared satellite images.J.Geophys.Res.,1986,91:12865-12878
    [30]Wu Q.X.,and Pairman D.Computing sea surface velocities from sea surface temperature-A relaxation labeling approach.Geoscience and Remote Sensing Symposium.,The institute of Electrical and Electronic Engineers,Helsinki,Finland,1991:157-161.
    [31]Yan,X.H.,and Breaker L.C.Surface circulation estimation using image processing and computer vision methods applied to sequential satellite imagery.Photogramm.Eng.Remote Sens,1993,59:407-413
    [32]Kuo,N.J.,and Yan X.H.Using the shape-matching method to compute sea surface velicities from AVHRR satellite images.IEEE Trans.Geosci.Remote Sens.,1994,32:724-728
    [33]贺明霞,管雷,赵朝方,陈锐。九五科技攻关项目96-922-03-04专题《卫星数据反演海表流场、海面风场、海浪方向谱》技术报告,2000。
    [34]Young,et al.A three dimension analysis of marine radar images for the determination of ocean wave directionality and surface currents.JGR,1985:1049-1059
    [35] Senet C. M. An iterative technique to determine the near surface current velocity form time series of sea surface images, IEEE GRS:66-72
    [36] Neito Borge.Analysis of directional wave fields using X-band navigation radar. Coastal Engineering, 2000,40:375-391
    [37] Rune Gangeskar. Ocean current estimated from x-band radar sea surface images. GRS, 2002:783-792
    [38]Wu, L.C. Wave and current fields extracted form marine radar images, ocean vaves measurement and analysis.Fifth international symposium waves 3rd-7th, 2005:549-553
    [39] http://envisat.esa.int/pub/esa_doc/Gothenburg/431peres.pdf. The 4th ERS symposium, gothenburg, Sweden, Oct,16-20,2000.
    [40] Hughes W., van der Kooij M.W.A..Ocean current estimation using ScanSAR data. IEEE International, 2002,4(24-28): 2132 - 2134
    [41] Ji-Eun Kim, Duk-jin Kim, Moon W.M. Enhancement of Doppler centroid for ocean surface current retrieval from ERS-1/2 raw SAR. IEEE International, 2004, 5(20-24): 3118-3120
    [42] Chapron B., Collard F., and Kerbaol V. Satellite synthetic aperture radar sea surface Doppler measurements.in Proc. 2nd Workshop on Coastal and Marine Application of SAR, Svalbad, 8-12 Sep., 2003.
    [43] Chapron B., Collard F., and Ardhum F. Direct measurements of ocean surface velocity from space:Interpretation and validation. J.Geoph.Res., 2005,110, C07008
    [44] Johannessen, J.A., Kudryavtsev V., Akimov D., Eldevik T., Winther N., and B. Chapron. On Radar Imaging of Current Features. Part 2: Mesoscale Eddy and Current Front detection. Journal of Geophysical Research, 2005,Vol.110, C07017.
    [45] Kudryavtsev, V., Hauser D., Caudal G., and Chapron B. A semi-empirical model of the normalized radar cross-section of the sea surface, Part 1: The background model. J. Geophys. Res., 2003,108(C3), 8054,doi:10.1029/2001JC001003 ,.
    [46] Kudryavtsev V., Akimov D., Johannessen J.A., and Chapron B.. On radar imaging of current features. Part1: Model and comparison with observations. J.Geoph.Res., 2005.
    [47] Romeiser R., Ufermann S. and Kern S. Remote sensing of oceanic current features by synthetic aperture radar - achievements and perspectives. Annales of Telecommunications, 2001,56
    [48] Goldstein R. M. and Zebker H. A. Interferometric radar measurement of ocean surface currents. Nature, 1987, 328:707-709
    [49] Goldstein R. M., Zebker H. A. and Barnett T. P.. Remote Sensing of Ocean Currents. Science 1989, 246(4935):1282-1285
    [50] Thompson D.R. and Jensen J.R.. Synthetic aperture radar interferometry applied to ship-generated waves in the 1989 Loch Linnhe experiment. J. Geophys. Res., 1993, 98: 10259-10269
    [51] Graber, H.C., Thompson D.R., and Carande R.E. Ocean surface features and currents measured with synthetic aperture radar interferometry and HF radar. J. Geophys. Res., 1996,101: 25,813-25,832
    [52] Romeiser R. and Thompson D.R.. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents. IEEE Trans, on Geosci. and Remote Sensing, 2000,(38):446-458
    [53] Romeiser R and Alpers W. An improved composite surface mode for the radar backscattering cross section of the ocean surface, 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography.J. Geophys. Res., 1997,102:25,251-25,267
    [54] Romeiser R., Alpers W., and Wismann V. An improved composite surface model for the radar backscattering cross section of the ocean surface, 1. Theory of the model and optimization / validation by scatterometer data. J. Geophys. Res., 1997,102:25,237-25,250
    [55] Romeiser R., et al. Study on Concepts for Radar Interferometry from Satellites for Ocean (and Land) Applications (KoRIOLiS), Final Report 50EE0100, 112 pp., University of Hamburg, Germany. http://www.ifrn.zmaw.de/-romeiser/koriolis.htm, 2002.
    [56] Romeiser R., Breit H., Eineder M, Runge H.. Demonstration of current measurements from space by along-track SAR interferometry with SRTM data. IEEE International, 2002, 1:158-160
    [57]Romeiser R., Breit H., ineder M., Runge H., Flament P., de Jong K., Vogelzang J.. Validation of SRTM-derived surface currents off the Dutch coast by numerical circulation model results. IEEE International, 2003, 5:3085 - 3087
    [58] Romeiser R., et al.. On the suitability of TerraSAR-X split antenna model for current measurements by along-track interferometry, Proc. IGARSS 2003, 3 pp., IEEE, Piscataway, N.J., USA, 2003.
    [59] Romeiser R., Breit H., Eineder M., Runge H., Flament P., Karin de Jong, Vogelzang J.. Current measurements by SAR along-track interferometry from a Space Shuttle. Geoscience and Remote Sensing: IEEE Transactions, 2005,43(10):2315 - 2324
    [60] Romeiser R. Current measurements by airborne along-track InSAR: measuring technique and experimental results.IEEE Oceanic Engineering, 2005, 38:552-569
    [61] Frasier S.J., Carswell J.R., Capdevila J. A pod-based dual-beam interferometric radar for ocean surface current vector mapping. IEEE 2001 International,2001,1.
    [62] Frasier SJ. and Camps AJ. Dual-Beam Interferometry for Ocean Surface Current Vector Mapping. IEEE Trans. on Geosci. and Remote Sensing, 2001, 39:401-414
    [63] Perkovic D., Toporkov J. V., Sletten M. A., Farquharson G., Frasier S. J., and Marmorino G. O. Gulf stream surface velocity measurements obtained with the UMass dual beam interferometer in conjunction with NRL infrared camera. in Proc. IGARSS, Anchorage, AK, 2004. 3325-3328
    [64] Werninghaus, R.; Buckreuss, S.; Pitz, W. TerraSAR-X Mission Status. Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International Volume, Issue , 23-28 July 2007.3927-3930.
    [65] Romeiser R.. Theoretical Evaluation of Several Possible Along-Track InSAR Modes of TerraSAR-X for Ocean Current Measurements, Geoscience and Remote Sensing. IEEE Transactions, 2007, 45(l):21-35
    [66] Henri Ma(?)tre.合成孔径雷达图像处理(,孙洪等译)。电子工业出版社, 2005。
    [67] Longuet-Higgins G.S., Stewart, R.W.. Radiation stresses in water waves, a physical discussion with applications.Deep Sea Res., 1964,11:529-562
    [68] Stoffelen A.C.M and Anderson D.L.T. Scatterometer Data Interpretation: Derivation of the transfer function CMOD4. Journal of geophysical research, 1997, 102:5676-5780
    [69] Hersbach H. CMOD5, an improved geophysical model function for ERS C-band scatterometry Internal report, European Centre for Medium- Range Weather Forecast,no. 395,2003 .
    [70] Isoguchi O. and Shimada M. Relationship between wind vectors and L-band cross sections examined using PALSAR," Proceedings IGARSS 2007, Barcelona, Spain, 2007.
    [71] Masuko H., Okamoto K., Shimada M. and Niwa S. Measurement of microwave backscattering signatures of the ocean surface using X band and Ka band airborne scatterometers. Journal of Geophysical Research, 1986,91 (C11): doi: 10.1029/0JGREA000091000C11013065000001. ISSN: 0148-0227,.
    [72] Serrano E. ERA Description. ERA-40 Project Rep. Series 1, ECMWF, 72 pp. 1997:
    [73] Melsheimer C, Alpers W., Gade M.. Investigation of multifrequency/multipolarization radar signatures of rain cells over the ocean using SIR-X-SAR data. Journal of geophysical research, 1998,103(C9):18867-18884
    [74] Suess M., Riegger S., Pitz W., et al.. TerraSAR2X: Design and Performance. The 4t h European Conference on Synt hetic Aperture Radar, 2002,Cologne, Germany.
    [75] Schwerdt M. and Hounam D. Quality Control and Calibration of Future SAR Systems. ODAS 2001.3rd ONERA-DLR Aerospace Symposium, Paris, France.2001:S6-6.
    [76] Fritz T. TerraSAR-X Level lb Product Format Specification. 2007, TX-GS-DD-3307(1.3).
    [77] Lehner S., Horstmann J., Koch W., Rosenthal W. Mesoscale wind measurements using recalibrated ERS SAR images. Journal of geophysical research, 1998, 103(0148-0227): 7847-7856
    [78] Alpers W., and Brummer B.. Atmospheric boundary layer rolls observed by the SAR aboard the ERS-1 satellite. Journal of geophysical research, 1994, 99:12613-12621
    [79] Koch W. Directional analysis of SAR images aiming at wind direction. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(4).
    [80] Masuko H., Okamoto K., Masanobu S., Shuntaro N. Measurement of microwave backscattering signatures of the ocean surface using X Band and K Band airborne scatterometers. J. Geophy. Research, 1986, 91(C11):13065-13083
    [81] Unal C. M. H. P., Snoeij P., and Swart P. J. F. The polarisation-dependent relation between radar backscatter from the ocean surface and surface wind vector at frequencies between 1 and 18 GHz. IEEE Trans. Geosci. Remote Sens., 1991,29(4):621-626
    [82] Thompson D.R., Elfouhaily T.M., Chapron B. Polarization ratio for microwave backscattering from the oceansurface at low to moderate incidence angles. Proc. Int. Geoscience and Remote Sensing Symp.,1998, Seatal, WA, 1998.
    [83] Horstmann J., W. Koch S. Lehner and R.. Tonboe Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization. IEEE Trans. Geosci.Remote Sens., 2000,38 (5):2122-2131
    [84] Vachon P., and Dobson F. Wind retrieval from RADARSAT SAR images: Selection of a suitable C-band HH polarization wind retrieval model. Can. J. Remote Sens., 2000,26 (4):306 - 313
    [85] Monaldo F., Thompson D., Beal R., Pichel W. and Clemente-Colon P.Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements.IEEE Trans. Geosci. Remote Sens., 2002, 39 (12):2587 - 2600
    [86] Horstmann J., and Koch W.. Measurement of ocean surface winds using synthetic aperture radars, Oceanic Engineering, IEEE, 2005, 30(3):508-515
    [87] Mouche A., Hauser D., Daloze J. F. and Gue'rin C. Dual polarization measurements at C band over the ocean: Results from airborne radar observations and comparison with ENVISAT ASAR data. IEEE Trans. Geosci. Remote Sens., 2005,43(4):753-769
    [88] Mouche A. A., Hauser D., and Kudryavtsev V. Radar scattering of the ocean surface and sea-roughness properties: A combined analysis from dual-polarizations airborne radar observations and models in C band. J. Geophys. Res., 2006,111(C09004), doi:10.1029/2005JC003166.
    [89] Mittermayer J. and Runge H. Conceptual Studies for exploiting the TerraSAR-X dual receive antenna, IGARSS 2003, Toulouse.
    [90] Zebker H. A., and Villasenor J.. Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):950-959
    [91] Rufino G., Moccia A., and Esposito S. DEM generation by means of ERS tandem data. IEEE Transactions on Geoscience and Remote Sensing, 1998,36(6):1905-1912
    [92] Goldstein R. M. and Zebker H. A.. Interferometric radar measurement of ocean surface currents. Nature, 1987,328:707-709
    [93]Johannessen J.A.,Shuchman R.A.,Digranes G.,Wackerman C.,Johannessen O.M.and Lyzenga D.R..Detection of Surface Features with ERS-1 SAR.IEEE,1994:2017-2019
    [94]Lai D.Y..Extraction of Surface Currents of Solitary Internal Waves from Synthetic Aperture Radar Data.IEEE,1999:25-27
    [95]Schw(a|¨)bisch M.and Moreira J..The high resolution airborne interferometric SAR AeS-1.Proc.Fourth International Airborne Remote Sensing Conference and Exhibition / 21st Canadian Symposium on Remote Sensing,Ottawa,Canada,21-24 June 1999:8.
    [96]王超,刘智。星载合成孔径雷达干涉测量。北京:科学出版社,2002年9月第一版。
    [97]Kampes.B.,Stefania U.,Doris.The Delft object-oriented Radar Interferometric software.ITC 2nd ORS symposium,August 1999.
    [98]Kampes B.,Hanssen R.,Perski Z..Radar Interferometry with Public Domain Tools.FRINGE 2003,December 1-5,Frascati,Italy.
    [99]王风。干涉合成孔径雷达图像处理技术及应用研究:【博士学位论文】。北京:中国科学院自动化研究所,2002。
    [100]Jong-Sen Lee Papathanassiou,Ainsworth K.P.,Grunes T.L.,Reigber M.R.A new technique for noise filtering of SAR interferometric phaseimages,Geoscience and Remote Sensing.IEEE Transactions,2002,36(5):1456-1465
    [101]Fomaro G.,Guarnieri A.M.Minimum mean square error space-varying filtering of interferometric SAR data,Geoscience and Remote Sensing,IEEE Transactions,2002,40(1):11-21
    [102]Romeiser R..Current measurements by airborne along-track InSAR:Meas-uring technique and experimental results.IEEE J Ocean Eng.,2005,30:552-569
    [103]Runge H.,Suchandt S.,Breit H.,Eineder M.,Schulz-Stellenfleth J.,Bard J.,Romeiser R..Mapping of tidal currents with SAR along track interferometry,Geoscience and Remote Sensing Symposium,2004.IGARSS apos;04.Proceedings.2004 IEEE International,2004,2(20-24):1156-159
    [104]Rogers A.E.E.and Ingalls R.P.Venus:Mapping the surface reflectivity by radar interferometry.Science,Vo1.165,1969.797-799.
    [105] Graham L.C. Synthetic interferometer radar for topography mapping. In: proc. IEEE, vol.62-6, 1974. 763-768.
    [106] Jakowatz C.V. and Athompson. Tomographic formulation of spotlight-mode synthetic aperture radar extend to three dimensions. in Proc. IEEE Digital Signal processing Workshop:5.6.1-5.6.2, 1992.
    [107] Marechal N. Tomographic formulation of interferometric synthetic aperture. IEEE, vol.33,1995. 726-739.
    [108] Massonnet D., Rossi M., Carmona C, et al. The displacement field of the landers earthquake mapped by radar interferometry. Nature, vol.364, 1993.138-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700