用户名: 密码: 验证码:
呼伦贝尔温带草地FPAR/LAI遥感估算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草地是世界上分布最为广泛的植被类型之一,在全球碳循环中具有重要作用和地位(Scurlock&Hall,1998)。LAI/FPAR是描述植被冠层结构及相关能量交换过程速率的两个重要的植物生理参数。我国是名副其实的草地资源大国,草地NPP及其关键参数的模拟与估算是区域碳平衡监测、畜产品安全调控的技术基础,对草地LAI/FPAR的研究具有重要意义。
     MODIS的1km LAI/FPAR产品为大尺度乃至全球尺度的NPP监测提供了很好的遥感数据源。MODIS的LAI/FPAR产品在不同植被类型上的精度评价和地面验证,对于揭示遥感影像估算的不确定性及对改进MODIS产品算法提供了基础。我国草地类型多样,MODIS-LAI/FPAR算法中的分类方法过于粗糙,很难准确的反演我国特定地形与气候环境下草地的LAI/FPAR。
     呼伦贝尔草原是我国温带草甸草原分布最集中、最具代表性的地区。本文以呼伦贝尔主要草原区为例进行了如下相关研究:
     1) FPAR日变化规律分析
     测定并分析了草甸草原冠层入射PAR及透过PAR的日变化特征,冠层反射PAR及土壤反射的PAR日变化特征及瞬时FPAR日变化规律,结果表明羊草草甸草原入射PAR及透射PAR日变化规律明显,呈较标准的正弦曲线变化;土壤反射的PAR占透过PAR的比例较为稳定,而冠层反射的PAR占入射PAR的比例在0.05~0.35之间,变化幅度较大;晴天FPAR的日变化呈较标准的余弦曲线变化,FPAR在早晚值较高。
     2) LAI/FPAR的季节变化规律分析
     通过对针茅、羊草群落实测LAI/FPAR的季节动态变化分析知,各草地类型的LAI/FPAR均呈先增大后减少的趋势,与草地生长规律基本吻合。同时基于MODIS_LAI/FPAR数据、1:100万草地类型图,分析了不同草地类型的LAI/FPAR生长季变化规律,结果表明MODIS_LAI/FPAR产品能较好的反应出草地的生长季变化规律趋势,但是MODIS_LAI/FPAR算法过高估计草地的实际生长状况,且不同草地类型有一定差异。
     3)不同草地类型LAI/FPAR遥感估算模型构建
     对地面实测的LAI/FPAR、对应的NDVI、叶绿素含量及冠层高度之间的相关性分析表明,同一类草地类型的不同群系LAI/FPAR与NDVI等因子的相关性也有所不同。根据相关性分析、回归分析及曲线拟合,利用地面实测数据建立了不同草地类型的LAI/FPAR经验估算模型,并对模型精度进行分析;鉴于经验模型的普遍适用性较差,利用Propect+SAIL模型,根据地面实测数据改进了相关参数,建立定量的草地冠层LAI/FPAR遥感模型,并利用查找表算法实现了定量反演。
     4)草地LAI/FPAR模型的应用及MODIS产品验证
     利用地面实测数据对MODIS的LAI/FPAR产品进行验证,结果表明MODIS的LAI/FPAR能较好地反映出样地实测FPAR的季节变化趋势,但是反演值过高。将不同草地类型LAI/FPAR模型应用于北京-1号卫星数据和MODIS数据。反演结果表明利用北京-1号卫星数据反演得到的LAI/FPAR要比MODIS的LAI/FPAR要高;利用统计模型和PROSAIL模型反演的LAI/FPAR结果比MODIS产品更接近于地面实测数据,草地LAI/FPAR反演精度有较大的提高。
Grasslands are one of the most widespread vegetation types worldwide, and play an important role in the global carbon balance and global changes (Scurlock&Hall, 1998). Leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) represent two biophysically complementary ways of describing the earth's vegetated surfaces and energy exchange. The area of grassland is very huge in China; to simulate NPP of grassland and its' key parameters is the technological basis of monitoring region carbon balance, security of animal production, so it is very important to study LAI/FPAR of grasslands.
     The Moderate Resolution Imaging Spectroradiometer (MODIS) 1km LAI/FPAR products are one of the most important remote sensing data sources to monitor NPP in regional or global scale. Product validation and assessment is necessary to establish confidence in the data sets, and to provide a basis for improving the MODIS algorithms. There are a lot of grassland types in China includes tropic shrub, temperate grassland and alpine cold desert sparse vegetation, et al., the algorithm of MODIS LAI/FPAR is too rough to retrieve LAI/FPAR of grassland under special terrain and climate condition accurately.
     Hulunber grassland is the most concentration and representative area of temperate meadow steppe in China. We took hulunber for example to study LAI/FPAR of grassland. The contents of this paper are as follows:
     1) The analysis of instantaneous FPAR variation on a diurnal basis
     We analyzed the diurnal variations of incoming PAR, transmitted PAR, reflected PAR by canopy and reflected PAR by soil, then analyzed the diurnal variation of FPAR. The result showed that the daily variation of the incoming PAR and transmitted PAR of Leymus Chinensis canopy is obviously, and the curve of variation is sinusoid. The ratio of reflected PAR by soil to the transmitted PAR is almost constant in a day. But the ratio of reflected PAR by canopy to the total incoming PAR is about 0.05-0.35, the variation range is relatively great. On a diurnal basis, FPAR was found to be highest in the morning and late afternoon due to large solar zenith angles and lowest around noon where the solar zenith angle is low.
     2) The seasonal variation of in situ measured LAI/FPAR in growing season
     We measured and analyzed the seasonal variation of in situ measured LAI/FPAR in Leymus chinensis site and Stipa baicalensis site of hulunber station, the result showed that the variation of LAI/FPAR of grass canopy like a trend of rise first, then fall, which is the same as the grass' growth pattern. At the same time, We analyzed the seasonal variation of LAI/FPAR in growing season based on MODIS_LAI/FPAR biome map and types of grasslands in 1:10~6 scales, the results indicated that the MODIS LAI/FPAR products captured the seasonal variation trend of grassland in growing season very well, but the MODIS LAI/FPAR products generally overestimated the magnitude of relative to real status of grassland, and there is a little difference among different grassland types.
     3) The establishment of LAI/FPAR model of different grassland types
     We analyzed the correlation among LAI/FPAR, NDVI, chlorophyll and height of canopy based on in situ measured data. The result indicated that the correlation among LAI/FPAR, NDVI et al. is different, because the constructive species of the same grassland type are different. We simulated the correlation between canopy reflection and FPAR with the Prospect+SAIL model on condition that the chlorophyll or LAI is constant. We established the LAI/FPAR empirical model of different grassland types based on in situ measured data after analyzing the correlation, regression and curve fit. And we found the best model for estimating LAI/FPAR after analyzing the accuracy of the empirical model's prediction. We also established Look Up Table of remote sensing model for LAI/FPAR of grassland canopy using Prospect+SAIL model after improved related parameters, and retrieved the LAI/FPAR of grassland using LUT method.
     4) Validation of MODIS LAI/FPAR products and application of the model of LAI/FPAR
     We validated the MODIS LAI/FPAR products with in situ measured LAI/FPAR in growing season, the result indicated that the MODIS LAI/FPAR products captured the seasonal variation of grassland in experimental sites in growing season very well, but the MODIS LAI/FPAR products generally overestimated the magnitude of relative to both field measurements.
     LAI/FPAR empirical models of different grassland types were applied to the Beijing-1 image in situ area in order to convert NDVI to LAI/FPAR, and we get the in situ area's LAI/FPAR image using LUT of canopy grassland which established using Prospect+SAIL model. Then compared with MODIS LAI/FPAR products and in situ measured data in both sites, the results showed that the LAI/FPAR retrieved from Beijing-1 image is a little higher than MODIS LAI/FPAR. The LAI/FPAR retrieved from empirical models of different grassland types and LUT method is more accurate than MODIS LAI/FPAR products.
引文
1.白建辉,王庚辰.内蒙古草原光合有效辐射的计算方法.环境科学研究,2004,17(6):15-19.
    2.柏军华,李少昆,王克如,等.棉花叶面积指数冠层反射率光谱响应及其反演.中国农业科学,2007,40(1):63-69.
    3.蔡博峰,绍霞.基于PROSPECT+SAIL模型的遥感叶面积指数反演.国土资源遥感,2007,2:39-43.
    4.陈健,倪绍祥,李静静,等.植被叶面积指数遥感反演的尺度效应及空间变异性.生态学报,2006,5:1502-1508.
    5.陈述彭,赵英时.遥感地学分析.北京:测绘出版社,1990:209-221.
    6.陈艳华,张万昌,雍斌.基于TM的辐射传输模型反演叶面积指数可行性研究.国土资源遥感,2007,2:44-49.
    7.程乾,黄敬峰;王人潮,等.MODIS植被指数与水稻叶面积指数及叶片叶绿素含量相关性研究.应用生态学报,2004,15(8):1363-1367.
    8.丁艳梅,张继贤,王坚,等.基于TM数据的植被覆盖度反演.测绘科学,2006,31(1):43-45.
    9.董云社,章申,齐玉春,陈佐忠,耿远波.内蒙古典型草地CO_2,N_2O,CH_4通量的同时观测及其日变化.科学通报,2000,45(3):318-322.
    10.董振国,于沪宁.农田PAR观测与分析.气象,1983,7:23-24.
    11.董振国,于沪宁.农田作物层环境生态,1994,北京:中国农业科技出版社.
    12.方秀琴和张万昌.叶面积指数(LAI)的遥感定量方法综述.国土资源遥感,2003,3:58-62.
    13.高彦华,FPAR遥感模型与NPP估算研究[D].北京:中国科学院遥感应用研究所,2007.
    14.高彦华,陈良富,柳钦火等.叶绿素吸收的光合有效辐射比率的遥感估算模型研究.遥感学报.2006.10(5):798-803.
    15.高阳,段爱旺.冬小麦-春玉米间作模式下光合有效辐射特性研究.中国生态农业学报,2006,14(4):115-118.
    16.宫鹏,史培军,浦瑞良等.对地观测技术与地球系统科学.北京:科学出版社,1996.
    17.郭志华,彭少麟,王伯荪,张征.G IS和RS支持下广东省植被吸收PAR的估算及其时空分布.生态报学,1999,19(4):441-447.
    18.惠凤鸣,田庆久,金振宇等.植被指数与叶面积指数关系研究及定量化分析.遥感信息,2003,2:10-13.
    19.江东,王乃斌,杨小唤,刘红辉.吸收光合有效辐射的时序变化特征及与作物产量的响应关系.农业系统科学与综合研究,2002,18(1):51-54
    20.李刚,王道龙,范闻捷等.羊草草甸草原FPAR时间变化规律分析.遥感信息,2009,1:10-15
    21.李刚,辛晓平,范闻捷等.内蒙古草地关键光合过程参数的时空变化特征.资源科学,2008,30(9):1374~1381.
    22.李贵才.基于MODIS数据和光能利用率模型的中国陆地净初级生产力估算研究[D].北京:中国科学院遥感应用研究所,2004.
    23.李开丽,蒋建军,茅荣正等.植被叶面积指数遥感监测模型.生态学报,2005,25(6):1491-1496.
    24.李小文,王锦地.植被光学遥感模型与植被结构参数化.北京:科学出版社,1995.
    25.刘可群 张晓阳.江汉平原水稻长势遥感监测及估产模型.华中师范大学学报:自然科学版,1997,31(4):482-487.
    26.刘荣高,刘纪远,庄大方.基于MODIS数据估算晴空陆地光合有效辐射.地理学报,2004,59(1):65-73.
    27.刘铁梅,曹卫星,罗卫红等.小麦叶面积指数的模拟模型研究.麦类作物学报,2001,21(2):38-41.
    28.刘伟东,项月琴,郑兰芬等.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析.遥感学报,2000,4(4):279-283.
    29.路云阁,李双成,蔡运龙.近40年气候变化及其空间分异的多尺度研究—以内蒙古自治区为例.地理科学,2004.24(4):432-438.
    30.吕建华和季劲钧.青藏高原大气一植被相互作用的模拟试验Ⅱ.植被叶面积指数和净初级生产力,2002,26(2):255-262.
    31.骆知萌,田庆久,惠凤鸣.用遥感技术计算森林叶面积指数—以江西省兴国县为例.南京大学学报(自然科学),2005,41(3):253-258.
    32.茅荣正.基于Landsat图像的LAI信息提取研究.2004,南京师范大学,硕士论文.
    33.蒙继华,吴炳方,李强子.全国农作物叶面积指数遥感估算方法.农业工程学报,2007,2:160-167.
    34.朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力.植物生态学报,2001,25(5):603-608.
    35.浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000.
    36.任建强,陈仲新,唐华俊,石瑞香.基于植物净初级生产力模型的区域冬小麦估产研究.农业工程学报.2006,22(5):111-117.
    37.唐延林,王人潮,王秀珍等,水稻叶面积指数和叶片生化成分的光谱法研究.华南农业大学学报,2004,24(1):1-7.
    38.唐怡,黄文江,刘良云等.株型对冬小麦冠层叶面积指数与植被指数关系的影响研究.干旱地区农业研究,2006,24(5):130-137.
    39.王纪华,黄文江,赵春江,等.利用光谱反射率估算叶片生化组分和籽粒品质指标研究.遥感学报,2002,6:92-98.
    40.王军邦,中国陆地净生态系统生产力遥感模型研究.2004,浙江大学,博士论文.
    41.王培娟,朱启疆,吴门新,等.冬小麦冠层的FAPAR、LAI、VIs之间关系的研究.遥感信息,2003,03:19-22.
    42.王秀珍,黄敬峰,李云梅,等.水稻叶面积指数的多光谱遥感估算模型研究.遥感技术与应用,2003,18(2):57-65.
    43.王秀珍,黄敬峰,李云梅,等.水稻叶面积指数的高光谱遥感估算模型.遥感学报,2004,8(1):81-88
    44.王秀珍,黄敬峰,李云梅,等.高光谱数据与水稻农学参数之间的相关分析.浙江大学学报:农业与 生命科学版,2002,28(3):283-288.
    45.王懿贤,赵名茶.中国旬总辐射的空间分布特征与光合潜力.资源科学,1981,03:32-41.
    46.吴炳方,曾源,黄进良.遥感提取植物生理参数LAI/FPAR的研究进展与应用.地球科学进展,2004,19(4):585-590.
    47.吴彤,倪绍祥,李云梅,等.由冠层孔隙度反演植被叶面积指数的算法比较.南京师大学报:自然科学版,2006,29(1):111-115.
    48.武佳丽,余涛,顾行发等.中国资源卫星现状与应用趋势概述.遥感信息,2008,6:96-101.
    49.夏朝宗,熊利亚,庄大方,刘喜云.基于MODIS的陆地植被光合过程参数反演研究.地理科学进展.2004,23(4):10-18.
    50.徐希孺.遥感物理.北京:北京大学出版社,2005:87-97.
    51.薛利红,曹卫星,罗卫红等.光谱植被指数与水稻叶面积指数相关性的研究.植物生态学报,2004,28(1):47-52.
    52.杨飞,张柏,李凤秀等.大豆和玉米冠层光合有效辐射各分量日变化.生态学杂志.2007,26(8):1153-1158.
    53.杨飞,张柏,宋开山等.玉米光合有效辐射分量高光谱估算的初步研究.中国农业科学2008a,41(7):1947-1954
    54.杨飞,张柏,宋开山,等.玉米和大豆光合有效辐射吸收比例与植被指数和叶面积指数的关系.作物学报,2008b,34(11):2046-2052.
    55.杨飞,张柏,王宗明,等.基于MODIS数据的玉米植被参数估算方法的对比分析.遥感技术与应用,2008c,23(2):147-153.
    56.杨敏华,刘良云,刘团结等.小麦冠层理化参量的高光谱遥感反演试验研究.测绘学报,2002,31(4):316-321.
    57.张娜,于贵瑞,于振良,赵士洞.基于3S的自然植被光能利用率的时空分布特征的模拟.植物生态学报,2003,27(3):325-336.
    58.张佳华,符淙斌.生物量估测模型中遥感信息与植被光合参数得关系研究.测绘学报,1999,27(2):128-132.
    59.张佳华,延晓冬,池宏康.植被碳通化估测与遥感信息的关系研究.中国生态农业学报.2003,11(3):5-8.
    60.张佳华,姚凤梅.影响植被内部辐射状况的冠层结构特征研究.气象科学.2000,20(1):15-22.
    61.张佳华,符淙斌.利用遥感反演的叶面积指数研究中国东部生态系统对东亚季风的响应.自然科学进展,2002,10:1098-1100.
    62.张时煌,彭公炳,黄玫.基于遥感与地理信息系统支持下的地表植被特征参数反演,气候与环境研究,2004,9(1):80-91.
    63.张晓阳,李劲峰.利用垂直植被指数推算作物叶面积系数的理论模式.遥感技术与应用,1995,10(3):13-18.
    64.周彬,陈良富,舒晓波.FPAR的MonteCarlo模拟研究.遥感学报,2008,3:85-391.
    65.周晓东,朱启疆,王锦地等.夏玉米冠层内PAR截获及FPAR与LAI的关系.自然资源学 报,2002,17(1):110~116.
    66.周允华,项月琴,左大康.地球表层辐射平衡研究,1991,北京:科学出版社.
    67.AccuPAR (PAR/LAI ceptometer) model LP-80 Operator's ManualVersion 1.0.
    68.Asner,GP.Biophysical and biochemical sources of variability in canopy reflectance.Remote Sensing of Environment,1998,64 (3):234~253.
    69.Asner,GP.,Scurlock,J.M.,and Hicke,J.A.,Global synthesis of leaf area index observations implications for ecological and remote sensing studies,Global Ecology and Biogeography,2003,12:191~205.
    70.Asrar,G,and Dozier,J.,Science strategy for the Earth Observing System,EOS,Woodbury,NY,1994,American Institute of Physics.
    71.Asrar,G,Fuchs,M.,Kanemasu,E.T.,and Hatfield,J.L.Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat.Agronomy Journal,1984.76:300~306.
    72.Bacour,C,Baret,E,Beal,D.,et al.,Neural network estimation of LAI,fAPAR,fCover and LAIxCab,from top of canopy MERIS reflectance data:Principles and validation,Remote Sensing of Environment,2006,105:313~325.
    73.Bacour,C,Baret,E,Beal,D.,Weiss,M.,Pavageau,K.,Neural network estimation of LAI,fAPAR,./Cover and LAIxCab,from top of canopy MERIS reflectance data:Principles and validation.Remote Sensing of Environment,2006,105:313~325.
    74.Badhwar,G.D.,McDonald,R.B.,and Mehta,N.C.,Satellite-derived leaf-area-index and vegetation maps as input to global carbon cycle models-a hierarchical approach,international Journal of Romete Sensing,1986,7:265~281.
    75.Barclay,H.J.Conversion of total leaf area to projected leaf area in lodgepole pine and Douglas-fir.Tree Physiol.,1998,18:185~193.
    76.Bonan,G B.The land surface climatology of the NCAR land surface model (LSM 1.0) coupled to the NCAR Community Climate Model (CCM3),J.Clim.,1998,11:1307~1326.
    77.Bonan,GB,Land surface model (LSM version 1.0) for ecological,hydrological,and atmospheric studies:Technical description and user's guide.Technical note,National Center for Atmospheric Research,Boulder,CO (United States).Climate and Global Dynamics Div.1996:150.
    78.Bonan,GB.Land-atmosphere interactions for climate system models:coupling biophysical,biogeochemical,and ecosystem dynamical processes.Remote Sensing of Environment,1995,51:57~73.
    79.Bouman,B.A.M.Linking physical remote sensing models with crop growth simulation models,applied for sugar beet,International Journal of Remote Sensing,1992,13 (14):2565~2581.
    80.Buermann,W.,Y.Wang,J.Dong,L.Zhou,X.Zeng,R.E.Dickinson,C.S.Potter,and R.B.Myneni,Analysis of a multiyear global vegetation leaf area index data set,Journal of Geophysical Research,2002,107(D22),4646,doi:10.1029/2001JD000975.
    81.Bunnik,N.J.J.,The multispectral reflectance of shortwave radiation by agricultural crops in relation with their morphological and optical properties,Med.Landbouwhogeschl Wageningen,19798,78(1)
    82.Chen J.M.Spatial scaling of a remotely sensed surface parameter by contexture,Remote Sensing of Environment,1999,69:30-42.
    83.Chen J.M.,Pavlic G.,Brown L.,et al.Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements,Remote Sensing of Environment,2002,80:165-184.
    84.Chen,J.M.and Cihlar,J.,Retrieving leaf area index of boreal conifer forests using landsat TM images.Remote Sensing of Environment.1996,55:153-162.
    85.Chen,J.M.,Govind,A,Sonnentag,O.,et al.,Leaf area index measurements at Fluxnet-Canada forest sites,Agricultural and Forest Meteorology,2006,140:257-268.
    86.Chen,J.M.,Rich,P.M.,Gower,S.T.,et al.,Leaf Area Index of boreal forests:Theory,techniques,and measurements,Journal of Geophysical Research,1997,102:29429-29443.
    87.Choudhury,B.J.,Relationships between vegetation indices,radiation absorption,and net photosynthesis evaluated by a sensitivity analysis.Remote Sensing of Environment,1987,22(2):209-233.
    88.Cohen,W.B.and Justice,C.O.Validating MODIS terrestrial ecology products:linking in situ and satellite measurements.Remote Sensing of Environment.1999,70:1-3.
    89.Cohen,W.B.,Maiersperger,T.K.,Yang,Z.,Gower,S.T.,Turner,D.P.,Ritts,W.D.,Berterretche,M.and Running,S.W.Comparisons of land cover and LAI estimates derived from ETM+ and MODIS for four sites in North America:a quality assessment of 2000/2001 provisional MODIS products.Remote Sensing of Environment,2003,88:233-255.
    90.Cramer W,Kicklighter D W,Bondeau A,et al.Comparing global models of terrestrial net primary productivity(NPP):Overview and key results.Global Change Biology,1999,5:1-15.
    91.Curran,P.J.Multispectral Remote Sensing for the Estimation of Green Leaf Area Index.Phil.Trans.Roy.Soc.London,Series A,1983,309:257-270.
    92.Curran,P.J.Remote sensing of foliar chemistry.Remote Sensing of Environment,1989,30(3):271-278.
    93.D'Urso,G.,Dini,L.,Vuolo,E,et al.,Retrieval of leaf area index by inverting hyperspectral multiangular CHRIS PROBA data from SPARC 2003,Proc.of the 2nd CHRIS/Proba Workshop.28to 30 April,ESA/ESRIN,Frascati Italy,2004.
    94.Daniel C.S.,Scott J.G.,Edward J.H.,Validation of MODIS FPAR products in boreal forests of Alaska.IEEE.Transactions on Geoscience and Remote Sensing,2006,44:1818-1827.
    95.Daughtry,C.S.T.,Gallo,K.P.,Goward,S.N.,et al.,Spectral Estimates of Absorbed Radiation and Phytomass Production in Corn and Soybean Canopies,Remote Sensing of Environment,1992,39:141-152.
    96.Davidson,E.A.,Savage,K.,Bolstad,P.,et al.Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements.Agricultural and Forest Meteorology,2002,113:39~54.
    97.Dickinson,R.E.,Kennedy,P.J.,and Henderson-Sellers,A.,Biosphere-atmosphere transfer Scheme (BATS) Version le as coupled to the NCAR Community climate Model,NCAR Technical Note,NCAR/TN-387,national Center for Atmospheric Research,Boulder,CO.1993.
    98.Eklundh,L.,Harrie,L.,Kuusk,A.Investigating relationships between Landsat ETM+ sensor data and leaf area index in a boreal conifer forest.Remote Sensing of Environment,2001,78:239~251.
    99.Fang,H.,Liang,S.,A hybrid inversion method for mapping leaf area index from MODIS data:experiments and application to broadleaf and needleleaf canopies,Remote Sensing of Environment,2005,94(3):405~424.
    100.Fensholt,R.,SandholtJ.,Rasmussen,M.S.Evaluation of MODIS LAI,FPAR and the relation between FPAR and NDVI in a semi-arid environment using in situ measurements.Remote Sensing of Environment,2004,91:490~507.
    101.Frederic Baret,Olivier Hagolle,Bernhard Geiger,et al.LAI,fAPAR and fCover CYCLOPES global products derived from VEGETATION Part 1:Principles of the algorithm.Remote Sensing of Environment,2007,110:275~286.
    102.Friedl M A,Davis F W,Michaelsen J,et al.Scaling and uncertainty in the relationship between the NDVI and surface biophysical variables:An analysis using a scene simulation model and data from FTFE.Remote Sensing of Environment,1995,54 (3):233~246.
    103.Gao,F.,Member,IEEE,Jeffrey T.Morisette,Robert E.Wolfe,Greg Ederer,Jeff Pedelty.Edward Masuoka,Ranga Myneni,Bin Tan,and Joanne Nightingale,An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series,IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2008,5,1:10.1109/LGRS.2007.907971.
    104.Garrigues,S.,Lacaze,R.,Baret,F,Morisette,J.T.,et al.,Validation and intercomparison of global Leaf Area Index products derived from remote sensing dataJournal Of Geophysical Research,2008b,113,G02028,doi:10.1029/2007JG000635.
    105.Garrigues,S.,N.Shabanov,K.Swanson,et al.,Intercomparison and sensitivity analysis of Leaf Area Index retrievals from LAI-2000,AccuPAR,and digital hemispherical photography over croplands,agricultural and forest meteorology,2008a,148:1193~1209.
    106.Gholz,H.L.,Environmental limits on aboveground net primary production,leaf area,and biomass in vegetation zones of the Pacific northwest.Ecology,1982,63:469~481.
    107.Gobron,N.,B.Pinty,F.Melin,M.Taberner and M.M.Verstraete Sea Wide Field-of-View Sensor (SeaWiFS)-An Optimized FAPAR Algorithm-Theoretical Basis Document,Institute for Environment and Sustainability,2002,EUR Report No.20148 EN,pp 20.
    108.Gobron,N.,Pinty,B.,and Verstraete,M.M.,Theoretical limits to the estimation of the Leaf Area Index on the basis of visible and near-infrared remote sensing data.IEEE Transactions on Geoscience and Remote Sensing.,1997,35:1438~1445.
    109.Gobron,N.,Pinty,B.,Aussedat,O.lie,et al.,Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes:Methodology and results using Joint Research Center products derived from SeaWiFS against ground-based estimations.Journal Of Geophysical Research,2006,111,D 13110,doi:10.1029/2005JD006511.
    110.Gobron,N.,M(?)lin,F.,Pinty,B.,et al.A global vegetation index for SeaWiFS:design andapplications,in:Beniston,M.,Verstraete,M.M.(Eds.),Remote Sensing and Climate Modeling:Synergies and Limitations.Kluwer Academic Publishers,Dordrecht,the Netherlands,pp.521,2001.
    111.Gobron,N.,Pinty,B.,M(?)lin,E,et al.,Evaluation of the MERIS/ENVISAT FAPAR product,Advances in Space Research,2007,39:105-115.
    112.Gong,P.,Wang,D.& X.,Liang,S.Inverting a canopy reflectance model using a neural network.International Journal of Remote Sensing,1999,20(20):111-122.
    113.Govaerts,Y.,Verstraete,M.M.,Pinty,B.,and Gobron,N.Designing optimal spectral indices:a feasibility and proof of concept study.International Journal of Remote Sensing,1999,20,1853-1873.
    114.Goward S.N,Huemmrich K.F.Vegetation canopy PAR absorptance and the normalized difference vegetation index:An assessment using the SAIL model,Remote Sensing of Environment 1992,39:119-140.
    115.Gower,S.,Kucharik,C.,& Norman,J.Direct and indirect estimation of leaf area index,fAPAR,and net primary production of terrestrial ecosystems.Remote Sensing of Environment,1999,70,29-51.
    116.Gower,S.T.,Vogt,K.A.& Grier,C.C.Carbon dynamics of Rocky Mountain Douglas-fir:influence of water and nutrient availability.Ecological Monographs,1992,62(1):43-65.
    117.Grier,C.G.and Running,S.W.,Leaf Area of Mature Northwestern Coniferous Forests:Relation to Site Water Balance,Ecology,1977,58(4):893-899.
    118.Hall,F.G.,Huemmrich,K.F.,and Goward,S.N.Use of narrow-band spectra to estimate the fraction of absorbed photosynthetically active radiation,Remote Sensing of Environment,1990,32:47-54.
    119.Hall,F.G.,Huemmrich,K.E,Goetz,S.J.,Sellers,P.,& Nickeson,J.Satellite remote sensing of surface energy balance:successes,failures and issues in FIFE.Journal of Geophysical Research,1992,97,19061-19089.
    120.http://fapar.jrc.ec.europa.eu/www/Data/Pages/FAPAR_Algorithms/FAPAR_Algorithms_Fapar.php.
    121.http://fapar.jrc.it/WWW/Data/Pages/FAPAR_Home_Introduction.php.
    122.http://modland.nascom.nasa.gov/QA_WWW/forPage/C005_Changes_LAI_FPAR.pdf.
    123.http://www.hulun.cn/cern/index.jsp.
    124.http://www-modis.bu.edu/landcover/userguidelc/lc.html.
    125.Huang,D.,Yang,W.,Tan,B.,The Importance of Measurement Errors for Deriving Accurate Reference Leaf Area Index Maps for Validation of Moderate-Resolution Satellite LAI Products,IEEE Transactions On Geoscience And Remote Sensing,2006,44(7):1866-1871.
    126.Huemmrich K.F,Privette J.L,Mukelabai M.,Myneni R.B.,Knyazikhin Y.Time-series validation of MODIS land biophysical products in a Kalahari woodland,Africa.International Journal of Remote Sensing,2005,26,4381-4398.
    127.Huemmrich,K.F.,The GeoSail model:a simple addition to the SAIL model to describe discontinuous canopy reflectance,Remote Sensing of Environment,2001,75:423-431.
    128.Jacquemoud,S.,Baret,F.PROSPECT:AModel of Leaf Optical Properties,Remote Sensing of Environment,1990,34:75-91.
    129.Jacquemoud,S.,F.Barret,and J.F.Hanocq,Modeling spectral and bidirectional soil reflectance,Remote Sensing of Environment,1992,41:123-132.
    130.Jiannan Hu,Yin Su,Bin Tan,et al.Analysis of the MISR LAI/FPAR product for spatial and temporal coverage,accuracy and consistency.Remote Sensing of Environment.2007,107:334-347.
    131.Knyazikhin,Y.,Glassy,J.,Privette,J.L.,et al.,MODIS Leaf Area Index(LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation(FPAR) Product(MOD 15) Algorithm Theoretical Basis Document,NASA Goddard Space Flight Center,Greenbelt,MD 20771,USA,1999.http://eospso.gsfc.nasa.gov/atbd/modistables.html.
    132.Knyazikhin,Y.,Martonchik,J.V.,Myneni,R.B.,et al.,Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data,Journal of Geophysical Research,1998a,103:32257-32274.
    133.Knyazikhin,Y.,Martonchik,J.V.,Diner,D.J.,et al.Estimation of vegetation leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data,Journal of Geophysical Research,1998b,103:32239-32256.
    134.Koetz,B.,Baret,F.,Poilve,H.,& Hill,J.Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics.Remote Sensing of Environment,2005,95,115-124.
    135.Kuusk A.,A multispectral canopy reflectance model.Remote Sensing of Environment,1994,50:75-82.
    136.Kuusk,A.A two-layer canopy,reflectance model.Journal of Quantitative Spectroscopy and Radiative Transfer,2001,71(1):1-9.
    137.Kuusk,A.,The hot spot effect of a uniform vegetative cover,Soviet Journal Remote Sensing,1985,3:645-658.
    138.Li X,Strahler A.H.Geometric-Optical Modeling of a Conifer Forest Canopy,IEEE Transaction on Geoscience and Remote Sensing,1985,23(5):705-720.
    139.Liu,R.,J.M.Chen,J.Liu,F.Deng,R.Sun.,Application of a new leaf area index algorithm to China' landmass using MODIS data for carbon cycle research.Journal of Environmental Management,doi:10.1016/j.jenvman.2006.04.023.
    140.Luiz Eduardo O.C.Aragao,Yosio Edemir Shimabukuro,Fernando D.B.Espfrito Santo and Mathew Williams.,Landscape pattern and spatial variability of leaf area index in Eastern Amazonia,Forest Ecology and Management,2005,211(3):240~256.
    141.McNaughton,K.G.and Jarvis,P.G,Predicting the Effects of Vegetation Changes on Transpiration and Evaporation,in T.T.Kozlowski (ed.) Water Deficits and Plant Growth,1983,Vol.VII,1~47.Academic Press,New York.
    142.Mecree KJ.A solarineter for measuring photosyntheticlly active radiation.Agri.Meteor.1966,3:353~366.
    143.Monteith,J.L.Climate and efficiency of crop production in Britain,Philosophical Transactions of the Royal Society of London,1977,ser.B:277~294.
    144.Monteith,J.L.Solar radiation and productivity in tropical ecosystemsJournal of Applied Ecology,1972,9:947~766.
    145.Morisette,J.T.,Privette,J.L.and Justice,CO.,A framework for the validation of MODIS Land products.Remote Sensing of Environment,2002,83:77~96.
    146.Myneni R.B.,Hoffman S.,Knyazikhin Y.,et al.Global products of vegetation leaf area and fraction absorbed PAR from year one of MOD IS data.Remote Sensing of Environment,2002,83:214~231.
    147.Myneni R.B.,Knyazikhin Y,et al.MODIS leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) product (MOD 15) Algorithm Theoretical Basis Document,April 30,1999.Version 4.0:46~49.http://www.ntsg.umt.edu/modis/ATBD/ATBD_MOD15_v21.pdf.
    148.Myneni R.B.,Ramakrishna R.N.,Running S.W.Estimation of global leaf area index and absorbed par using radiative transfer models.IEEE Transactions on Geoscience andRemote Sensing,1997,35:1380~1393.
    149.Myneni,R.B.,and G.Asrar,Photon interaction cross sections for aggregations of finite dimensional leaves,Remote Sensing of Environment,1991,37:219~224.
    150.Myneni,R.B.,Knyazikhin Y,Glassy J.,Votava P.,Shabanov N.FPAR,LAI (ESDT:MOD15A2) 8-day Composite NASA MODIS Land Algorithm.FPAR,LAI User's Guide.2003.10.9:2.
    151.Nemani,R.R.,Keeling,CD.,Hashimoto,H.,Jolly,W.M.,Piper,S.C,Tucker,CJ.,Myneni,R.B.and Running,S.W.,Climate-driven increases in global terrestrial net primary production from 1982 to 1999.Science,2003,5625:1560~1562.
    152.North,P.R.J.,Estimation of/APAR,LAI,and vegetation fractional cover from ATSR-2 imagery,Remote Sensing of Environment,2002,80:114~121.
    153.Oker-B lorn,P.,J.Lappi.,and H.Smolander,Radiation regime and photosynthesis of coniferous stands,in Photon-Vegetation Interactions:Applications in Plant Physiology and Optical Remote Sensing,pp.469-499,edited by R.B.Myneni and J.Ross,Springer-Verlag,New York,1991.
    154.Olofsson,P.,Patrick,E.,Laake,V.,Eklundh,L.,Estimation of absorbed PAR across Scandinavia from satellite measurements Part I:Incident PAR,Remote Sensing of Environment,2007a,110:252~261.
    155.Olofsson,P.,Eklundh,L.Estimation of absorbed PAR across Scandinavia from satellite measurements.Part II:Modeling and evaluating the fractional absorption,Remote Sensing of Environment,2007b,110:240~251.
    156.Panferov,O.,Knyazikhin,Y.,Myneni,R.B.,et al.The role of canopy structure in the spectral variation of transmission and absorption of solar radiation in vegetation canopies.IEEE Transactions on Geoscience and Remote Sensing,2001,39(2):241~253.
    157.Peterson,D.L.,Spanner,M.A.,Running,S.W.and Band,L.Relationship of Thematic Mapper Simulator data to leaf area index.Remote Sensing of Environment,1987,22:323~341.
    158.Pierce,L.L.and Running,S.W.Rapid Estimation of Coniferous Forest Leaf Area Index Using a Portable Integrating Radiometer,Ecology,1988,69(6):1762~1767.
    159.Pinty,B.,J.L.Widlowski,et al.,Uniqueness of multiangular measurements-Part I:An indicator of subpixel surface heterogeneity from MISR,IEEE Transactions on Geoscience and Remote Sensing.2002,40 (7):1560~1573.
    160.Rahman,H.,M.M.Verstraete,and B.Pinty,Coupled surface-atmosphere reflectance (CSAR) model.1.Model description and inversion on synthetic data,Journal of Geophysical Research,1993,98:20779~20789.
    161.Reichstein,M.,Rey,A.,Freibauer,A.,et al.:Modelling temporal and large-scale spatial variability of soil respiration from soil water availability,temperature and vegetation productivity indices,Global Biogeochemical Cycles,2003,17,15/11-15/15,doi:10.1029/2003GB002035.
    162.Roujean J.L,Breon F.M.Estimating PAR absorbed by vegetation from bi2directional reflectance measurements,Remote Sensing of Environment,1995,51:375~384.
    163.Running,S.W.and Coughlan,J.C,A general model of forest ecosystem processes for regional applications.I.Hydrologic balance,canopy gas exchange and primary production processes.Ecol.Model.1988,42:125~154.
    164.Running,S.W.,Collatz.GJ.,WashburneJ.,Sorooshian,S.,Dunne,T,Dickinson,R.E.,Shuttleworth,W.J.,Vorosmarty,C.J.,and Wood,E.F.Land ecosystems and hydrology.In EOS Science Plan (M.D.King,Ed.),National Aeronautics and Space Administration,Greenbelt,1999:197~259.
    165.Schlerf,M.,Atzberger,C.& Hill,J.Remote sensing of forest biophysical variables using HyMap imaging spectrometer data.Remote Sensing of Environment,2005,95:177~194.
    166.Scurlock J.M.O.,Johnson K,Olson RJ.Estimating net primary productivity from grassland biomass dynamics measurements.Global Change Biology,2002,8:736~753.
    167.Scurlock J.M.O.,Olson RJ.Terrestrial net primary productivity-a brief history and a new worldwide database.Environment Reviews,2002,10:91~109.
    168.Scurlock JMO and Hall DO.The global carbon sink:a grassland perspective.Global Change Biology,1998,4:229~233.
    169.Scurlock,J.M.O.,Cramer,W.,Olson,R.J.,Parton,W.J.,and Prince,S.D.Terrestrial NPP:Towards a consistant data set for global model evaluation.Ecological Applications,1999,9:913~919.
    170.Sellers,P.J.,R.E.Dickinson,D.A.Randall,A.K.Betts,F.G.Hall,J.A.Berry,C.J.Collatz,A.S.Denning,H.A.Mooney,C.A.Nobre,and N.Sato.Modeling the exchanges of energy,water,and carbon between the continents and the atmosphere,Science,1997,275,502~509.
    171.Sellers,P.J.,Los,S.O.,Tucker,C.J.,Justice,C.O.,Dazlich,D.A.,Collatz,G J.,& Randall,D.A.A revised land surface parameterization (SiB2) for atmospheric GCMs:Part II.The generation of global fields of terrestrial biophysical parameters from satellite data.Journal of Climate,1996,9,706~737.
    172.Sellers,P.J.,Berry,J.A.,Collatz,GJ.,et al.Canopy reflectance,photosynthesis and transpiration.III.A reanalysis using improved leaf models and a new canopy integration scheme.Remote Sensing of Environment,1992.42:187~216.
    173.Sellers,PJ.Canopy reflectance,photosynthesis and transpiration,Int.J.Remote Sens.,1985,6:1335~1372.
    174.Shabanov,N.V.,Wang,Y,Buermann,W.J.,et al.,Effect of foliage spatial heterogeneity in the MODIS LAI and FPAR algorithm over broadleaf forests,Remote Sensing of Environment,2003,85:410~423.
    175.Soudani.K.,Francois,C,Maire,Gl.,et al.,Comparative analysis of IKONOS,SPOT,and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands,Remote Sensing of Environment,2006,102:161~175.
    176.Steinberg,D.C.and Goetz,S.Assessment and extension of the MODIS FPAR products in temperate forests of the eastern United States,International Journal of Remote Sensing,2009,30(1):169~187.
    177.Steinberg,D.C.,Goetz,SJ.And Hyer,E.,Validation of MODIS FPAR products in boreal forests of Alaska.IEEE Transactions on Geoscience and Remote Sensing,2006,44:1818~1828.
    178.Tan,B.,Hu,J.,Zhang,P.,Huang,D.,Shabanov,N.,Weiss,M.,et al.Validation of MODIS LAI product in croplands of Alpilles,France.Journal of Geophysical Research,2005a,110(D01107).doi:10.1029/2004JD004860.
    179.Tan,B.,Huang,D.,Hu,J.,Yang,W,Zhang,P.,Shanabov,N.V,Knyazikhin,Y,and Myneni,R.B.Assessment of the broadleaf crops leaf area index product from the terra MODIS instrument,Agricultural and Forests Meteorology,2005b,135:124~134.
    180.Thomas F.Eck,Dennis G Dye.Satellite estimation of incident photosynthetically active radiation using ultraviolet reflectance.Remote Sensing of Environment,1991,38:135~146.
    181.Tian Y,Dickinson R E,Zhou L,et al.Comparison of seasonal and spatial variations of leaf area index and fraction of absorbed photosynthetically active radiation from moderate resolution imaging spectroradiometer (MODIS) and common land model.Journal of Geophysical Research, 2004,109,DM 103,doi:10.1029/2003JD003777.
    182.Tian,Y.,Wang,Y.,Zhang,Y,Knyazikhin,Y,Bogaert,J.,& Myneni,R.B.,Radiative transfer based scaling of LAI/FPAR retrievals from reflectance data of different resolutions.Remote Sensing of Environment,2003:84(1):143~159.
    183.Tian,YEvaluation of the performance of the MODIS LAI and FPAR algorithm with multiresolution satellite data.2002,PH.D:4~5.
    184.Tian,Y,Woodcock,C.E.,Wang,Y,et al.,Multiscale analysis and validation of MODIS LAI product over Maun,Botswana.I:Uncertainty assessment.Remote Sensing of Environment,2002,83:414~430.
    185.Townshend,J.R.G,Justice,C.O.,Skole,D.,et al.,The 1 km AVHRR global data set:needs of the International Geosphere Program,International Journal of Remote Sensing.1994,15:3,417~3,441.
    186.http://landweb.nascom.nasa.gov/QA WWW/forPage/C005 Changes LAI FPAR.pdf.
    187.Tucker,C.J.,& Sellers,P.J.Satellite remote sensing of primary production.International Journal of Remote Sensing,1986,7:1395~1416.
    188.Tucker,C.J.Red and Photographic Infrared Linear Combinations for Monitoring Vegetation,Remote Sensing of Environment,1979,8:127~150.
    189.Turner,D.P.,Cohen,W.B.,Kennedy Robert E,et al.Relationship between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites,Remote Sensing of Environment,1999,70:52~68.
    190.Turner,D.P.,Gower,ST.,Cohen,W.B.,Gregory,M.,Maiersperger,T.K.Effects of spatial variability in light use efficiency on satellite-based NPP monitoring.Remote Sensing of Environment,2002,80:397~405.
    191.Verhoef,W.Light scattering by leaf layers with applications to canopy reflectance modeling:the SAIL model.Remote Sensing of Environment,1984,16:125~141.
    192.Verma,S.B,Sellers,P.J.,Walthall,C.L.,Hall,F.G,Kim,J.and Goetz,S.J.Photosynthesis and stomatal conductance related to reflectance on the canopy scale.Remote Sensing of Environment,1993,44:103~116.
    193.Vermote E.F.,Tanre D.,Deuze J.L.,Herman M.,Morcrette J.J.Second Simulation of the Satellite Signal in the Solar Spectrum:an overview,IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):675~686.
    194.Verstraete M.M.,B.Pinty,and R.E.Dickenson,A physical model of the bidirectional reflectance of vegetation canopies,Journal of Geophysical Research,1990,95:11765~11775.
    195.Wang,Y,Tian,Y,Zhang,Y,El-Saleous,N.,Knyazikhin,Y,Vermote,E.,and Myneni,R.B.Investigation of product accuracy as a function of input and model uncertainties:Case study with SeaWiFS and MODIS LAI/FPAR algorithm.Remote Sensing of Environment,2001,78:299~313
    196.Wang,Y Assessment of the MODIS LAI and FPAR Algorithm:Retrieval Quality,Theoretical Basis and Validation,2002,Boston University,PH.D article.
    197.Wang,Y.,Buermann,W.,Stenberg,P.,et al.,A new parameterization of canopy spectral response to incident solar radiation:case study with hyperspectral data from pine dominant forest,Remote Sensing of Environment,2003,85:304~31.
    198.Wang,Y,Woodcock,C.E.,Buermann,W.,et al.,Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland,Remote Sensing of Environment,2004,91:114~127.
    199.Weiss M,De Beaufort L,Baret F,et al.Mapping leaf area index measurements at different scales for the validation of large swath satellite sensors:First results of the VAL ERI project[R].INRA,Bioclimatologie,Site Agroparc,Domaine Saint2Paul,Avignon,France.2001.
    200.Wyliea,B.K.,Meyera,D.J.,Tieszenb,L.L.,Mannel,S.Satellite mapping of surface biophysical parameters at the biome scale over the North American grasslands a case study.Remote Sensing of Environment,2002,79:266~278.
    201.YANG Fei,ZHANG Bai,SONG Kai-shan,et al.Jing-ping.Hyperspectral Estimation of Corn Fraction of Photosynthetically Active Radiation.Agricultural Sciences in China,2007,6(10):1173~1181.
    202.Yang,P.,Chen,Z.,Zhou,Q.,Zha,Y,Wu,W,Shibasaki,R.,Comparisons of MODIS LAI products and LAI estimates derived from Landsat TM.IEEE Geoscience and Remote Sensing Symposium,2006,692:2681~2684.
    203.Yang,W,Tan,B.,Huang,D.,Rautiainen,M.,Shabanov,N.V.,Wang,Y,et al.MODIS leaf area index product:From validation to algorithm improvement.IEEE Transactions on Geoscience and Remote Sensing,2006,44(7):1885~1898.
    204.Yang,W.Z.,Huang,D.,Tan,B.,et al.Analysis of Leaf Area Index and Fraction of PAR Absorbed by Vegetation Products From the Terra MODIS Sensor:2000-2005.IEEE Transactions ON Geoscience and remote sensing,2006,44(7):1829~1842.
    205.Zeng,X.,M.Shaikh,Y Dai,R.E.Dickinson,and R.B.Myneni,Coupling of the Common Land Model to the NCAR Community Climate Model,J.Clim.,2002,14:1832~1854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700