用户名: 密码: 验证码:
抗原递呈细胞与NK细胞之间的cross-talk增强NK细胞的抗肿瘤作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     恶性肿瘤是一种严重危害人类健康的常见病和多发病,其死亡人数约占世界总死亡人数的四分之一,且呈现逐年递增的趋势。虽然目前用于恶性肿瘤治疗的手段有很多,包括手术、放疗、化疗、内分泌治疗、中医中药治疗、热疗和射频消融治疗等,但他们大多都缺乏特异性和靶向性,不仅杀死肿瘤细胞还破坏正常细胞的功能,导致患者免疫功能严重低下,给患者带来极大的毒副作用。近年来,以机体免疫细胞,如树突状细胞(dendritic cells, DC)、巨噬细胞、自然杀伤(natural killer, NK)细胞和细胞毒性T淋巴细胞(cytotoxic T lymphocytes, CTL)等为主体,以现代免疫学、细胞生物学和分子生物学等前沿科学为基础的细胞免疫治疗,成为21世纪最新的抗癌生物科学技术。通常情况下,细胞免疫治疗以重组、合成或天然制剂(细胞因子,趋化因子,寡核苷酸,Imiquimod和CPG等)作为细胞活化的免疫调节剂,试图激发或重塑机体免疫系统来排斥或摧毁肿瘤细胞,最终实现消灭肿瘤和治愈癌症的目的。
     NK细胞是先天免疫系统中不可或缺的一部分,也是连接天然免疫和获得性免疫之间的桥梁。不仅具有强大的抗细菌、病毒和肿瘤的功能,还在移植排斥、超敏反应和自身免疫性疾病中发挥着重要的调节作用。一方面,NK细胞的杀伤作用取决于其细胞表面活化受体和抑制性受体对靶细胞上相应配体的结合,其中NK细胞介导的靶向感染自体细胞的杀伤还可以触发强大的抗原特异性T细胞免疫反应和体液免疫反应。NK细胞还可以通过自身来源的细胞因子Ⅱ型干扰素(interferon gamma, IFN-y)和肿瘤坏死因子(tumor necrosis factor, TNF),进一步促使初始T细胞向着Thl细胞类型的分化。而且这两种细胞因子还能诱导DC的成熟,促进DC的抗原提成能力,间接调控T细胞介导的获得性免疫应答。此外,NK细胞还能提升另一种抗原提呈细胞(antigen-presenting cell, APC)-巨噬细胞的抗菌效应,促使诱导型一氧化氮合酶(inducible nitric oxide synthase, iNOS)的产生;NK细胞还能通过分泌白细胞介素-22(interleukin-22, IL-22),诱导巨噬细胞吞噬溶酶体的融合而起到抑制胞内结核分枝杆菌生长的效应。另一方面,NK细胞的杀伤和增殖还受到细胞因子,诸如IL-2, IL-15, IL-12, IL-18和IL-21等的调控。而这些细胞因子通常是由其它免疫细胞,尤其是活化的APC,所分泌的。因此,相比于其他免疫细胞,NK细胞与APC之间的相互调控关系(cross-talk),在先天免疫和适应性免疫反应的发展中起着重要的影响,近年来引起了人们极大的兴趣和关注。
     Toll样受体(Toll-like receptors, TLRs)也是天然免疫系统中重要成员,能够泛特异性地识别病原体表面的病原相关分子模式(pathogen associated molecular patterns, PAMPs)。TLRs家族广泛表达于多种细胞,包括上皮细胞、内皮细胞、间皮细胞、成纤维细胞、中性粒细胞、T淋巴细胞、NK细胞,巨噬细胞和DC。其中,属于TLR9亚家族的、表达于细胞内体的TLR3、TLR7、TLR8和TLR9,不仅能够直接活化多种免疫细胞,尤其是和APC和NK细胞,还能诱导肿瘤细胞的凋亡和杀伤敏感性的增强。因此,TLR9亚家族是APC和NK细胞之间cross-talk启动的桥梁和纽带,而TLR9亚家族的激动剂成为以两种细胞单独或联合应用为基础的细胞免疫治疗的最佳免疫调节剂。
     本研究是以TLR3的激动剂PolⅠ:C, TLR7和(或)TLR8激动剂Imiquimod (R837)、Gardiquimod (GDQ)以及ssRNA40为研究对象,观察它们刺激的APC对NK细胞抗肿瘤作用的影响,进而从细胞因子和细胞与细胞间接触分子两方面着手,深入探讨APC与NK细胞之间的cross-talk。
     研究方法
     (1)免疫磁珠分选(MACS)小鼠脾脏NK细胞;(2)淋巴细胞分离液密度梯度离心法分离健康人外周血PBMCs;(3)重组细胞因子体外诱导人PBMCs来源DC;(4)流式细胞术技术检测NK分选效率和巨噬细胞提纯效率,以及小鼠NK细胞、人NKL细胞和PBMCs表面活化分子、胞内杀伤相关分子或细胞因子的表达水平;(5)实时定量PCR方法检测小鼠NK细胞、巨噬细胞、人NKL细胞和PBMCs中活化分子、活化性(或抑制性)受体及细胞因子等的mRNA水平;(6)51Cr释放法和MTT法检测小鼠NK细胞、人NKL细胞或PBMCs对肿瘤细胞的杀伤效应;(7)ELISA方法检测细胞培养上清中细胞因子的分泌水平;(8)RT-PCR方法检测NKL细胞和PBMCs中TLR7和TLR8的基因表达水平;(9)RNA干扰技术阻断小鼠巨噬细胞内TLR3和Qa-1的表达;(10)抗体中和实验阻断小鼠NK细胞中NKG2D的表达或抑制细胞上清中IL-15或IFN的分泌;(11)Western Blotting技术检测NKL细胞、DC和PBMCs中NF-κB信号通路的活化情况;(12)人HepG2裸鼠肿瘤异种移植模型的建立和治疗;(13)Transwell实验阻断小鼠NK细胞与巨噬细胞的接触,或NKL细胞与DC的接触。
     结果
     结果一:PolyⅠ:C诱导的巨噬细胞增强小鼠NK细胞的抗肿瘤活性
     1、PolyⅠ:C诱导的巨噬细胞能够增强NK细胞地对肿瘤细胞的杀伤作用,而非活化它的巨噬细胞PolyI:C处理的巨噬细胞能够明显活化NK细胞,促进NK细胞对肿瘤细胞YAC-1, Hepa1-6, MCA-38和H22的杀伤效应,而对PolyI:C处理的小鼠巨噬细胞,尤其对原代腹腔巨噬细胞不具备杀伤增强效应。
     2、NK细胞介导的肿瘤杀伤具有NKG2D依赖性PolyI:C诱导的巨噬细胞能够通过上调NK细胞表面NKG2D的表达,而增强NK细胞的抗肿瘤活性。
     3、PolyⅠ:C能够诱导巨噬细胞表面NKG2D配体的表达PolyⅠ:C能够显著上调巨噬细胞表面NKG2D配体RAE-1, H60和MULT-1的表达水平,并且存在着一定的剂量依赖性。
     4、PolyⅠ:C对NKG2D配体的上调作用存在TLR3依赖性si-TLR3作用于巨噬细胞后,PolyI:C对其表面NKG2D配体的诱导表达能力明显下降。
     5、Qa-1保护巨噬细胞免受NK细胞介导的杀伤相比于肿瘤细胞YAC-1,巨噬细胞表面抑制性配体的表达水平明显优于活化性配体,即Qa-1和NKG2A的相互作用能够保护巨噬细胞免受NK细胞的攻击。
     6、巨噬细胞对NK细胞的活化作用具有IL-15和IFN-β依赖性PolyⅠ:C上调巨噬细胞分泌细胞因子的水平,尤其是IL-15和IFN-p.当IL-15和IFN-p的分泌被中和后,NK细胞的活化、细胞因子的分泌和杀伤功能均显著下降。
     7、细胞与细胞间分子接触在巨噬细胞对NK细胞的活化过程中起重要作用Transwell培养体系中,NK细胞表面CD69和NKG2D以及胞内IFN-y的表达水平均有所下降。
     结果二:TLR7/TLR8激动剂介导的DC/NK cross-talk对人肝癌的免疫治疗
     1、TLR7/TLR8激动剂能够直接活化人NK细胞TLR7激动剂R837, TLR7/8激动剂GDQ和TLR8激动剂ssRNA40能够直接活化人NK细胞系NKL和新鲜分离的人PBMCs中原代NK细胞,尤其是GDQ。
     2、TLR7/TLR8激动剂增强NK细胞IFN-γ和TNF-α的分泌能力R837, GDQ和ssRNA40能够上调NKL分泌炎性细胞因子IFN-γ和TNF-α。
     3、TLR7/TLR8激动剂诱导NK细胞表面NKG2D和NKp80的表达水平GDQ可以促进NK细胞表面NKG2D的表达水平;三种激动剂均能够诱导NKp80的表达上调。
     4、TLR7/TLR8激动剂协同树突状细胞促进NK细胞的活化DC协同激动剂能够更加显著地上调NKL细胞表面CD69和CD25的表达水平、增强NKL细胞对HepG2细胞的杀伤功能、上调胞内杀伤相关基因的表达水平,以及IFN-γ的胞内表达和分泌水,尤其是DC协同GDQ刺激组。
     5、GDQ协同DC增强NK细胞的体内抗肿瘤作用以腹腔荷瘤方式建立了HepG2裸鼠异种移植肿瘤模型,用不同刺激的NKL细胞进行治疗。结果表明,TLR7/TLR8激动剂活化的NKL细胞可以明显抑制HepG2肿瘤的体内生长,尤其是GDQ、DC和NKL联用组。
     6、TLR7/TLR8激动剂协同NK细胞促进DC的成熟和细胞因子的分泌三种激动剂协同NK能够明显促进DC表面成熟分子CD1a、CD11c、CD83和CD86的表达水平,诱导其Th1类细胞因子IFN-α、IFN-β、IL-12p35、IL-15和IL-18,以及炎性因子IL-6的分泌,而对IL-1β和IL-10没有影响。
     7、DC介导的NK细胞的活化依赖于Ⅰ型干扰素和IL-12的分泌混合培养细胞中IFNR的阻断可以明显削弱NK细胞表面表面CD69和CD25的表达水平、胞内杀伤相关基因的表达水平,以及细胞上清中IFN-γ的分泌水平。与此同时,相比于激动剂或IL-12单独刺激组,激动剂和IL-12的协同刺激能够更加显著地促进NK细胞表面CD69和胞内IFN-γ的表达水平。
     8、DC与NK细胞间的分子接触参与了DC介导的NK细胞的活化在Transwell条件下,NK细胞表面CD69的表达水平有所下降,同时,细胞上清中IFN-γ的分泌水平也明显降低。NK细胞与DC之间的活化性受体NKG2D和NKp80及其配体、协同刺激分子CD40-CD40L和LFA-1-ICAM-1、以及趋化因子CCL2和CCL4及其受体可能参与了两种细胞之间的相互调控。
     结论及意义
     本研究证实了TLR激动剂介导的APC与NK细胞间的cross-talk能够增强NK细胞的抗肿瘤效应。一方面,TLR3激动剂PolyⅠ:C刺激的巨噬细胞可以增强小鼠NK细胞的抗肿瘤作用,其机制是:PolyⅠ:C可以诱导小鼠巨噬细胞NKG2D配体的表达,以及细胞因子IL-15、IL-12和IFN-β等的分泌,从而促进NK细胞的活化和IFN-γ的分泌;而巨噬细胞自身却因为高表达抑制性受体NKG2A的配体Qa-1而免受活化NK的攻击。另一方面,TLR7和(或)TLR8激动剂介导的DC与NK细胞间的cross-talk可以增强人类NK细胞的抗肿瘤作用,其机制是:尽管TLR7激动剂R837、TLR8激动剂ssRNA40和TLR7/8激动剂GDQ均可以直接诱导人NK细胞的活化,而DC的参与能够更加显著地诱导NK细胞抗肿瘤效应的增强,这在HepG2人肿瘤裸鼠异种移植模型的体内试验中也得到了进一步证实;而DC对NK细胞功能的增强主要依赖于其所分泌的大量Thl型细胞因子,尤其是IFN-α/β和IL-12。此外,活化性受体NKG2D和NKp80及其配体,协同刺激分子CD40-CD40L和LFA-1-ICAM-1,以及趋化因子CCL2和CCL4及其受体等细胞与细胞间接触分子,有可能参与了NK/DC之间的cross-talk。
     本研究明确了APC对NK细胞的活化作用以及此过程中所需要的细胞因子和细胞与细胞间接触,这为深入探讨APC/NK cross-talk的分子机制提供了新理论基础和思路。本研究提示PolyⅠ:C、R837、GDQ和ssRNA40均可以作为抗肿瘤的有效药物,或许可以作为疫苗或免疫佐剂与其他抗肿瘤药物联合应用;而TLR激动剂、APC和NK细胞三者的联合应用有可能成为一种细胞治疗方式,应用于抗肿瘤、抗病毒和自身免疫性疾病的临床治疗和研究。
Object
     Malignant tumor, as a frequently occurring and common disease, has a great threat to human health; the death of it accounts for a quarter of total deaths in the world, and shows an increasing trend year by year. There are many treatment methods for malignant tumor, including surgery, radiotherapy, chemotherapy, endocrine therapy, Chinese medicine treatment, hyperthermia and radiofrequency ablation therapy, but most of them are lack of specificity and targeting, as they not only can kill tumor cells but also destroy normal cells, leading to a serious decline in immune function of patients. In recent years, immunotherapy based the cutting-edge science of modern immunology, cell biology and molecular biology, has become the latest anti-cancer biological science and technology in the21st century. Regarding immune effector cells as main body's, such as lymphocytes, macrophages, dendritic cells (DC), natural killer (NK) cells, cytotoxic T lymphocytes (CTL), or the combination of them, immunotherapy is attempting to stimulate the immune system to reject and destroy tumors. In some cases, the immune effector cells need active agents referred to as immunomodulators, which are a diverse array of recombinant, synthetic and natural preparations, such as cytokines, chemokines, oligodeoxynucleotides, Imiquimod, or CpG.
     NK cells are integral components of the innate immune system and are characterized by their strong cytolytic activity against tumors and virus-infected cells. NK cells also regulate innate and adaptive immune responses through secretion of immunoregulatory cytokines and cell-to-cell contact. Activated NK cells promote DC mature and cytokines production through production of gamma interferon (IFN-y) and tumor necrosis factor-α (TNF-α), leading to the induction and regulation of immune responses. In addition to DC, NK cells can strongly prompt the generation of inducible nitric oxide synthase (iNOS) from macrophages, resulting in the enhancement the antimicrobial effect of macrophages that also belong to antigen-presenting cells (APC). Moreover, NK cells induce the fusion of lysosomal in macrophages by secreting interleukin-22(IL-22), to inhibit the growth of intracellular Mycobacterium tuberculosis. Usually, the actions of NK cells are thought to be mediated by the complex interactions between inhibitory and activating signals sent by cell surface receptors following ligation. In many cases, cytokines, such as IL-2, IL-15, IL-12, IL-18and IL-21, produced by other immune cells, and particularly activated APC, can also play important roles in the regulation of NK cell activity. Therefore, a great deal of interest and information has emerged with respect to the crosstalk between APC and NK cell, in contrast to the interactions between NK cells and other innate immune cells.
     Toll-like receptors (TLRs) are receptors of the innate immune system that directly recognize conserved pathogen structures, and they also conserved receptors that recognize a variety of pathogen-break down products. TLRs are widely expressed on many cells, including epithelial cells, endothelial cells, mesothelial cells, fibroblasts, neutrophils, T lymphocytes, monocytes, NK cells, macrophages, and DC. Among the family of TLRs, TLR3, TLR7, TLR8and TLR9which belong to the TLR9subfamily that expressed in endosomal compartments, not only can directly activate a variety of immune cells, particularly APC and NK cells, but also induce tumor cell apoptosis and enhance their sensitive to effector cells. Therefore, TLR9subfamily can serve as the functional bridges and links of the cross-talk between APC and NK cells, and the agonists of TLR9subfamily are the best immunomodulators for the cells-based immunotherapy.
     In this study, TLR3agonist Poly Ⅰ:C and TLR7/TLR8agonists, Imiquimod, Gardiquimod, or ssRNA40were used to observe the APC-increased NK cells cytotoxicity against tumor cells. We also explored the cross-talk between APC and NK cells based on cytokine stimulation and cell-cell contact.
     Methods
     (1) Magnetic bead sorting (MACS) was used to isolate NK cells from spleen in mice;(2) PBMCs were isolated with Ficoll by density gradient centrifugation from human peripheral blood of healthy donor;(3) Dendritic cells were induced from human PBMCs with recombinant cytokines in vitro;(4) The separation efficiency of murine NK cells and purification efficiency of macrophages, the expression of activating molecules, lysis-associated molecules, receptors and intracellular cytokines of murine NK cells, human NKL cells or PBMCs were tested by flow cytometry;(5) The gene expression of activating molecules, lysis-associated molecules, receptors or intracellular cytokines of murine NK cells, NKL cells and PBMCs were tested by real-time quantitative PCR;(6) The cytotoxicity of murine NK cells, NKL cells and PBMCs was assayed by Cr release assay or MTT assay;(7) The level of cytokines in cell culture supernatants were determined by ELISA;(8) Conventional reverse transcription PCR was used to detect the mRNA expression of TLR7and TLR8in NKL cells and PBMCs;(9) RNA interference was used to knockdown the expression of TLR3and Qa-1in macrophages;(10) The antibody neutralization assay was used to block the expression of NKG2D, and the production of IL-12and IFN;(11) The activation of NF-κB signaling pathway was analyzed by Western Blotting;(12) The HepG2nude mice xenograft was established and treated intraperitoneally;(13) The cell to cell contact between NK cells and macrophages, or between NKL cells and DC was blocked by Transwell assay.
     Results
     Part1:Poly I:C-treated macrophages enhance mouse NK cells anti-tumor activity
     1. Poly Ⅰ:C-treated macrophages increase NK cell-mediated cytotoxicity to target tumor cells, but not to macrophages. NK cell cytotoxicity against YAC-1cells, Hepal-6cells, MCA38cells or H22cells, but not macrophages, was dramatically increased when NK cells were pre-incubated with Poly Ⅰ:C-treated macrophages.
     2. NK cell-mediated target cell lysis is NKG2D-dependent. Blockade of NKG2D alleviated the activation and cytotoxicity of NK cells, reduced the expression of perforin, FasL and TRAIL, as well as the secretion of IFN-γ by NK cells.
     3. Poly Ⅰ:C up-regulates expression of NKG2D ligands on macrophages. The NKG2D ligands RAE-1, H60and MULT-1on macrophages were significantly elevated in a dose-dependent manner following stimulation with Poly Ⅰ:C.
     4. Poly Ⅰ:C-induced up-regulation of NKG2D ligands is dependent on TLR3. When TLR3expression on macrophage was silenced by TLR3specific siRNA, Poly Ⅰ:C-mediated up-regulation of the three NKG2D ligands was abrogated significantly.
     5. Qa-1contributes to the protection of macrophages from NK cell-mediated cy to lysis. Qa-1in poly Ⅰ:C-treated or untreated primary macrophages are much higher than that in YAC-1cells, and anti-Qa-lb blockade or Qa-1-siRNA silence significantly increased the NK cell-mediated cytolysis against Poly Ⅰ:C-treated macrophage.
     6. Poly Ⅰ:C increases many cytokines production by macrophages. Poly I:C stimulation markedly increased the secretion of IL-15, IFN-β, IL-18and IL-12in both RAW264.7cells and BALB/c peritoneal macrophages supernatants, in particular IL-15and IFN-p.
     7. Activation of NK cells is dependent on IL-15and IFN-β produced by Poly Ⅰ:C-stimulated macrophages. Blocking either IL-15or IFN-P in Poly Ⅰ:C-stimulated macrophages supernatants decreased NK cells function.
     8. Cell-to-cell contact was involved in the crosstalk between NK cells and macrophages. In Transwell system, Poly Ⅰ:C-stimulated macrophages still promote the expression of CD69and NKG2D, as well as the production of IFN-γ by NK cells, but the up-regulation effect was not as strong as that in direct contact co-culture.
     Part2:Role of NK-DC cross-talk mediated by TLR7/TLR8agonist in human HCC immunotherapy
     1. TLR7/TLR8agonists activate human NK cells directly. R837, GDQ and ssRNA40could activate NKL cells and primary NK cells, and enhanced cytotoxicity to HepG2cells, particularly GDQ.
     2. TLR7/TLR8agonists induce the production of IFN-γ and TNF-α by NKL cells. The protein Levels of IFN-γ and TNF-α in NK cells were promoted by R837, GDQ and ssRNA40.
     3. TLR7/TLR8agonists enhance the expression of NKG2D and NKp80on NKL cells. GDQ enhanced the expression of NKG2D, and all three agonists strongly up-regulated NKp80expression.
     4. DCs strongly enhance NK cells function in the present of TLR7/TLR8agonists. Although NK cells could be directly activated by these three agonists, changes in the activation status of the co-cultured NK cells were more significantly, particularly NKL cells treated with DCs and GDQ.
     5. DCs plus GDQ improve the antitumor effects of NK cells in vivo. The human HepG2liver carcinoma xenografts were established and treated with NKL cells. NKL plus DC and GDQ exerted a significantly greater inhibitory effect and delayed the growth of tumor nodules compared to other groups.
     6. Increase of mature maker expression and cytokine secretion by the DCs exposed to NKL cells and TLR7/TLR8agonists. The expression of co-stimulatory molecules CD1a, CD11c, CD83and CD86on DCs were up-regulated. IFN-α, IFN-β, IL-12p35, IL-15, and IL-18, pro-inflammation cytokines IL-1(3and L-6, but not the Th2type cytokine IL-10, in the co-culture supernatant were increased by exposure to NKL cells and TLR7/TLR8agonists.
     7. DC induces NK cells activation in a Type ⅠIFN and IL-12-dependent manner. Blockade of type Ⅰ IFN pathway on DC and NKL cells in the co-culture system significantly attenuated CD69and CD25expression on NK cells which were also failed to maintain high levels of lysis-associated molecules. Recombinant IL-12plus agonists could increase CD69expression and IFN-y production.
     8. Cell-to-cell contact is critical for DC-mediated NK cells activation. DC in Transwell culture could still promote the expression of CD69and IFN-y secretion of NK cells, but the effect is not as strong as that in direct contact co-culture. Activating receptors NKG2D and NKp80and their ligands, co-stimulatory molecules CD40-CD40L and LFA-1-ICAM-1, and chemokines CCL2and CCL4and their receptors may involve in the NK/DC cross-talk.
     Conclusion
     In this study, we demonstrated that the cross-talk between APC and NK cells mediated by TLR agonists enhanced NK cells anti-tumor activity. On the one hand, macrophages treated by TLR3agonist, Poly I:C, enhanced mouse NK cell anti-tumor effect. Poly I:C induced the expression of NKG2D ligands on murine macrophages, and up-regulated the production of IL-15, IL-12, IFN-β and other cytokines, leading to the activation and IFN-y secretion of NK cells. However, macrophages escaped the attack from activated NK cells, because of the high expression of Qa-1, the ligand of inhibitory receptor NKG2A. On the other hand, the DC/NK cross-talk mediated by the TLR7/TLR8agonist improved the anti-tumor effect of human NK cells. Although the TLR7agonist R837, TLR8agonist ssRNA40, and TLR7/TLR8agonist GDQ could directly induce the activation of NK cells, the participation of DC further significantly promoted NK cell activation. And this phenomenon was further confirmed by the in vivo therapy of hepatoma in HepG2nude mice xenograft model. In addition, it was demonstrated that the promotions of TLR7/TLR8agonist-stimulated DC for NK cell activation were dependent on the secretion of Type Ⅰ IFN and IL-12, as well as the cell-cell contacts between NKG2D-NKG2DL, NKp80-AICL, CD40-CD40L, LFA-1-ICAM-1, CCR2-CCL2and CCR4-CCL4.
     This study strongly confirmed the enhancement function of NK cells by APC, and identified the need of cytokines and cell-cell contact between cells interaction. It provided theoretical foundations and new ideas for the further exploration of the molecular mechanisms in the APC/NK cross-talk. The present study suggests that Poly Ⅰ:C, R837, GDQ and ssRNA40can be used as vaccine adjuvant or combined with other anti-tumor agents for treatment of cancer. And the combination of TLR agonists, APC and NK cells may be served as a new form of cell-based immunotherapy used in the clinical application and investigation for anti-tumor, anti-viral and autoimmune diseases.
引文
1. Hanson L, Hermanson J, Lee J, Nickelson J, Sloan R. Helpful hints in caring for patients receiving biotherapy. Rigors associated with outpatient tumor necrosis factor administration. Oncol Nurs Forum.1990;17(6):963.
    2. Dreno B. Immunotherapy of melanoma. Bull Acad Natl Med. 2010;194(7):1373-81.
    3. Topalian SL, Weiner GJ, Pardoll DM. Cancer immunotherapy comes of age. J Clin Oncol.2011;29(36):4828-36.
    4. Maio M, Nicolay HJ, Ascierto PA, Belardelli F, Camerini R, Colombo MP, et al. Eighth annual meeting of the Italian network for tumor biotherapy (NIBIT), Siena, October 7-9,2010. Cancer Immunol Immunother.2011;60(6):901-7.
    5. Maio M, Fonsatti E, Burigo A, Parmiani G. The Italian Network for Tumor Biotherapy (NIBIT). Sharing visions, goals and efforts at European level. Tumori. 2008;94(2):179-81.
    6. Luo H, Zhou X. Researche advances on CIK cells and their clinical use in lung cancer. Zhongguo Fei Ai Za Zhi.2011;14(12):954-9.
    7. Jiang JT, Shen YP, Wu CP, Zhu YB, Wei WX, Chen LJ, et al. Increasing the frequency of CIK cells adoptive immunotherapy may decrease risk of death in gastric cancer patients. World J Gastroenterol.2010;16(48):6155-62.
    8. Zhao Q, Zhang H, Li Y, Liu J, Hu X, Fan L. Anti-tumor effects of CIK combined with oxaliplatin in human oxaliplatin-resistant gastric cancer cells in vivo and in vitro. J Exp Clin Cancer Res.2010;29:118.
    9. Hontscha C, Borck Y, Zhou H, Messmer D, Schmidt-Wolf IG. Clinical trials on CIK cells:first report of the international registry on CIK cells (IRCC). J Cancer Res Clin Oncol.2011;137(2):305-10.
    10. Liu P, Chen L, Huang X. The antitumor effects of CIK cells combined with docetaxel against drug-resistant lung adenocarcinoma cell line SPC-A1/DTX in vitro and in vivo. Cancer Biother Radiopharm.2009;24(1):91-8.
    11. Wang FS, Liu MX, Zhang B, Shi M, Lei ZY, Sun WB, et al. Antitumor activities of human autologous cytokine-induced killer (CIK) cells against hepatocellular carcinoma cells in vitro and in vivo. World J Gastroenterol.2002;8(3):464-8.
    12. Srivastava S, Lundqvist A, Childs RW. Natural killer cell immunotherapy for cancer:a new hope. Cytotherapy.2008;10(8):775-83.
    13. Malhotra A, Shanker A. NK cells:immune cross-talk and therapeutic implications. Immunotherapy.2011;3(10):1143-66.
    14. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480-9.
    15. Rosenberg SA. Cancer immunotherapy comes of age. Nat Clin Pract Oncol. 2005;2(3):115.
    16. Tartour E, Sandoval F, Bonnefoy JY, Fridman WH. Cancer immunotherapy: recent breakthroughs and perspectives. Med Sci (Paris).2011;27(10):833-41.
    17. Andrews DM, Andoniou CE, Scalzo AA, van Dommelen SL, Wallace ME, Smyth MJ, et al. Cross-talk between dendritic cells and natural killer cells in viral infection. Mol Immunol.2005;42(4):547-55.
    18. Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA. NK cell and DC interactions. Trends Immunol.2004;25(1):47-52.
    19. McQueen KL, Parham P. Variable receptors controlling activation and inhibition of NK cells. Curr Opin Immunol.2002;14(5):615-21.
    20. Moretta L, Bottino C, Pende D, Castriconi R, Mingari MC, Moretta A. Surface NK receptors and their ligands on tumor cells. Semin Immunol.2006;18(3):151-8.
    21. French AR, Yokoyama WM. Natural killer cells and autoimmunity. Arthritis Res Ther.2004;6(1):8-14.
    22. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense:function and regulation by innate cytokines. Annu Rev Immunol.1999; 17:189-220.
    23. Raulet DH. Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol.2004;5(10):996-1002.
    24. Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science.2001;293(5528):253-6.
    25. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol.2002;2(3):151-61.
    26. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med.2001;194(6):863-9.
    27. Fujii S, Takayama T, Asakura M, Aki K, Fujimoto K, Shimizu K. Dendritic cell-based cancer immunotherapies. Arch Immunol Ther Exp (Warsz). 2009;57(3):189-98.
    28. Matsue H, Morita A, Matsue K, Takashima A. New technologies toward dendritic cell-based cancer immunotherapies. J Dermatol.1999;26(11):757-63.
    29. Tacken PJ, de Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol.2007;7(10):790-802.
    30. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol.2000;18:767-811.
    31. Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, et al. Dendritic cells directly trigger NK cell functions:cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med.1999;5(4):405-11.
    32. Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E. Natural-killer cells and dendritic cells:"l'union fait la force". Blood.2005;106(7):2252-8.
    33. Velardi A, Ruggeri L, Alessandro, Moretta, Moretta L. NK cells:a lesson from mismatched hematopoietic transplantation. Trends Immunol.2002;23(9):438-44.
    34. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol.2004;5(10):987-95.
    35. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med.2002;195(3):327-33.
    36. Borg C, Jalil A, Laderach D, Maruyama K, Wakasugi H, Charrier S, et al. NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood.2004;104(10):3267-75.
    37. Kikuchi T, Hahn CL, Tanaka S, Barbour SE, Schenkein HA, Tew JG. Dendritic cells stimulated with Actinobacillus actinomycetemcomitans elicit rapid gamma interferon responses by natural killer cells. Infect Immun.2004;72(9):5089-96.
    38. Gerosa F, Gobbi A, Zorzi P, Burg S, Briere F, Carra G, et al. The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J Immunol.2005;174(2):727-34.
    39. Koka R, Burkett P, Chien M, Chai S, Boone DL, Ma A. Cutting edge:murine dendritic cells require IL-15R alpha to prime NK cells. J Immunol. 2004;173(6):3594-8.
    40. Ferlazzo G, Pack M, Thomas D, Paludan C, Schmid D, Strowig T, et al. Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci U S A.2004; 101(47):16606-11.
    41. Dalod M, Hamilton T, Salomon R, Salazar-Mather TP, Henry SC, Hamilton JD, et al. Dendritic cell responses to early murine cytomegalovirus infection:subset functional specialization and differential regulation by interferon alpha/beta. J Exp Med.2003;197(7):885-98.
    42. Granucci F, Zanoni I, Pavelka N, Van Dommelen SL, Andoniou CE, Belardelli F, et al. A contribution of mouse dendritic cell-derived IL-2 for NK cell activation. J Exp Med.2004;200(3):287-95.
    43. Semino C, Angelini G, Poggi A, Rubartelli A. NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood.2005;106(2):609-16.
    44. Piccioli D, Sbrana S, Melandri E, Valiante NM. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med. 2002;195(3):335-41.
    45. Vitale M, Della Chiesa M, Carlomagno S, Pende D, Arico M, Moretta L, et al. NK-dependent DC maturation is mediated by TNFalpha and IFNgamma released upon engagement of the NKp30 triggering receptor. Blood.2005;106(2):566-71.
    46. Terme M, Tomasello E, Maruyama K, Crepineau F, Chaput N, Flament C, et al. IL-4 confers NK stimulatory capacity to murine dendritic cells:a signaling pathway involving KARAP/DAP12-triggering receptor expressed on myeloid cell 2 molecules. J Immunol.2004;172(10):5957-66.
    47. Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Munz C. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med.2002;195(3):343-51.
    48. Hayakawa Y, Screpanti V, Yagita H, Grandien A, Ljunggren HG, Smyth MJ, et al. NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy. J Immunol.2004;172(1):123-9.
    49. Carbone E, Terrazzano G, Melian A, Zanzi D, Moretta L, Porcelli S, et al. Inhibition of human NK cell-mediated killing by CD1 molecules. J Immunol. 2000;164(12):6130-7.
    50. Leong CC, Chapman TL, Bjorkman PJ, Formankova D, Mocarski ES, Phillips JH, et al. Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection:the role of endogenous class Ⅰ major histocompatibility complex and a viral class I homolog. J Exp Med.1998;187(10):1681-7.
    51. Pende D, Castriconi R, Romagnani P, Spaggiari GM, Marcenaro S, Dondero A, et al. Expression of the DNAM-1 ligands, Nectin-2 (CD 112) and poliovirus receptor (CD155), on dendritic cells:relevance for natural killer-dendritic cell interaction. Blood.2006;107(5):2030-6.
    52. Fletcher JM, Prentice HG, Grundy JE. Natural killer cell lysis of cytomegalovirus (CMV)-infected cells correlates with virally induced changes in cell surface lymphocyte function-associated antigen-3 (LFA-3) expression and not with the CMV-induced down-regulation of cell surface class Ⅰ HLA. J Immunol. 1998;161(5):2365-74.
    53. Zhixia Zhou, Cai Zhang Chengfeng Xia, Wenlan Chen, Huawei Zhu, Pingping Shang, Fang Ma, Peng George Wang, Jian Zhang, Wenfang Xu, Zhigang Tian. Enhanced antitumor effects by chemical modified IGb3 analogues. Mol Cancer Ther. 2011.10(8):1375-84.
    54. Ferlazzo G, Thomas D, Lin SL, Goodman K, Morandi B, Muller WA, et al. The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol.2004;172(3):1455-62.
    55. Moretta A. Natural killer cells and dendritic cells:rendezvous in abused tissues. Nat Rev Immunol.2002;2(12):957-64.
    56. Lande R, Giacomini E, Grassi T, Remoli ME, Iona E, Miettinen M, et al. IFN-alpha beta released by Mycobacterium tuberculosis-infected human dendritic cells induces the expression of CXCL10:selective recruitment of NK and activated T cells. J Immunol.2003; 170(3):1174-82.
    57. Pardoll DM. Immunology. Stress, NK receptors, and immune surveillance. Science.2001;294(5542):534-6.
    58. Ferlazzo G, Morandi B, D'Agostino A, Meazza R, Melioli G, Moretta A, et al. The interaction between NK cells and dendritic cells in bacterial infections results in rapid induction of NK cell activation and in the lysis of uninfected dendritic cells. Eur J Immunol.2003;33(2):306-13.
    59. Tosi D, Valenti R, Cova A, Sovena G, Huber V, Pilla L, et al. Role of cross-talk between IFN-alpha-induced monocyte-derived dendritic cells and NK cells in priming CD8+T cell responses against human tumor antigens. J Immunol. 2004;172(9):5363-70.
    60. Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, et al. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol.2004;5(12):1260-5.
    61. van den Broeke LT, Daschbach E, Thomas EK, Andringa G, Berzofsky JA. Dendritic cell-induced activation of adaptive and innate antitumor immunity. J Immunol.2003;171(11):5842-52.
    62. Turner JG, Rakhmilevich AL, Burdelya L, Neal Z, Imboden M, Sondel PM, et al. Anti-CD40 antibody induces antitumor and antimetastatic effects:the role of NK cells. J Immunol.2001;166(1):89-94.
    63. Borg C, Terme M, Taieb J, Menard C, Flament C, Robert C, et al. Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest.2004;114(3):379-88.
    64. Mocikat R, Braumuller H, Gumy A, Egeter O, Ziegler H, Reusch U, et al. Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity.2003;19(4):561-9.
    65. Kelly JM, Darcy PK, Markby JL, Godfrey DI, Takeda K, Yagita H, et al. Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol.2002;3(1):83-90.
    66. Hardy MY, Kassianos AJ, Vulink A, Wilkinson R, Jongbloed SL, Hart DN, et al. NK cells enhance the induction of CTL responses by IL-15 monocyte-derived dendritic cells. Immunol Cell Biol.2009;87(8):606-14.
    67. Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X, Astemborski J, et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science. 2004;305(5685):872-4.
    68. Warfield KL, Perkins JG, Swenson DL, Deal EM, Bosio CM, Aman MJ, et al. Role of natural killer cells in innate protection against lethal ebola virus infection. J Exp Med.2004;200(2):169-79.
    69. Scott-Algara D, Truong LX, Versmisse P, David A, Luong TT, Nguyen NV, et al. Cutting edge:increased NK cell activity in HIV-1-exposed but uninfected Vietnamese intravascular drug users. J Immunol.2003;171(11):5663-7.
    70. Vivier E, Biron CA. Immunology. A pathogen receptor on natural killer cells. Science.2002;296(5571):1248-9.
    71. Nguyen KB, Salazar-Mather TP, Dalod MY, Van Deusen JB, Wei XQ, Liew FY, et al. Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. J Immunol.2002;169(8):4279-87.
    72. Orange JS, Biron CA. An absolute and restricted requirement for IL-12 in natural killer cell IFN-gamma production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J Immunol.1996; 156(3):1138-42.
    73. Krug A, French AR, Barchet W, Fischer JA, Dzionek A, Pingel JT, et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity. 2004;21(1):107-19.
    74. Lee SH, Zafer A, de Repentigny Y, Kothary R, Tremblay ML, Gros P, et al. Transgenic expression of the activating natural killer receptor Ly49H confers resistance to cytomegalovirus in genetically susceptible mice. J Exp Med. 2003;197(4):515-26.
    75. Dokun AO, Kim S, Smith HR, Kang HS, Chu DT, Yokoyama WM. Specific and nonspecific NK cell activation during virus infection. Nat Immunol. 2001;2(10):951-6.
    76. Andrews DM, Scalzo AA, Yokoyama WM, Smyth MJ, Degli-Esposti MA. Functional interactions between dendritic cells and NK cells during viral infection. Nat Immunol.2003;4(2):175-81.
    77. Jefford M, Maraskovsky E, Cebon J, Davis ID. The use of dendritic cells in cancer therapy. Lancet Oncol.2001;2(6):343-53.
    78. Foley R, Tozer R, Wan Y. Genetically modified dendritic cells in cancer therapy: implications for transfusion medicine. Transfus Med Rev.2001;15(4):292-304.
    79. Dallal RM, Lotze MT. The dendritic cell and human cancer vaccines. Curr Opin Immunol.2000;12(5):583-8.
    80. Scott-Taylor TH, Pettengell R, Clarke Ⅰ, Stuhler G, La Barthe MC, Walden P, et al. Human tumour and dendritic cell hybrids generated by electrofusion:potential for cancer vaccines. Biochim Biophys Acta.2000;1500(3):265-79.
    81. Scott-Taylor TH, Pettengell R, Clarke I, Stuhler G, La Barthe MC, Walden P, et al. Human tumour and dendritic cell hybrids generated by electrofusion:potential for cancer vaccines. Biochim Biophys Acta.2000;1500(3):265-79.
    82. Wei XC, Zhai XH, Han XR, Yang DD, Zhao WL. Biological activity of DC-CIK cells and its effect against leukemia cells in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi.2008;16(5):1150-3.
    83. Li Q, Kobayashi M, Kawada T. Effect of ziram on NK, lymphokine-activated killer, and cytotoxic T lymphocyte activity. Arch Toxicol.2011.
    1. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783-801.
    2. Medzhitov R, Janeway C, Jr. Innate immunity. N Engl J Med. 2000;343(5):338-44.
    3. Chen G, Shaw MH, Kim YG, Nunez G. NOD-like receptors:role in innate immunity and inflammatory disease. Annu Rev Pathol.2009;4:365-98.
    4. Akira S. Mammalian Toll-like receptors. Curr Opin Immunol.2003;15(1):5-11.
    5. Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem J.2009;420(1):1-16.
    6. Duez C, Gosset P, Tonnel AB. Dendritic cells and toll-like receptors in allergy and asthma. Eur J Dermatol.2006;16(1):12-6.
    7. Schreibelt G, Tel J, Sliepen KH, Benitez-Ribas D, Figdor CG, Adema GJ, et al. Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy. Cancer Immunol Immunother.2010;59(10):1573-82.
    8. Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell. 2001;106(3):263-6.
    9. Diebold SS. Activation of dendritic cells by toll-like receptors and C-type lectins. Handb Exp Pharmacol.2009(188):3-30.
    10. West MA, Wallin RP, Matthews SP, Svensson HG, Zaru R, Ljunggren HG, et al. Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science.2004;305(5687):1153-7.
    11. Mellman I, Steinman RM. Dendritic cells:specialized and regulated antigen processing machines. Cell.2001;106(3):255-8.
    12. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol.2004;5(10):987-95.
    13. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med.2001;194(6):863-9.
    14. Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol.2001;31(11):3388-93.
    15. van der Aar AM, Sylva-Steenland RM, Bos JD, Kapsenberg ML, de Jong EC, Teunissen MB. Loss of TLR2, TLR4, and TLR5 on Langerhans cells abolishes bacterial recognition. J Immunol.2007; 178(4):1986-90.
    16. Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun.2009;388(4):621-5.
    17. Dunston CR, Griffiths HR. The effect of ageing on macrophage Toll-like receptor-mediated responses in the fight against pathogens. Clin Exp Immunol. 2010;161(3):407-16.
    18. Georgel P, Macquin C, Bahram S. The heterogeneous allelic repertoire of human toll-like receptor (TLR) genes. PLoS One.2009;4(11):e7803.
    19. Kimbrell DA, Beutler B. The evolution and genetics of innate immunity. Nat Rev Genet.2001;2(4):256-67.
    20. Stagg AJ, Burke F, Hill S, Knight SC. Isolation of mouse spleen dendritic cells. Methods Mol Med.2001;64:9-22.
    21. Basu A, Chakrabarti G, Saha A, Bandyopadhyay S. Modulation of CD11C+ splenic dendritic cell functions in murine visceral leishmaniasis:correlation with parasite replication in the spleen. Immunology.2000;99(2):305-13.
    22. Edwards AD, Diebold SS, Slack EM, Tomizawa H, Hemmi H, Kaisho T, et al. Toll-like receptor expression in murine DC subsets:lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol. 2003;33(4):827-33.
    23. Okada T, Lian ZX, Naiki M, Ansari AA, Ikehara S, Gershwin ME. Murine thymic plasmacytoid dendritic cells. Eur J Immunol.2003;33(4):1012-9.
    24. An H, Qian C, Cao X. Regulation of Toll-like receptor signaling in the innate immunity. Sci China Life Sci.2010;53(1):34-43.
    25. Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol. 2008;9(4):361-8.
    26. Dunne A, Ejdeback M, Ludidi PL, O'Neill LA, Gay NJ. Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88. J Biol Chem.2003;278(42):41443-51.
    27. O'Neill LA, Bowie AG. The family of five:TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol.2007;7(5):353-64.
    28. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1(2):135-45.
    29. Akira S, Takeda K, Kaisho T. Toll-like receptors:critical proteins linking innate and acquired immunity. Nat Immunol.2001;2(8):675-80.
    30. Janssens S, Beyaert R. A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends Biochem Sci.2002;27(9):474-82.
    31. Yao CL, Kong P, Wang ZY, Ji PF, Liu XD, Cai MY, et al. Molecular cloning and expression of MyD88 in large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol.2009;26(2):249-55.
    32. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature.2001;413(6851):78-83.
    33. Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature.2002;420(6913):324-9.
    34. Horng T, Barton GM, Flavell RA, Medzhitov R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature.2002;420(6913):329-33.
    35. Kagan JC, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell.2006;125(5):943-55.
    36. Ohnishi H, Tochio H, Kato Z, Orii KE, Li A, Kimura T, et al. Structural basis for the multiple interactions of the MyD88 TIR domain in TLR4 signaling. Proc Natl Acad Sci U S A.2009; 106(25):10260-5.
    37. Bin LH, Xu LG, Shu HB. TIRP, a novel Toll/interleukin-1 receptor (TIR) domain-containing adapter protein involved in TIR signaling. J Biol Chem. 2003;278(27):24526-32.
    38. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301(5633):640-3.
    39. Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol.2003;4(2):161-7.
    40. Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, et al. Cutting edge:a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol. 2002;169(12):6668-72.
    41. Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol.2003;171(8):4304-10.
    42. Lu ZY, Yu SP, Wei JF, Wei L. Age-related neural degeneration in nuclear-factor kappaB p50 knockout mice. Neuroscience.2006;139(3):965-78.
    43. Reis e Sousa C. Toll-like receptors and dendritic cells:for whom the bug tolls. Semin Immunol.2004;16(1):27-34.
    44. Hochrein H, Shortman K, Vremec D, Scott B, Hertzog P, O'Keeffe M. Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. J Immunol.2001;166(9):5448-55.
    45. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005;17(1):1-14.
    46. Colonna M. TLR pathways and IFN-regulatory factors:to each its own. Eur J Immunol.2007;37(2):306-9.
    47. Golden JM, LaCasse CJ, Simova DV, Murphy TR, Kurt RA. Differential mediator production by dendritic cells upon toll-like receptor stimulation does not impact T cell cytokine expression. Immunol Lett.2008;118(1):30-5.
    48. Sher A, Pearce E, Kaye P. Shaping the immune response to parasites:role of dendritic cells. Curr Opin Immunol.2003;15(4):421-9.
    49. Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol.2003;3(12):984-93.
    50. Barton GM, Medzhitov R. Control of adaptive immune responses by Toll-like receptors. Curr Opin Immunol.2002;14(3):380-3.
    51. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. Toll-like receptors control activation of adaptive immune responses. Nat Immunol. 2001;2(10):947-50.
    52. Sun J, Walsh M, Villarino AV, Cervi L, Hunter CA, Choi Y, et al. TLR ligands can activate dendritic cells to provide a MyD88-dependent negative signal for Th2 cell development. J Immunol.2005;174(2):742-51.
    53. Pulendran B, Kumar P, Cutler CW, Mohamadzadeh M, Van Dyke T, Banchereau J. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J Immunol.2001;167(9):5067-76.
    54. Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML. T-cell priming by type-1 and type-2 polarized dendritic cells:the concept of a third signal. Immunol Today. 1999;20(12):561-7.
    55. Agrawal S, Agrawal A, Doughty B, Gerwitz A, Blenis J, Van Dyke T, et al. Cutting edge:different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J Immunol.2003; 171(10):4984-9.
    56. Dillon S, Agrawal A, Van Dyke T, Landreth G, McCauley L, Koh A, et al. A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J Immunol.2004;172(8):4733-43.
    57. Netea MG, Van der Meer JW, Sutmuller RP, Adema GJ, Kullberg BJ. From the Thl/Th2 paradigm towards a Toll-like receptor/T-helper bias. Antimicrob Agents Chemother.2005;49(10):3991-6.
    58. Pulendran B. Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol Rev.2004; 199:227-50.
    59. Diebold SS, Montoya M, Unger H, Alexopoulou L, Roy P, Haswell LE, et al. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature.2003;424(6946):324-8.
    60. Le Bon A, Etchart N, Rossmann C, Ashton M, Hou S, Gewert D, et al. Cross-priming of CD8+T cells stimulated by virus-induced type I interferon. Nat Immunol.2003;4(10):1009-15.
    61. Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E, et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. ProcNatl Acad Sci U S A.1999;96(3):1036-41.
    62. Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science. 1999;283(5405):1183-6.
    63. Gautier G, Humbert M, Deauvieau F, Scuiller M, Hiscott J, Bates EE, et al. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J Exp Med.2005;201(9):1435-46.
    64. Lebre MC, Burwell T, Vieira PL, Lora J, Coyle AJ, Kapsenberg ML, et al. Differential expression of inflammatory chemokines by Thl-and Th2-cell promoting dendritic cells:a role for different mature dendritic cell populations in attracting appropriate effector cells to peripheral sites of inflammation. Immunol Cell Biol. 2005;83(5):525-35.
    65. Andrews DM, Andoniou CE, Scalzo AA, van Dommelen SL, Wallace ME, Smyth MJ, et al. Cross-talk between dendritic cells and natural killer cells in viral infection. Mol Immunol.2005;42(4):547-55.
    66. Koltsida O, Hausding M, Stavropoulos A, Koch S, Tzelepis G, Ubel C, et al. IL-28A (IFN-lambda2) modulates lung DC function to promote Thl immune skewing and suppress allergic airway disease. EMBO Mol Med.2011;3(6):348-61.
    67. Schwarz K, Storni T, Manolova V, Didierlaurent A, Sirard JC, Rothlisberger P, et al. Role of Toll-like receptors in costimulating cytotoxic T cell responses. Eur J Immunol.2003;33(6):1465-70.
    68. Mesenchymal gene-expression profile identifies subgroup of glioblastoma patients that may be more responsive to dendritic cell vaccine. Expert Rev Mol Diagn. 2011;11(4):358.
    69. Rapp M, Ozcan Z, Steiger HJ, Wernet P, Sabel MC, Sorg RV. Cellular immunity of patients with malignant glioma:prerequisites for dendritic cell vaccination immunotherapy. J Neurosurg.2006;105(1):41-50.
    1. Yokoyama WM. Mistaken notions about natural killer cells. Nat Immuno.2008; 19: 481-485.
    2. Raulet DH. Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immuno 1.2004; 5:996-1002.
    3. Krebs P, Barnes MJ, Lampe K, Whitley K, Bahjat KS, et al. NK-cell-mediated killing of target cells triggers robust antigen-specific T-cell-mediated and humoral responses. Blood.2009; 113:6593-6602.
    4. Lee SH, Kim KS, Fodil-Cornu N, Vidal SM, Biron CA. Activating receptors promote NK cell expansion for maintenance, IL-10 production, and CD8 T cell regulation during viral infection. J Exp Med.2009; 206:2235-2251.
    5. Laskay T, Diefenbach A, Rollinghoff M, Solbach W. Early parasite containment is decisive for resistance to Leishmania major infection. Eur J Immunol.1995; 25: 2220-2227.
    6. Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, et al. Dendritic cells directly trigger NK cell functions:cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med.1995; 5:405-411.
    7. Marceau M, Sebbane F, Collyn F, Simonet M. Function and regulation of the Salmonella-like pmrF antimicrobial peptide resistance operon in Yersinia pseudotuberculosis. Adv Exp Med Biol.2003; 529:253-256.
    8. Dhiman R, Indramohan M, Barnes PF, Nayak RC, Paidipally P, et al. IL-22 produced by human NK cells inhibits growth of Mycobacterium tuberculosis by enhancing phagolysosomal fusion. J Immunol.2009; 183:6639-6645.
    9. Newman KC, Riley EM. Whatever turns you on:accessory-cell-dependent activation of NK cells by pathogens. Nat Rev Immunol.2007; 7:279-291.
    10. Babic M, Pyzik M, Zafirova B, Mitrovic M, Butorac V, et al. Cytomegalovirus immunoevasin reveals the physiological role of "missing self recognition in natural killer cell dependent virus control in vivo. J Exp Med.2010; 207:2663-2673.
    11. Raulet DH.Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol.2003;3:781-790.
    12. Watzl C. The NKG2D receptor and its ligands-recognition beyond the "missing self"? Microbes Infect.2003; 5:31-37.
    13. Vance RE, Jamieson AM, Raulet DH. Recognition of the class Ib molecule Qa-1(b) by putative activating receptors CD94/NKG2C and CD94/NKG2E on mouse natural killer cells. J Exp Med.1999; 190:1801-1812.
    14. Persson CM, Assarsson E, Vahlne G, Brodin P, Chambers BJ. Critical role of Qalb in the protection of mature dendritic cells from NK cell-mediated killing. Scand J Immunol.2008; 67:30-36.
    15. Zwirner NW, Fuertes MB, Girart MV, Domaica CI, Rossi LE.Cytokine-driven regulation of NK cell functions in tumor immunity:role of the MICA-NKG2D system. Cytokine Growth Factor Rev.2007; 18:159-170.
    16. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med.2002; 195:327-333.
    17. Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA.NK cell and DC interactions. Trends Immunol.2004; 25:47-52.
    18. Moretta A.Natural killer cells and dendritic cells:rendezvous in abused tissues. Nat Rev Immunol.2002; 2:957-964.
    19. Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E.) Natural-killer cells and dendritic cells:"1'union fait la force". Blood.2005; 106:2252-2258.
    20. Lapaque N, Walzer T, Meresse S, Vivier E, Trowsdale J. Interactions between human NK cells and macrophages in response to Salmonella infection. J Immunol.2009; 182:4339-4348.
    21. Klezovich-Benard M, Corre JP, Jusforgues-Saklani H, Fiole D, Burjek N, et al. Mechanisms of NK cell-macrophage Bacillus anthracis crosstalk:a balance between stimulation by spores and differential disruption by toxins. PLoS Pathog.2012;8: el002481.
    22. Nedvetzki S, Sowinski S, Eagle RA, Harris J, Vely F, et al. Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses. Blood.2007;109:3776-3785.
    23. Jiang Q, Wei H, Tian Z. Poly I:C enhances cycloheximide-induced apoptosis of tumor cells through TLR3 pathway. BMC Cancer.2008; 8:12.
    24. McQueen KL, Parham P.Variable receptors controlling activation and inhibition of NK cells. Curr Opin Immunol.2002; 14:615-621.
    25. Moretta L, Bottino C, Pende D, Castriconi R, Mingari MC, et al. Surface NK receptors and their ligands on tumor cells. Semin Immunol.2006; 18:151-158.
    26. Colmenero P, Zhang AL, Qian T, Lu L, Cantor H, et al. Qa-1(b)-dependent modulation of dendritic cell and NK cell cross-talk in vivo. J Immunol.2007; 179: 4608-4615.
    27. Salem ML, El-Naggar SA, Kadima A, Gillanders WE, Cole DJ. The adjuvant effects of the toll-like receptor 3 ligand polyinosinic-cytidylic acid poly (I:C) on antigen-specific CD8+ T cell responses are partially dependent on NK cells with the induction of a beneficial cytokine milieu. Vaccine.2006; 24:5119-5132.
    28. Whitmore MM, DeVeer MJ, Edling A, Oates RK, Simons B, et al. Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced antitumor activity. Cancer Res.2004; 64:5850-5860.
    29. Reimer T, Brcic M, Schweizer M, Jungi TW. poly(I:C) and LPS induce distinct IRF3 and NF-kappaB signaling during type-I IFN and TNF responses in human macrophages. J Leukoc Biol.2008; 83:1249-1257.
    30. Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, et al. Macrophage receptors and immune recognition. Annu Rev Immunol.2005; 23: 901-944.
    31. Wang J, Xu J, Zhang W, Wei H, Tian Z. TLR3 ligand-induced accumulation of activated splenic natural killer cells into liver. Cell Mol Immunol.2005; 2:449-453.
    32. Wang J, Sun R, Wei H, Dong Z, Gao B, et al. (2006) Poly I:C prevents T cell-mediated hepatitis via an NK-dependent mechanism. J Hepatol 44:446-454.
    33. Hamerman JA, Ogasawara K, Lanier LL. Cutting edge:Toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor. J Immunol.2004;172:2001-2005.
    34. Jinushi M, Takehara T, Tatsumi T, Kanto T, Groh V, et al. Autocrine/paracrine IL-15 that is required for type Ⅰ IFN-mediated dendritic cell expression of MHC class I-related chain A and B is impaired in hepatitis C virus infection. J Immunol.2003; 171:5423-5429.
    35. Jinushi M, Takehara T, Kanto T, Tatsumi T, Groh V, et al. Critical role of MHC class I-related chain A and B expression on IFN-alpha-stimulated dendritic cells in NK cell activation:impairment in chronic hepatitis C virus infection. J Immunol.2003; 170:1249-1256.
    36. Baratin M, Roetynck S, Lepolard C, Falk C, Sawadogo S, et al. Natural killer cell and macrophage cooperation in MyD88-dependent innate responses to Plasmodium falciparum. Proc Natl Acad Sci U S A.2005; 102:14747-14752.
    37. Elhaik-Goldman S, Kafka D, Yossef R, Hadad U, Elkabets M, et al. The natural cytotoxicity receptor 1 contribution to early clearance of Streptococcus pneumoniae and to natural killer-macrophage cross talk. PLoS One.2011; 6:e23472.
    38. Bellora F, Castriconi R, Dondero A, Reggiardo G, Moretta L, et al. The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proc Natl Acad Sci U S A.2010; 107:21659-21664.
    39. Romo N, Magri G, Muntasell A, Heredia G, Baia D, et al. Natural killer cell-mediated response to human cytomegalovirus-infected macrophages is modulated by their functional polarization. J Leukoc Biol.2011; 90:717-726.
    40. Prajeeth CK, Haeberlein S, Sebald H, Schleicher U, Bogdan C.Leishmania-infected macrophages are targets of NK cell-derived cytokines but not of NK cell cytotoxicity. Infect Immun.2011; 79:2699-2708.
    41. Tjwa ET, van Oord GW, Biesta PJ, Boonstra A, Janssen HL, et al. Restoration of TLR3-activated myeloid dendritic cell activity leads to improved natural killer cell function in chronic hepatitis B.2012; J Virol.
    42. Groh V, Wu J, Yee C, Spies T.Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature.2002; 419:734-738.
    43. Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol.2005; 6: 928-937.
    44. Lu L, Ikizawa K, Hu D, Werneck MB, Wucherpfennig KW, et al. Regulation of activated CD4+ T cells by NK cells via the Qa-1-NKG2A inhibitory pathway. Immunity.2007; 26:593-604.
    45. Ota T, Takeda K, Akiba H, Hayakawa Y, Ogasawara K, et al. IFN-gamma-mediated negative feedback regulation of NKT-cell function by CD94/NKG2. Blood.2005; 106:184-192.
    46. Roberts AI, Lee L, Schwarz E, Groh V, Spies T, et al. NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol.2001; 167:5527-5530.
    47. Zhang C, Zhang J, Niu J, Tian Z.Interleukin-15 improves cytotoxicity of natural killer cells via up-regulating NKG2D and cytotoxic effector molecule expression as well as STAT1 and ERK1/2 phosphorylation. Cytokine.2008;42:128-136.
    48. Zhang C, Zhang J, Niu J, Zhou Z, Tian Z. Interleukin-12 improves cytotoxicity of natural killer cells via upregulated expression of NKG2D. Hum Immunol.2008; 69: 490-500.
    49. Coudert JD, Zimmer J, Tomasello E, Cebecauer M, Colonna M, et al. Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood.2008; 106:1711-1717.
    50. Zhang C, Zhang J, Sun R, Feng J, Wei H, et al. Opposing effect of IFNgamma and IFNalpha on expression of NKG2 receptors:negative regulation of IFN gamma on NK cells. Int Immunopharmaco.2005; 15:1057-1067.
    51. Wu JD, Higgins LM, Steinle A, Cosman D, Haugk K, et al. Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest.2004; 114:560-568.
    52. Wang H, Ruan Z, Wang Y, Han J, Fu X, et al. MHC class I chain-related molecules induced on monocytes by IFN-gamma promote NK cell activation. Mol Immunol.2004;45:1548-1556.
    1. Caldwell S, Park SH.The epidemiology of hepatocellular cancer:from the perspectives of public health problem to tumor biology. J Gastroenterol 44 Suppl.2009; 19:96-101.
    2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. Global cancer statistics. CA Cancer J Clin.2011; 61:69-90.
    3. Oosterhoff D, Sluijter BJ, Hangalapura BN, de Gruijl TD.The dermis as a portal for dendritic cell-targeted immunotherapy of cutaneous melanoma. Curr Top Microbiol Immunol.2012;351:181-220.
    4. Hanson L, Hermanson J, Lee J, Nickelson J, Sloan R. Helpful hints in caring for patients receiving biotherapy. Rigors associated with outpatient tumor necrosis factor administration. Oncol Nurs Forum.1990; 17:963.
    5. Tarhini AA, Cherian J, Moschos SJ, Tawbi HA, Shuai Y, et al. Safety and efficacy of combination immunotherapy with interferon alfa-2b and tremelimumab in patients with stage Ⅳ melanoma. J Clin Oncol.2012; 30:322-328.
    6. Hoshimoto S, Faries MB, Morton DL, Shingai T, Kuo C, et al. Assessment of prognostic circulating tumor cells in a phase Ⅲ trial of adjuvant immunotherapy after complete resection of stage Ⅳ melanoma. Ann Surg.2012; 255:357-362.
    7. Brown MG, Dokun AO, Heusel JW, Smith HR, Beckman DL, et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science.2001; 292:934-937.
    8. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science.2002; 296: 1323-1326.
    9. Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U S A.2002; 99:8826-8831.
    10. Lanier LL. NK cell recognition. Annu Rev Immunol.2005; 23:225-274.
    11. Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem J.2009; 420:1-16.
    12. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science.2005; 308: 1626-1629.
    13. Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol.2002;3:499.
    14. Gorski KS, Waller EL, Bjornton-Severson J, Hanten JA, Riter CL, et al. Distinct indirect pathways govern human NK-cell activation by TLR-7 and TLR-8 agonists. Int Immunol.2006; 18:1115-1126.
    15. Tyring S.Imiquimod applied topically:A novel immune response modifier. Skin Therapy Lett.2001; 6:1-4.
    16. Shukla NM, Mutz CA, Malladi SS, Warshakoon HJ, Balakrishna R, et al. Toll-Like Receptor (TLR)-7 and -8 Modulatory Activities of Dimeric Imidazoquinolines. J Med Chem.2012; 55:1106-1116.
    17. Ma F, Zhang J, Zhang C. The TLR7 agonists Imiquimod and Gardiquimod improve DC-based immunotherapy for melanoma in mice. Cell Mol Immunol.2012; 7: 381-388.
    18. Hart OM, Athie-Morales V, O'Connor GM, Gardiner CM. TLR7/TLR8-mediated activation of human NK cells results in accessory cell-dependent IFN-gamma production. J Immunol.2005; 175:1636-1642.
    19. Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A.2004; 101:5598-5603.
    20. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science.2004; 303:1526-1529.
    21. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med.2001; 194:863-869.
    22. Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol.2001;31:3388-3393.
    23. van der Aar AM, Sylva-Steenland RM, Bos JD, Kapsenberg ML, de Jong EC, et al. Loss of TLR2, TLR4, and TLR5 on Langerhans cells abolishes bacterial recognition. J Immunol.2007; 178:1986-1990.
    24. Gorden KB, Gorski KS, Gibson SJ, Kedl RM, Kieper WC, et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol.2005;174:1259-1268.
    25. Smits EL, Ponsaerts P, Berneman ZN, Van Tendeloo VF. The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist.2008; 13: 859-875.
    26. Alter G, Suscovich TJ, Teigen N, Meier A, Streeck H, et al. Single-stranded RNA derived from HIV-1 serves as a potent activator of NK cells. J Immunol.2007; 178: 7658-7666.
    27. Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, et al. Dendritic cells directly trigger NK cell functions:cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med.1999; 5:405-411.
    28. Granucci F, Zanoni I, Pavelka N, Van Dommelen SL, Andoniou CE, et al. A contribution of mouse dendritic cell-derived IL-2 for NK cell activation. J Exp Med.2004; 200:287-295.
    29. Piccioli D, Sbrana S, Melandri E, Valiante NM. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med.2002; 195:335-341.
    30. Vitale M, Della Chiesa M, Carlomagno S, Pende D, Arico M, et al. NK-dependent DC maturation is mediated by TNFalpha and IFNgamma released upon engagement of the NKp30 triggering receptor. Blood.2005; 106:566-571.
    31. Wilson JL, Charo J, Martin-Fontecha A, Dellabona P, Casorati G, et al. NK cell triggering by the human costimulatory molecules CD80 and CD86. J Immunol.1999; 163:4207-4212.
    32. Dong K, Ge JH, Gu SL, Li S, Zhu WG, et al. Ox-LDL can enhance the interaction of mice natural killer cells and dendritic cells via the CD48-2B4 pathway. Heart Vessels.2011; 26:637-645.
    33. Ferlazzo G, Munz C.NK cell compartments and their activation by dendritic cells. J Immunol.2004; 172:1333-1339.
    34. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med.2002; 195:327-333.
    35. Tosi D, Valenti R, Cova A, Sovena G, Huber V, et al. Role of cross-talk between IFN-alpha-induced monocyte-derived dendritic cells and NK cells in priming CD8+T cell responses against human tumor antigens. J Immunol.2004; 172:5363-5370.
    36. Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, et al. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol.2004;5:1260-1265.
    37. Hardy MY, Kassianos AJ, Vulink A, Wilkinson R, Jongbloed SL, et al. NK cells enhance the induction of CTL responses by IL-15 monocyte-derived dendritic cells. Immunol Cell Bio.2009;187:606-614.
    38. Gibson SJ, Lindh JM, Riter TR, Gleason RM, Rogers LM, et al. Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, Imiquimod and resiquimod. Cell Immunol.2002; 218:74-86.
    39. Lu H, Dietsch GN, Matthews MA, Yang Y, Ghanekar S, et al. VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC. Clin Cancer Res.2012; 18:499-509.
    40. Clifford HD, Yerkovich ST, Khoo SK, Zhang G, Upham J, et al. Toll-like receptor 7 and 8 polymorphisms:associations with functional effects and cellular and antibody responses to measles virus and vaccine. Immunogenetics.2012; 64:219-228.
    41. van den Boom JG, Konijnenberg D, Tjin EP, Picavet DI, Meeuwenoord NJ, et al. Effective melanoma immunotherapy in mice by the skin-depigmenting agent monobenzone and the adjuvants Imiquimod and CpG. PLoS On.2010;e 5:el0626.
    42. Schon MP, Schon M.TLR7 and TLR8 as targets in cancer therapy. Oncogen.2008;e 27:190-199.
    43. Leung PY, Stevens SL, Packard AE, Lessov NS, Yang T, et al. Toll-Like Receptor 7 Preconditioning Induces Robust Neuroprotection Against Stroke by a Novel Type I Interferon-Mediated Mechanism.2012.Stroke.
    44. Martinez V, Molina JM, Scieux C, Ribaud P, Morfin F. Topical Imiquimod for recurrent acyclovir-resistant HSV infection. Am J Med.2006; 119:e9-11.
    45. Moller-Larsen S, Nyegaard M, Haagerup A, Vestbo J, Kruse TA, et al. Association analysis identifies TLR7 and TLR8 as novel risk genes in asthma and related disorders. Thorax.2008; 63:1064-1069.
    46. Yamamoto M, Tatsumi T, Miyagi T, Tsunematsu H, Aketa H, et al. alpha-Fetoprotein impairs activation of natural killer cells by inhibiting the function of dendritic cells. Clin Exp Immunol.2011; 165:211-219.
    47. Bray SM, Vujanovic L, Butterfield LH.Dendritic cell-based vaccines positively impact natural killer and regulatory T cells in hepatocellular carcinoma patients. Clin Dev Immunol.2011; 2011:249281.
    48. Berger M, Ablasser A, Kim S, Bekeredjian-Ding I, Giese T, et al. TLR8-driven IL-12-dependent reciprocal and synergistic activation of NK cells and monocytes by immunostimulatory RNA. J Immunother.2009; 32:262-271.
    49. Nguyen-Pham TN, Im CM, Nguyen TA, Lim MS, Hong CY, et al. Induction of myeloma-specific cytotoxic T lymphocytes responses by natural killer cells stimulated-dendritic cells in patients with multiple myeloma. Leuk Res.2011; 35: 1241-1247.
    50. Tanaka S, Koizumi S, Masuko K, Makiuchi N, Aoyagi Y, et al. Toll-like receptor-dependent IL-12 production by dendritic cells is required for activation of natural killer cell-mediated Type-1 immunity induced by Chrysanthemum coronarium L. Int Immunopharmacol.2011; 11:226-232.
    51. Boudreau JE, Stephenson KB, Wang F, Ashkar AA, Mossman KL, et al. IL-15 and type I interferon are required for activation of tumoricidal NK cells by virus-infected dendritic cells. Cancer Res.2011; 71:2497-2506.
    52. Andrews DM, Scalzo AA, Yokoyama WM, Smyth MJ, Degli-Esposti MA.Functional interactions between dendritic cells and NK cells during viral infection. Nat Immunol.2003; 4:175-181.
    53. Veliz Rodriguez T, Moalli F, Polentarutti N, Paroni M, Bonavita E, et al. Role of Toll interleukin-1 receptor (IL-1R) 8, a negative regulator of IL-1R/Toll-like receptor signaling, in resistance to acute Pseudomonas aeruginosa lung infection. Infect Immun.2012; 80:100-109.
    54. Yang L, Du C, Chen T, Li S, Nie W, et al. Distinct MAPK pathways are involved in IL-23 production in dendritic cells cocultured with NK cells in the absence or presence of angiotensin Ⅱ. Mol Immunol.2012.
    55. Van Elssen CH, Vanderlocht J, Frings PW, Senden-Gijsbers BL, Schnijderberg MC, et al. Klebsiella pneumoniae-triggered DC recruit human NK cells in a CCR5-dependent manner leading to increased CCL19-responsiveness and activation of NK cells. Eur J Immunol.2010; 40:3138-3149.
    56. Shimizu K, Asakura M, Fujii S. Prolonged antitumor NK cell reactivity elicited by CXCL10-expressing dendritic cells licensed by CD40L+ CD4+ memory T cells. J Immunol.2011; 186:5927-5937.
    57. Lin W, Chen YL, Jiang L, Chen JK. Reduced expression of chemerin is associated with a poor prognosis and a lowed infiltration of both dendritic cells and natural killer cells in human hepatocellular carcinoma. Clin Lab.2011; 57:879-885.
    58. Van Elssen CH, Vanderlocht J, Oth T, Senden-Gijsbers BL, Germeraad WT, et al. Inflammation-restraining effects of prostaglandin E2 on natural killer-dendritic cell (NK-DC) interaction are imprinted during DC maturation. Blood.2011;118: 2473-2482.
    59. Simhadri VL, Hansen HH, Simhadri VR, Reiners KS, Bessler M, et al. A novel role for reciprocal CD30-CD30L signaling in the crosstalk between Natural Killer and dendritic cells. Biol Chem.2011.
    60. Broomfield SA, van der Most RG, Prosser AC, Mahendran S, Tovey MG, et al. Locally administered TLR7 agonists drive systemic antitumor immune responses that are enhanced by anti-CD40 immunotherapy. J Immunol.2009; 182:5217-5224.
    61. Nakayama M, Takeda K, Kawano M, Takai T, Ishii N, et al. Natural killer (NK)-dendritic cell interactions generate MHC class Ⅱ-dressed NK cells that regulate CD4+Tcells. Proc Natl Acad Sci U S A.2011; 108:18360-18365.
    62. Barreira da Silva R, Munz C. Natural killer cell activation by dendritic cells: balancing inhibitory and activating signals. Cell Mol Life Sci.2011;68:3505-3518.
    63. Wehner R, Dietze K, Bachmann M, Schmitz M. The bidirectional crosstalk between human dendritic cells and natural killer cells. J Innate Immun.2011; 3: 258-263.
    64. Wai LE, Garcia JA, Martinez OM, Krams SM.Distinct roles for the NK cell-activating receptors in mediating interactions with dendritic cells and tumor cells. J Immunol.2011;186:222-229.
    65. Barreira da Silva R, Graf C, Munz C. Cytoskeletal stabilization of inhibitory interactions in immunologic synapses of mature human dendritic cells with natural killer cells. Blood.2011; 118:6487-6498.
    66. Borg C, Jalil A, Laderach D, Maruyama K, Wakasugi H, et al. NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood.2004; 104:3267-3275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700