用户名: 密码: 验证码:
Bi_(3.15)Nd_(0.85)Ti_3O_(12)铁电薄膜成分纵深分布及掺杂改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪90年代以后,随着微电子技术和计算机工业迅速的发展,具有高存储密度和存取速度、抗辐射、非挥发等特点的铁电薄膜存储器受到了人们的广泛关注。锆钛酸铅(PZT)系铁电材料具有一系列良好的性能,如较大的剩余极化值、较低的热处理温度等,是目前铁电存储器所用的主要材料。然而,PZT薄膜存在一些致命的缺点,如在金属电极上抗疲劳性能差,含有毒元素Pb等。在越来越重视环境保护的时代,寻求新的无铅铁电材料来取代PZT变得尤为重要。Bi_(3.15)Nd_(0.85)Ti_3O_(12)(BNT)铁电薄膜由于不含铅、结晶温度较低、剩余极化较大、抗疲劳性能好,被认为是最有希望取代PZT材料而应用于非挥发性铁电存储器的铁电薄膜材料。本文通过实验制备了BNT无铅铁电薄膜,详细研究了BNT薄膜组分沿薄膜纵深的分布及其化学态,同时研究了B位Zr掺杂对BNT薄膜性能的影响。具体如下:
     首先采用化学溶液沉积法(CSD)在Pt(111)/Ti/SiO_2/Si(100)基片上制备了BNT无铅铁电薄膜,并借助X射线衍射仪、原子力显微镜、X射线光电子能谱仪和铁电分析仪分别测试和分析了薄膜的成分、形貌、元素的纵向分布及化学态和电学性能。分析结果表明,所制的薄膜为铋层状钙钛矿结构多晶BNT薄膜,表面致密、无裂纹、无孔洞。BNT薄膜组分沿纵向分布明显不均匀,主要形成三个区域,即表面层、中间层和界面层。其中,在薄膜表面有大量铋元素积聚,而且薄膜表面层的成分主要是以金属氧化物的形式存在;铁电薄膜与Pt下电极之间形成厚度大约为50nm的界面层,这主要是由于BNT薄膜与Pt下电极相互热扩散造成的,同时在扩散的过程中,有少量Pt的化合物生成;薄膜中间层元素分布比较均匀。
     另外,采用CSD法在Pt(111)/Ti/SiO_2/Si(100)基片上制备了Zr离子掺杂的BNT (Bi_(3.15)Nd_(0.85)Ti_(3-x)Zr_xO_(12), BNTZ_x)铁电薄膜,并研究了Zr离子掺杂浓度x对薄膜的微观结构、铁电性能、I-V特性和居里温度的影响。研究结果表明:少量的Zr离子掺杂基本没有影响BNT薄膜的铋层状钙钛矿晶体结构;BNTZ薄膜的颗粒直径大约为150-250nm;随着Zr离子掺杂浓度的增加,薄膜表面粗糙度和剩余极化分别减小和增大,而当掺杂浓度增加到一定量时,薄膜表面粗糙度和剩余极化又分别增大和减小,掺杂量x为0.1时,薄膜具有最平整光滑的表面和最大的剩余极化强度(2Pr为52.7μC/cm~2);薄膜漏电流随着Zr掺杂浓度的增加而明显减小,当掺杂量x为0.2时,在高电压区域(高于3 V),BNTZ0.2薄膜的漏电流相对BNT薄膜的漏电流低四个数量级;B位Zr离子掺杂几乎没有改变BNT薄膜的居里温度,薄膜居里温度约为450℃。
In the 1990’s, with the rapid development of microelectronics and computer industry, non-volatile ferroelectric thin film memory has attracted much attention due to its high memory density, fast read/write speed, good radiation hardness and non-volatile characteristic. At present, the materials used to prepare ferroelectric thin film memory are mainly PZT series because they have some favorable properties, such as large remnant polarization (Pr) value and low processing temperature. However, PZT films have some serious drawbacks, such as poor fatigue endurance and harm to the environment. As people are paying more and more attention to the environment, it becomes very important to find a new kind of lead-free ferroelectric material with excellent ferroelectric property to replace PZT. Bi_(3.15)Nd_(0.85)Ti_3O_(12) (BNT) is currently regarded as one of the most promising candidate materials for ferroelectric thin film memories due to its lead-free chemical composition, low processing temperature, large Pr value and excellent fatigue endurence. In this work, BNT lead-free ferroelectric thin films were deposited. The compositional depth profiles and chemical states of the elements at different film depth of prepared BNT films were investigated in detail. In addition, the effects of B-site substitution by Zr ion in BNT film were studied. The main research contents and obtained results in this thesis are summarized as follows:
     BNT lead-free ferroelectric thin films were deposited on Pt(111)/Ti/SiO_2/Si(100) substrates by a chemical solution deposition (CSD) method. The compositions, surface morphologies, composition depth profiles, chemical states of film elements and electrical properties of BNT films were investigated in detail by X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy and ferroelectric test system, respectively. The prepared films are crystallized into a polycrystalline Bi-layered perovskite structure and no secondary phase formed. The surfaces of fabricated thin films are dense and crack free. The composition depth profiles show that there are three distinct regions formed in films, which are surface layer, middle layer and interface layer. The surfaces of films are found to consist of one outermost Bi-rich region and be made up of metal-oxide mainly. An interfacial layer with thickness of about 50 nm appeares in the BNT-Pt interface region, which is formed through the ion diffusion between the BNT film and Pt electrode mainly. With the ion diffusion, a small amount of platinum compound is formed as well. The distribtution of component elements are nearly uniform within the middle layer of thin films.
     Zr-doped BNT (Bi_(3.15)Nd_(0.85)Ti_(3-x)Zr_xO_(12), BNTZ_x) ferroelectric thin films were fabricated on Pt/TiO_2/SiO_2/Si(100) substrates by CSD. Then the effects of Zr substitution concentrations on the microstructures, ferroelectric properties, leakage current-voltage (I-V) and phase transformations behaviours of BNTZ films were studied in detail. The experimental results show that a low content of Zr doping in BNT film does not affect the Bi-layered perovskite structure. BNTZ films are composed of fine grains of about 150-250 nm in diameter. With the increment of Zr content, the film surface roughness decreases initially and then increases, while the 2Pr value increases initially and then decreases. BNTZ0.1 film has the largest 2Pr of 52.7μC/cm~2. The leakage current of BNTZ film decreases with the increase of Zr content obviously, and the leakage current of the BNTZ0.2 film is smaller nearly four orders of magnitude than that of BNT film at high voltage region (higher than 3 V). B-site Zr substitution in BNT film almost does not change the structural phase transition behaviour. The Curie temperature of BNTZ film is about 450℃.
引文
[1]中共中央办公厅.中办发[2006]11号,《2006-2020年国家信息化发展战略》, 2006.
    [2]干福熹.信息材料[M].天津:天津大学出版社, 2000: 4-26.
    [3]钟维烈.铁电体物理学[M].北京:科学出版社, 1996:1.
    [4] G. Busch. Condensed Matter News. 1991, 1: 20-29.
    [5] W. Cochran. Soft modes, a personal perspective [J]. Ferroelectrics, 1981, 35(1): 3-8.
    [6] R. Blinc. The soft mode concept and the history of ferroelectricity [J]. Ferroelectrics, 1987, 74(1): 301-303.
    [7] R. Landauer. A personal view of early soft-mode history [J]. Ferroelectrics, 1987, 73(1): 27-38.
    [8] W. Kanzig. Condensed Matter News. 1992, 3: 21-24.
    [9] J. Fousek. Ferroelectricity: Remarks on historical aspects and present trends [J]. Ferroelectrics, 1991, 113: 3-20.
    [10] M. E. Lines, A. M. Glass. Principles and Applications of Ferroelectrics and Relat-ed Materials [M]. Oxford: Clarendon Press, 1977.中译本:钟维烈译,王华馥校.铁电体及有关材料的原理和应用,科学出版社, 1989.
    [11] K. Uchino, E. Sadanaga, T. Hirose. Dependence of the crystal structure on particle size in barium titanate. Ferroelectrics [J]. J. Am. Ceram. Soc., 1989, 72: 1555.
    [12] W. l. Zhong, P. l. Zhang, Y. g. Wang, T. L. Ren. Size effect on the dielectric properties of BaTiO3 [J]. Ferroelectrics, 1994, 160: 55-59.
    [13] W. G. Liu, L. B. Kong, L. Y. Zhang, X. Yao. Study of the surface layer of lead titanate thin film by X-ray diffraction [J]. Solid state Commun., 1995, 93: 653-657.
    [14] J. F. Scott, H. M. Duiker, P. D. Beale, B. Pouligny, K. Dimmler, M. Parries, K. Butler, S. Eaton. Properties of ceramic KNO3 thin-film memories [J]. Phys. B, 1988, 150: 160.
    [15] W. L. Zhong, Y. G.Wang, P. L. Zhang. Size effects on phase transition in ferroelectric thin films [J]. Phys. Lett. A, 1994, 189: 121-126.
    [16] Y. G. Wang, W. L. Zhong, P. L. Zhang. Size effects on the Curie temperature of ferroelectric particles [J]. Solid State Commun., 1994, 92: 519-523.
    [17] W. L. Zhong, B. D. Qu, P. L. Zhang. Thickness dependence of the dielectric susceptibility of ferroelectric thin films [J]. Phys. Rev. B., 1994, 50: 12375-12380.
    [18] C. L. Wang, S. R. P. Snmith, K. R. Tilley. J. Phys.:Condens. Matter., 1975, 6: 9633.
    [19] B. D. Qu, W. L. Zhong, P. L. Zhang. Curie temperature of a ferroelectric superlattice described by the transverse Ising model [J]. Phys. Lett. A., 1994, 189: 419-422.
    [20] R. B. Meyer, I. Liebert, L. Sterzelecki, P. Keller. Ferroelectric liquid crystals [J]. J. Phys. Lett., 1975, 36:69-71.
    [21] R. Blinc, B. Zeks, M. Copic, A. Levstik, I. Muservic, I. Drevensek. Phase transitions in ferroelectric liquid crystals [J]. Ferroelectrics, 1990, 104: 159.
    [22] J. Funfschilling. Condensed Matter New, 1991, 1: 12.
    [23] I. Drevensek, R. Blinc. Nonlinear optical properties of ferroelectric liquid crystals [J].Condensed Matter New, 1992, 1: 14.
    [24] R. G. Kepler, R. A. Anderson. Ferroelectric polymers [J]. Adv. Phys., 1992, 41: 1-57.
    [25] R. A. Newman, J. I. Scheinbeim, J. W. Lee, Y. Takase. A new class of ferroelectric polymer, the odd-numbered nylons [J]. Ferroelectrics, 1992, 127: 229.
    [26] X. F. Du, I. W. Chen. Model experiments on fatigue of Pb(Zr0.53Ti0.47)O3 ferroelectric thin film [J]. Appl. Phys. Lett., 1998, 72: 1923-1925.
    [27] D. J. Jung, M. Dawber, S. A. ruediger, et al. Dielevtric Loss Peak due to platinum electrode porosity in lead titanate thin-film capacitor [J]. Appl. Phys. Lett., 2002, 81: 2436-2438.
    [28] D. S. Yoona, J. S. Roha, S. M. Leeb, H. K. Baikc. Alteration for a diffusion barrier design concept in future high-density dynamic and ferroelectric random access memory device [J]. Prog. Mater Sci., 20036, 48: 275-371.
    [29] J. F. Scott and C. A. P. de Araujo. Ferroelectric memories [J]. Science, 1989, 246: 1400-1405.
    [30] C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott. Fatigue-free ferroelectric capacitors with platinum electrodes [J]. Nature, 1995, 374: 627-629.
    [31] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo. Lanthanum-substituted bismuth titanate for use in non-volatile memories [J]. Nature, 1999, 401: 682-684.
    [32] H. N. Lee, D. Hesse, N. Zakharov, and U. G?sele. Ferroelectric Bi3.25La0.75Ti3O12 Films of Uniform a-Axis Orientation on Silicon Substrates [J]. Science, 2002, 296: 2006-2009.
    [33] U. Chon, H. M. Jang, M. G. Kim, and C. H. Chang. Layered Perovskites with Giant Spontaneous Polarizations for Nonvolatile Memories [J]. Phys. Rev. Lett., 2002, 89: 087601.
    [34] A. Katsuhiro, F. Yukio, N. Akitoshi. Preparation of <100>-oriented Lead-Zirconate-Titanate Films by Sol-Gel Technique [J]. Jpn. J. Appl. Phys., 1993, 32: 4147-4149.
    [35] A. Kazushi, M. Toru, H. Tokashi et al. Ferroelectric Properties of Sol-Gel Derived Pb(Zr,Ti)O3 Thin Films [J]. Jpn. J. Appl. Phys., 1993, 32: 4150-4153.
    [36] I. Kanno, S, Fujii,T. Kamada, R. Takayama. Piezoelectric properties of c-axis oriented Pb(Zr,Ti)O3 thin films [J]. Appl. Phys. Lett., 1997, 70: 1378-1380.
    [37] Y. M. Kim, W. J. Lee, and H. G. Kim. Deposition of PZT films by MOCVD at low temperature and their change in properties with annealing temperature and Zr/Ti ratio [J]. Thin Solid Films, 1996, 279: 140-144.
    [38] C. H. Lin, B. M. Yen, H. Chen, T. B. Wu, H. C. Kuo and G. E. Stillman. Characterization of Highly Textured PZT Thin Films Grown on LaNiO3-Coated Si Substrates by MOCVD [M]. Mat. Res. Soc. Proc., 1998, 493: 189-194.
    [39] C. W. Tipton, K. Kirchner, R. Godfrey et al. Enhanced-response pyroelectric heterostructures [J]. Appl. Phys. Lett., 2000, 77: 2388-2390.
    [40] C.S .Chen et al. Heteroepitaxial growth of Ba1?xSrxTiO3/YBa2Cu3O7?x by plasma-enhanced metalorganic chemical vapor deposition [J]. Appl. Phys. Lett., 1994, 64: 3181-3183.
    [41] X. J. Meng, J. G. Cheng, B. Li et al. Low-temperature preparation of highly (111) oriented PZT thin films by a modified sol-gel technique [J]. J. Crys. Growth., 2001, 208: 541-545.
    [42] R. Ramesh, S. Aggarwal, O. Auciello. Science and technology of ferroelectric films andheterostructures for non-volatile ferroelectric memories [J]. Mater. Sci. Eng. R., 2001, 32: 191-236.
    [43] S. Sinharoy, H. Buhay, R. R. Lampe et al. Integration of Ferroelectric Thin Films into Nonvolatile Memories [J]. J. Vac. Sci. Tech., 1992, A10: 1554-1561.
    [44] D. R. Lampe, D. A. Adams, M. Austin et al. Processing integration of the ferroelectric memory FeFETs (FEMFETs) for NDRO FeRAM [J]. Ferroelectrics, 1992, 133: 61-64.
    [45] D. Bondurant. Ferroelectric RAM memory family for critical data storage [J]. Ferroelectrics, 1990, 112: 273-282.
    [46] D. W. Chapman. Some Thin-Film Properties of a New Ferroelectric Composition [J]. J. Appl. Phys., 1969, 40: 2381-2385.
    [47] T. S. Kalkur, J. Kulkami, Y. C. Lu et al. Metal-Ferroelectric-Semiconductor characteristics of bismuth titanate films on silicon [J]. Ferroelectrics, 1991, 116: 135-146.
    [48] S. Y. Wu. A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor [J]. IEEE Trans. Electron. Dev., 1974, 21: 499-504.
    [49] T. Hirai, Y. Fujisaki, K. Nagashima et al. Preparation of SrBi2Ta2O9 Film at Low Temperatures and Fabrication of a Metal/Ferroelectric/Insulator/Semiconductor Field Effect Trasnsistor Using Al/SrBi2Ta2O9/CeO2/Si(100) Structures [J]. Jpn. J. Appl. Phys., 1997, 36: 5908-5911.
    [50] J. Yu, Z. J. Hong, W. L. Zhou et al. Formation and characteristics of Pb(Zr, Ti)O3 field-effect transistor with a SiO2 buffer layer [J]. Appl. Phys. Lett., 1997, 70: 490-492.
    [51] Y. T. Kim, D. S. Shin. Memory windows of Pt/SrBi2Ta2O9/CeO2/SiO2/Si structure for metal-ferroelectric-insulator-semiconductor field effect transistors [J]. Appl. Phys. Lett., 1997, 71(24): 3507-3509.
    [52] E. Tokumitsu, D. Takahashi and H. Ishiwara. Characterization of metal-ferroelectric-(metal)- insulator-semiconductor (MF(M)IS) structure using (Pb, La)(Zr,Ti)O3 and Y2O3 films [J]. Jpn. J. Appl. Phys., 2000, 39: 5456-5459.
    [53] Y. Watanabe, M. Tanamura, Y. Matsumoto. Memory retention and switching speed of ferroelectric field effect in(Pb, La)(Ti, Zr)La2CuO4:Sr heterostructure [J]. Jpn. J. Appl. Phys., 1996, 36: 1564-1568.
    [54] S. Mathews, R. Ramesh, T. Venkatesan et al. Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures [J]. Science, 1997, 276: 238-241.
    [55] N. Setter, D. Damjanovic, L. Fox, S. Gevorgain, et al. Ferroelectric thin films: review of materials, properties, and application [J]. J. Appl. Phys., 2006, 100: 051606.
    [56] B. E. Park, K. Takahashi, and H. Ishiwara. Five-day-long ferroelectric memory effect in Pt/(Bi,La)4Ti3O12/HfO2/Si structures [J]. Appl. Phys. Lett., 2004,85: 4448.
    [57] S. Sakai. Gate materials and fabrication-processes of metal-ferroelectric-insulator- semiconductor memory FETs with long data retention [J]. Adv. Sci. Techno., 2006, 45: 2382.
    [58] X. B. Lu, K. Maruyama, H. Ishiwara. Metal–ferroelectric–insulator–Si devices using HfTaO buffer layers [J]. Semicond. Sci. Technol., 2008, 23: 045002.
    [59] A. Q. Jiang, Y. Y. Lin, and T. A. Tang. Nanosecond-range measurements of imprint effect forPt/IrO2/Pb(Zr0.4Ti0.6)O3/IrO2/Pt thin-film capacitors [J]. Appl. Phys. Lett., 2007, 91: 202906.
    [60] L. H. Wang, J. Yu, X. Y. Wen, Y. B. Wang, J. X. Gao, T. L. Ren, et al. Ferroelectric properties of Pt/PbTiO3/PbZr0.3Ti0.7O3/PbTiO3/Pt integrated capacitors etched in noncrystalline phase [J]. Appl. Phys. Lett., 2006, 89: 182901.
    [61] D. L. Cai, P. Li, S. R. Zhang, Y. H. Zhai, A. W. Ruan, Y. F. Ou, et al. Fabrication and characteristics of a metal/ferroelectric/polycrystalline silicon/insulator/silicon field effect transistor [J]. Appl. Phys. Lett., 2007, 90: 153513.
    [62] Y. J. Wang, A. D. Li, D. Wu, Q. Y. Shao, H. Q. Ling, X. B. Lu, Z. G. Liu and N. B. Ming. Electrical properties of Bi3.25La0.75Ti3O12/LaAlO3/Si structures for ferroelectric field effect transistor applications [J]. J. Phys. D: Appl. Phys., 2004, 37:832.
    [63] J. F. Scott. Applications of modern ferroelectrics [J]. Science, 2007,315:954.
    [64] Y. Zhou, H. K. Chan, C. H. Lam and F. G. Shin. Mechanisms of imprint effect on ferroelectric thin films [J]. J. Appl. Phys., 2005, 98: 024111.
    [65] F. Yang, M. H. Tang, Y. C. Zhou, et al. Fatigue mechanism of the ferroelectric perovskite thin films [J]. Appl. Phys. Lett., 2008, 92: 022908.
    [66] Z. Ye, M. Tang, Y. Zhou, et al. Modeling of imprint in hysteresis loop of ferroelectric thin films with top and bottom interface layers [J]. Appl. Phys. Lett., 2007, 90:042902.
    [67] J. Zhang, M. H. Tang, Y. C. Zhou, et al. Influence of the ferroelectric-electrode interface on the characteristics of MFIS-FETs [J]. Solid-State Electron., (in press, 2009).
    [68] Z. Ye, M. Tang, Y. Zhou et al. Modeling of imprint in hysteresis loop of ferroelectric thin films with top and bottom interface layers [J]. Appl. Phys. Lett., 2007, 90: 042902,.
    [69] C. T. Blacka, C. Farrell, T. J. Licata. Suppression of ferroelectric polarization by an adjustable depolarization field. Appl. Phys. Lett., 1997, 71: 2041.
    [70] G. Gerra, A. K. Tagantsev, N. Setter. Ferroelectricity in asymmetric metal-ferroelectric- metal heterostructures: a combined first-principles–phenomenological approach [J]. Phys. Rev. Lett, 2007, 98: 207601.
    [71] C. G. Duan, R. F. Sabirianov, W. N. Mei, S. S. Jaswal, and E. Y. Tsymbal. Interface effect on ferroelectricity at the nanoscale [J]. Nano Lett., 2006, 6: 483.
    [72] J. D. Park, T. S. Oh, J. H. Lee, J. Y. Park. Ferroelectric characteristics of liquid source misted chemical deposition (LSMCD)-derived SrBi2.4Ta2O9 thin films with thickness variation [J]. Thin Solid Films, 2000, 379: 183-187.
    [73] W. X. Xianyu, W. I. Lee, T. Ko and J. K. Lee. Ferroelectric behavior of orientation-controlled PbBi4Ti4O15 thin films [J]. Appl. Phys. Lett., 2003, 82: 3496-3498.
    [74] X. S. Gao, J. Wang. Thickness dependences of ferroelectric and dielectric properties in Bi3.15Nd0.85Ti3O12 thin films [J]. J. Appl. Phys., 2006, 99: 074103.
    [75] Y. Noguchi and M. Miyayama. Large remanent polarization of vanadium-doped Bi4Ti3O12[J]. Applied Physics Letters, 2001, 78: 1903-1905.
    [76] J. K. Kim, J. Kim, T. K. Song, and S. S. Kim. Effects of niobium doping on microstructures and ferroelectric properties of bismuth titanate ferroelectric thin films[J]. Thin Solid Films, 2002, 419: 225-229.
    [77] T. Sakai, T. Watanabe, M. Osada, M. Kakihana, Y. Noguchi, M. Miyayama, and H. Funakubo.Crystal structure and ferroelectric property of Tungsten-substituted Bi4Ti3O12 thin films prepared by metal-organic chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2003, 42 (Part 1): 2850-2852.
    [78] X. S. Wang, H. Ishiwara. Polarization enhancement and coercive field reduction in W- and Mo-doped Bi3.35La0.75Ti3O12 thin films[J]. Applied Physics Letters, 2003, 82: 2479-2481.
    [79]刘梅冬,许毓春.压电铁电材料与器材[M].武汉:华中理工大学出版社,1990.
    [80] B. H. Park, T. W. Noh, J. Lee, C. Y. Kim and W. Jo. Effects of interface charges on imprint of epitaxial Bi4Ti3O12 thin films [J]. Appl. Phys. Lett., 1997, 70: 1101-1103.
    [81] M. Grossmann, O. Lohse, D. Bolten, U. Boettger, and T. Schneller. The interface screening model as origin of imprint in PbZrxTi1-xO3 thin films [J]. J. Appl. Phys., 2002, 92: 2680-2687.
    [82] C. K. Wong and F. G. Shin. A possible mechanism of anomalous shift and sysmmetric hysteresis behavior of ferroelectric thin films [J]. Appl. Phys. Lett., 2005, 86: 042901.
    [83] B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh. Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12 [J]. Appl. Phys. Lett., 1999, 74: 1907-1909.
    [84] Y. Wang, C. W. Nan. Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3thin films [J]. Appl. Phys. Lett., 2007, 89: 052903.
    [85] S. T. Zhang, Y. F. Chen, J. Wang, et al. Ferroelectricproperties of La and Zr substituted Bi4Ti3O12 thin film[J]. Appl. Phys. Lett., 2004, 84: 3660-3662
    [86] H. Hu, S. B. Krupanidhi. Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr, Ti)O3thin films [J]. J. Mater. Res., 1994, 9: 1484-1498.
    [87] C. C. Lee and J. M. Wu. Studies on Leakage Mechanisms and Electrical Properties of Doped BiFeO Films [J]. Electrochem. Solid-State Lett., 2007, 10: 58.
    [88] S. Y. Wang, B. L. Cheng, C. Wang et al. Reduction of leakage current by Co doping in Pt/Ba0.5Sr0.5TiO3/Nb–SrTiO3 capacitor [J]. Appl. Phys. Lett., 2004, 84: 4116.
    [89] W. Takayuki, F. Hiroshi, O. Minoru. The effects of neodymium content and site occupancy on spontaneous polarization of epitaxial (Bi4–xNdx)Ti3O12 films [J]. J. Appl. Phys., 2005, 98: 024110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700