用户名: 密码: 验证码:
枣疯病抗性的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
枣(Ziziphus jujuba Mill.)是我国特有的宝贵种质资源和重要的特色果树树种。枣疯病(Jujube witches’broom disease,JWB)是由植原体(Phytoplasma)引起的高致死性传染病害。抗枣疯病品种的选育已经取得了一些进展,但抗病机制研究尚处于起步阶段。本试验以前期课题组选出的抗枣疯病骏枣品系‘交2’为试验材料,对其嫁接到冬枣和赞皇大枣砧木上出现的抗病性状差异和嫁接后在相同砧木上同种接穗间出现的抗病性状差异进行基因组和转录水平分析,以期在分子水平探讨抗病性产生差异的可能机制,为鉴定抗病基因及后续的抗病育种奠定基础。获得的主要结果如下:
     1.明确了DNA提取过程中苯酚抽提对枣疯病病原检测有显著影响。利用苯酚抽提与否获得的基因组DNA进行枣疯病病原检测和AFLP分析,发现苯酚抽提后,在感染枣疯病病原的基因组DNA中,病原检出率降低,尤其是病原含量较低时,甚至检测不到病原;但苯酚抽提与否对AFLP分析的扩增效果及图谱没有明显影响。
     2.确定了赞皇大枣、冬枣等12个品种寄主中枣疯病植原体的分子分类地位。通过对16S rDNA保守序列的分析,证明赞皇大枣、冬枣寄主中枣疯病植原体都可归于榆树黄化组(16SrⅤ组),二者同源性达到99.86%。
     3.初步明确了‘交2’在表观症状上枣疯病抗性出现差异的分子机制。AFLP分析表明,‘交2’在不同品种砧木上出现的表型差异应该是由于砧木基因型对接穗产生了影响导致的;cDNA-AFLP分析表明,‘交2’在同种砧木上出现的抗、感表型差异是因为在RNA表达水平产生了显著差异。
     4.通过AFLP分析,获得了5条枣疯病抗性相关序列,这些片段都与毛果杨cc-nbs-lrr抗性蛋白的mRNA同源性达到了70%以上。这5条DNA片段中,4条为嫁接到冬枣砧木上‘交2’接穗中的特异条带,1条是嫁接到赞皇大枣砧木上‘交2’接穗中的特异条带。
     5.通过相同砧木上出现不同抗病表现的‘交2’的cDNA-AFLP分析,得到了94条差异条带,其中8条与嫁接后期特异性表达相关;74条与抗病机制的充分表达密切相关;12条生长发育持续表达相关条带。其中,7条序列与大肠杆菌BL21(DE3)中葡萄糖基转移酶、DNA指导的RNA聚合酶等序列同源性均达到97%以上;1条序列与葡萄contig vv78x075502.6同源性为78%;2条序列与葡萄contig vv78x205215.10全序列同源性均为78%;2条与毛果杨预测蛋白mRNA同源性都为72%。
Chinese jujube (Ziziphus jujuba Mill.) is an important and native fruit tree of China. Jujube witches’broom (JWB), caused by phytoplasma, is one of the most serious and destructive disease of Chinese jujube. Selecting cultivars with high resistance was regarded as the most powerful method to eradicate JWB and had made some progress,but the mechanism of resistance was still in its beginning stage.
     ‘Jiao 2’, a strain of Ziziphus jujuba Mill.‘Junzao’, showed different resistance to JWB when it was grafting on diseased‘Dongzao’and‘Zanhuangdazao’. In this paper,‘Jiao 2’was used as material to study the molecular mechanism of the resistance to JWB. The different mechanism was analyzed on the molecular level and the result would provide foundation for cloning of resistance gene and resistance breeding. The main results were as follow:
     1. Using phenol during the DNA extraction had significant affect on the detecting of JWB phytoplasma. Comparing the result of detecting of JWB phytoplasma and AFLP between using phenol and unusing phenol,the detection rate of JWB phytoplasma was decreased and even JWB phytoplasma couldn’t be detected when the amount of JWB phytoplasma was in lower level. But using phenol during the DNA extraction had no significant effect on the result of AFLP analysis compared with the contrast.
     2. The molecular taxonomic status of JWB phytoplasma of‘Dongzao’and‘Zanhuangdazao’was defined. Based on the analysis of 16SrDNA conserved sequence,it proved that the similarity of JWB phytoplasma from‘Dongzao’and‘Zanhuangdazao’was 99.86% and both of them belonged to 16SrⅤgroup.
     3. The different resistance mechanism of‘Jiao 2’to JWB was identified preliminarily. According to the result of AFLP analysis, the scions with phenotypic discrepancy when they were grafted on different diseased rootstocks were caused by the genotypic difference of rootstocks. The result of cDNA-AFLP showed that the scions with phenotypic discrepancy in the same rootstock were caused by the differential expression on RNA level.
     4. Based on the result of AFLP, 5 bands of cc-nbs-lrr gene which related to the resistance were gained. Among them,4 bands were from‘Jiao 2’grafting on diseased‘Dongzao’and 1 band was from‘Jiao 2’grafting on‘Zanhuangdazao’. The similarity between the sequences of those bands and mRNA of cc-nbs-lrr was more than 70%.
     5. 94 bands of differential expression were gained by cDNA-AFLP analysis of‘Jiao 2’with phenotypic discrepancy on the same rootstock. 8 bands expressed specifically in later period of grafting; 74 bands were related to the expression of the resistance mechanism; 12 bands were related to growth and development of jujube. The result of blast showed that 15 sequences had high similarity(more than 97%)with E.coli BL21(DE3);3 sequences had similarity of 78% with Vitis vinifera contig VV78x205215.10;2 sequences had similarity of 72% with mRNA of Populus trichocarpa.
引文
[1]刘孟军,汪民.中国枣种质资源[M].北京:中国林业出版社, 2009:46-47.
    [2]刘孟军,赵锦,周俊义.枣疯病[M].北京:中国农业出版社, 2010:12-14.
    [3]庞辉,田应魁.植原体的系统分类[J].森林病虫通讯, 2000(2):24-27.
    [4] Doi M Y, Terandka M, Yora K. Mycoplasma or PLT-group-like micro organisms found in the phleom elements of plants infected with mulbuerry dwarf, potato witches-broom, aster yellows or paulownia witches-broom[J]. Ann.phytopathol. Soc. Jpn, 1967,33:259-266.
    [5]廖晓兰,罗宽,朱水芳.植原体的分类及分子生物学研究进展[J].植物检疫, 2002(3):167-172.
    [6]周俊义,刘孟军,侯保林.枣疯病研究进展[J].果树科学, 1998(4):354-359.
    [7]潘青华.枣疯病研究进展及防治措施[J].北京农业科学, 2002(3):4-8.
    [8]徐劭华.枣疯病病枝超薄切片中类菌原体的电镜观察[J].微生物学报, 1980,20(2):219-220.
    [9]李永,田国忠,朴春根,等.我国几种植物植原体的快速分子鉴别与鉴定的研究[J].植物病理学报, 2005(4):293-299.
    [10]赵锦,刘孟军,代丽,等.枣疯病病树中内源激素的变化研究[J].中国农业科学, 2006,39(11):2255-2260.
    [11]王胜坤,徐大平,张淑红.枣树叶片酚类物质和绿原酸含量与枣树抗枣疯病关系的研究[J].陕西农业科学, 2006(6):5-7.
    [12]赵锦,代丽,薛陈心,等.离体条件下进行治疗枣疯病药物筛选的可行性研究[J].河北农业大学学报, 2006,29(1):70-73.
    [13]宋清芳.枣疯病防治技术研究[J].西北园艺(果树), 2007(1):16-17.
    [14]齐芸芳.枣疯病的危害及其综合防治[J].北方园艺, 2007(10):213.
    [15]刘相东,朱飞,崔荣忠,等.枣疯病的防治技术[J].山西果树, 2004(5):44.
    [16]刘孟军,周俊义,赵锦,等.极抗枣疯病枣新品种‘星光’[J].园艺学报, 2006,33(3):687.
    [17]温秀军,郭晓军,田国忠,等.几个枣树品种和婆枣单株对枣疯病抗性的鉴定[J].林业科学, 2005,41(3):88-96.
    [18]理查德N.斯特兰奇著,彭友良等译.植物病理学导论[M].北京:化学工业出版社生物医药分社, 2007:177-183.
    [19] Flor H H. The complementary genic systems in flax and flax rust[J]. Adv Genet, 1956(8):826-833.
    [20]顾沛雯,安凤秋,吴云锋,等.小麦蓝矮病植原体16S rDNA基因片段的比较分析[J].植物病理学报, 2005(5):403-411.
    [21]赖帆,李永,徐启聪,等.植原体的最新分类研究动态[J].微生物学通报, 2008,35(2):291-295.
    [22]车海彦,罗大全.植原体病害的检测方法研究进展[J].华南热带农业大学学报, 2006(3):69-73.
    [23] Lee I M, Davis E R. Molecular Biology and Pathogenesis[G]. Washington. DC: American Society for Microbiology, 1992.
    [24] Wei W, Davis R E, Lee I M, et al. Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups.[J]. Int J Syst Evol Microbiol, 2007,57(Pt 8):1855-1867.
    [25]安凤秋,吴云锋,孙秀芹,等.小麦蓝矮病植原体延伸因子(EF-Tu)tuf基因序列的同源性分析[J].中国农业科学, 2006,39(1):74-80.
    [26] Lee S, Han S, B Cha. Mixed Infection of 16S rDNA I and V Groups of Phytoplasma in a Single Jujube Tree[J]. The Plant Pathology Journal, 2009,25(1):1-4.
    [27]徐红梅,秦岭. AFLP技术及其在果树研究中的应用进展[J].北京农学院学报, 2003,18(4):307-310.
    [28]吕振岳,周达民,黄东东. AFLP标记及在微生物和动物中的应用[J].生物技术通报, 2001(6):18-22.
    [29]张峰,宋文芹,陈瑞阳. AFLP-银染法检测植物基因组多态性[J].细胞生物学杂志, 1999(2):98-100.
    [30]易干军,于晓英,霍合强,等.香蕉种质资源的AFLP鉴别与分类中DNA模板的制备[J].果树学报, 2001,18(6):345-348.
    [31] Bachem C WB, Vander Hoeven, Burihm R S. Visualization of diefferntial gene expression using a novel method of RNA fingerprinting based on AFLP:analysis of gene wxpression during potato tuber development[J]. Plnat Journal, 1996(9):745-753.
    [32] Bachem C WB, Oomen RJ FJ, Visser R GF. Transcript imaging with cDNA-AFLP: a step-by-step protocol[J]. Plant Molecular Biology Reporter, 1998(16):157-173.
    [33] Money T, Redaer S, Qu L J, et al. AFLP-based Mrna Fnigerprinting[J]. Nucleic Acids Research, 1996(24):2616-2617.
    [34] Habu Y, Fukada-Tanaka S, Hisatomi Y, et al. Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence[J]. Biochemical and Biophysical Reseatch Communications, 1997(234):516-521.
    [35] Fukuda T, Kido A, Kajino K. Cloning of differentially expressed genes in highly and low metastaic rat Osteosarcomas by a modified cDNA-AFLP method[J]. Biochemical and Biophysical Research Communications, 1999,261(1):35-40.
    [36] Mclellnad M, Mathieu-Daude F, Welsh J. RNA fingerprinting and differential display using arbitrarily primered RCR[J]. Trends Gen, 1995(11):242-246.
    [37]卢钢,曹家树. cDNA-AFLP技术在植物表达分析上的应用[J].植物学通报, 2002,19(1):103-108.
    [38] Vanderbiezen E A, Juwana H, Parker J E, et al. cDNA-AFLP display for the isolation of Peronospora-Parasitica genes expressed during infection in Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions, 2000,13(8):895-898.
    [39]李凌,宋文芹,毛英伟,等.用cDNA-AFLP银染技术研究与花椰菜花色相关的基因[J].南开大学学报(自然科学版), 2000,33(4):33-36.
    [40]李德谋,肖月华,罗明,等.棉花PTS2受体基因(GhPex7)的克隆及表达分析[J].遗传学报, 2003,30(9):823-829.
    [41]陈桂平,黄占景,马闻师,等.盐胁迫下小麦耐盐突变体后代差异cDNA的分离和鉴定[J].中国农业科学, 2003,36(9):996-999.
    [42]郭丽琼,林俊芳,杨丽卿,等.应用cDNA-AFLP技术分离草菇冷诱导表达基因[J].园艺学报, 2005,32(1):54-59.
    [43]王永勤,曹家树,符庆功,等.利用cDNA-AFLP技术分析白菜核雄性不育两用系的表达差异[J].中国农业科学, 2003,36(5):557-560.
    [44]郭军,屈冬玉,王晓武,等.马铃薯晚疫病菌小种特异无毒基因候选表达序列的cDNA-AFLP鉴定[J].园艺学报, 2005,32(1):44-48.
    [45]焦锋,楼程富,张有做,等.桑树叶片形态变异株mRNA的差异表达及差异片段J12的克隆[J].农业生物技术学报, 2003,11(4):375-378.
    [46]刘志静,易图永,冯洁.植物抗病基因的研究进展[J].安徽农业科学, 2008(13):5342-5343, 5417.
    [47] Johal G S, P Briggs S. Reductase activity encoded by t he HM1 disease resistance gene in maize[J]. Science, 1992,258(5084):985-987.
    [48]张军科,王静,王跃进,等.中国野生葡萄白粉菌诱导cDNA文库中抗病基因的筛选[J].西北农林科技大学学报(自然科学版), 2008(2):119-123.
    [49]杨艳荣.骏枣不同品系间枣疯病抗性多样性研究[D].河北农业大学, 2008.
    [50]刘清神,许东林,林盘芳,等.广州桑树植原体分子检测及多样性初探[J].蚕业科学, 2006,32(1):1-5.
    [51]安凤秋,吴云锋,顾沛雯.巢式PCR(Nested-PCR)在植原体检测中的应用[J].陕西农业科学, 2008(3):50-52.
    [52]薛渝峰.植原体诱导下抗枣疯病相关基因的差异表达研究[D].河北农业大学, 2008.
    [53]刘中成.枣总RNA提取及mRNA差异显示技术体系的建立[D].河北农业大学, 2005.
    [54]赵锦,刘中成,代丽,等.枣不同器官和组织RNA提取方法的研究[J].植物遗传资源学报, 2009,10(1):111-117.
    [55]刘孟军,赵锦,周俊义.枣疯病病情分级体系研究[J].河北农业大学学报, 2006,29(1):31-33.
    [56] Smart C D, Schneider B, Blomouist C L, et al. Phytoplasma-specific PCR primers based on sequences of the 16-23S rRNA spacer region[J]. App l EnvironMicrobiol, 1996,62(8):2988-2993.
    [57] WANG Guang-Lin, FANG Hong-Jun. Princi-ple and techniques of plant gene engineering[M]. Beijing: Science Press , 1998.
    [58] Aljanabi S M, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques[J]. Uncleic Acids Res, 1997,25:4692-4693.
    [59] Kaufman B, Richards S, Dierig D A. DNA isolation method for high polysaccharide Lesquerella species[J]. Industrial Crops and Products, 1999,9:111-114.
    [60] Lefort F, Douglas G C. Prunus and Quercus[J]. A nn For Sci, 1999,56:259-263.
    [61]陈昆松,李方,徐昌杰,等.改良CTAB法用于多年生植物组织基因组DNA的大量提取[J].遗传, 2004,26(4):529-531.
    [62]李莉,彭建营,白瑞霞.不同方法对枣叶片总DNA提取效果的影响[J].果树学报, 2007,24(3):389-392.
    [63]曾强成,郑世英,沈亮.金丝小枣基因组DNA的优化提取方法[J].生物技术通讯,2004,15(2):152-153.
    [64]李瑞环,李新岗,黄建,等.枣树基因组DNA提取及其RAPD体系优化[J].安徽农业科学, 2007,35(17):5102-5104.
    [65]文亚峰,何钢.枣叶片DNA的提取以及AFLP反应体系的建立[J].中南林业科技大学学报, 2007,27(3):25-28.
    [66]黄永莲,刘媛,黄真池.植物总DNA的提取方法的改进[J].湛江师范学院学报, 2007,28(3):104-105.
    [67]马兵钢,赵宗胜,冯建荣,等.梨属DNA提纯方法的比较研究[J].石河子大学学报(自然科学版), 2000,4(4):277-281.
    [68]薛良义,李卢,聂松平.苯酚和对苯二酚对鲫血细胞DNA损伤的研究[J].水生生物学报, 2006,30(2):241-243.
    [69]王永康,田建保,王永勤,等.枣树品种品系的AFLP分析[J].果树学报, 2007(2):146-150.
    [70]漆艳香,谢艺贤,张辉强,等.植原体DNA提取方法的改良[J].生物技术通报, 2004(4):44-46.
    [71]李永,田国忠,朴春根,等.我国几种植物植原体的快速分子鉴别与鉴定的研究[J].植物病理学报, 2005(4):293-299.
    [72]王海妮,吴云锋,安凤秋,等.枣疯病和酸枣丛枝病植原体16S rDNA和tuf基因的序列同源性分析[J].中国农业科学, 2007,40(10):2200-2205.
    [73]牛颜冰,青玲,王德富,等.植物病毒抑制子抑制RNA沉默的机制及生物学应用[J].分子植物育种, 2009,7(1):137-142.
    [74] Taller J, Hirata Y, Yagishita N. Graft-induced genetic changes and the inheritance of several characteristics in pepper[J]. Theor Appl Genet, 1998(97):705-713.
    [75]赵锦,刘孟军,周俊义,等.枣疯植原体的分布特点及周年消长规律[J].林业科学, 2006(8):144-146.
    [76]张盈玉,马荣才.参与植物防御反应的LRR型蛋白结构与功能[J].中国农业科技导报, 2009,11(3):12-18.
    [77] Botella M A, Parker J E, ForstL N. Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants[J]. Plant Cell, 1998(10):1847-1860.
    [78] Eitas T K, Nimchuk Z L, Dangl J L. Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudanonassy ringae effector AvrB[J]. Proc Natl Acad, 2008,105(17):6475-6480.
    [79] Dodds P N, Lawrence G J, Ellis J G. Six amino acid changes confined to the leucine-rich repeat teta-strand/teta-turn motif determine the differende between the P and P2 rust tesistance specificities in flax[J]. Plant Cell, 2001(13):163-178.
    [80] Warren R F, Henk A, Moveri P. A mutation with in the leucin-rich repeat domain of the Arabidopsis disease and downy mildew resistance genes[J]. Plant Cell, 1998(10):1439-1452.
    [81] Bittner-Eddy P D, Crut I R, Holub E. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronosporaparasitica[J]. Plant J., 2007(21):177-188.
    [82] Barbara Jabl Onska, Ammiraju J, Bhattarai K. The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1[J]. Plant Physiol, 2007(143):1044-1054.
    [83] Radwan O, Mouzeyar S, Nicolas P. Induction of a sunflower CC-NBS-LRR resistance gene analogue during incompatible interaction with Plasm opara halstedii[J]. J.Exp.Bot, 2005(56):567-575.
    [84] Qu S H, Liu G F, Zhou B. The broad-apectrum blast resistance gene Pi9 encodes an NBS-LRR and is a member of the multigene family in rice[J]. Genetics, 2006,172(3):1901-1914.
    [85] Zhou B, Qu S H, Liu G F. The eight amino acid differences with in three lencine-rich repeats between Pi2 and Piz-t resistance proteins determine the tesistance speciticity to Magnaporthe grisea[J]. Mol Plant-Microbe Interac, 2006(19):1216-1228.
    [86] Lagudah E S, Moullet O, Appels R. Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leueine-rich region at the Cre3 nematode resistance locus of wheat[J]. Genome, 1997,40(5):659-665.
    [87] Leister D, Kurth J, Laurie D A. Rapid reorganization of resistance gene homologues in cereal genomes[J]. Proc Natl Acad Sci USA, 1998(95):370-375.
    [88] Catherine F, Gabriel E S, Bent K. Molecular cloning of a new receptor-like kinase gene encoded the Lr10 disease resistance locus of wheat[J]. The Plant J, 1997,11(1):45-52.
    [89] Kanazin V, Marek L F, Shoemaker R. Resistance gene analogues are conserved and clustered in soybean[J]. Pro Natl Acad Sci USA, 1996(93):11746-11750.
    [90] Leister D, Ballvora A, Salamin F. A PCR - based approach for isolating pathogen resistance genes from potato with potential for wide application in plants[J]. Nature Genet, 1996(13):421-429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700