用户名: 密码: 验证码:
激光制备原位生长WB-CrB颗粒增强镍基复合涂层
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光熔覆原位生长陶瓷增强金属涂层是在激光照射下,通过元素与化合物之间或元素之间的原位反应,在涂层中原位生成一种或几种高弹性模量、高强度的陶瓷增强相,将金属的高韧性陶瓷的耐蚀、耐磨、高硬等特性有机结合,从而达到强化基体的效果,大大提高材料的表面性能。激光熔覆原位自生陶瓷增强金属涂层原位形核、增强相颗粒细小且弥散分布、组织细化,与基体相容性好,界面结合力强,表面无污染,其硬度、耐磨性等均显著提高。
     硼化物具有极高的熔点硬度,且硼化物具有硼原子间相互间牢固结合的特性,从而使其在高温及各种腐蚀性的环境中有较高的化学稳定性独特的耐磨性,作为切削工具、耐磨耐腐蚀热机部件,在工程机械工业、医药、化工、轻工、纺织、消防、建材、农业、军工国防等部门得到广泛应用。
     本文采用激光熔覆原位生长技术制备了硼化物颗粒增强镍基涂层,对其制备工艺、组织、硬度耐磨性等进行了系统研究,结果主要结论如下:
     (1)在45#钢表面激光熔覆Ni60+(WO3+B2O3+C)混合粉末,首次成功制备出形貌良好、性能改善、原位生长WB-CrB颗粒增强的镍基复合涂层;最佳制备工艺为:(WO3+B2O3+C)含量16 wt.%,激光功率1.8 kW,离焦量50 mm,扫描速度2 mm/s;
     (2) Ni60+16 wt.%(WO3+B2O3+C)熔覆层组织为:原位生成的WB-CrB颗粒Cr3C2条状相均匀分布于γ(NiFe)树枝晶基体中;
     (3)原位生长WB-CrB颗粒增强镍基复合涂层平均硬度HV0.31350,与纯Ni60熔覆层(平均硬度HV0.3800)相比,提高68.7%。摩擦试验表明,其耐磨性比纯Ni60涂层提高7倍。原位生长WB-CrB陶瓷颗粒增强相及其均匀分布是熔覆层硬度耐磨性得以大大提高的关键因素。
In situ synthesised ceramic coating by laser irradiation through in situ reaction among the elements and compounds has one or several high elastic modulus, high strength ceramic reinforcement, thus to strengthen the matrix and greatly improve the surface properties of materials by combining the high toughness of metal with the ceramics properties such as high corrosion resistance, high wear resistance, high hardness.In situ laser cladding ceramic coating is characterized by in situ nucleation, small and dispersed enhancing particulates and structure refinement, which has a good compatibility with matrix, strong bonding, surface pollution, and whose hardness, wear resistance and so on are significantly increased.
     Boride ceramics has high melting point and hardness, whose boron atoms combine with each other firm characteristics, making it at a high temperature and corrosive environment has high chemical stability and unique wear resistance. Due to its excellent performance, boride ceramics has already applied to most of the surface engineering of metallic materials, such as cutting tools, wear resistant heat engine components, widely used in construction machinery, and has also been widely used in the pharmaceutical, chemical, light industry, textile, fire, building materials, agricultural, military and national defense sector.
     In this paper, laser cladding boride was prepared in situ ceramic particle reinforced nickel based coatings, and its preparation, structure, hardness and wear resistance were systematically studied. Results and main conclusions are as follows:
     (1) In situ WB-CrB particle reinforced nickel matrix composite coatings with good morphology and improving performance were firstly successfully prepared on 45 steel by employing a proper amount of Ni60+(WO3+B2O3+C) doping using laser cladding. The optimum preparation techniques are 16wt.% content of (WO3+ B2O3+C)-doping,50mm defocusing length,1.8 kW laser power and 2 mm/s scanning velocity.
     (2) The microstructure of the Ni60+16wt.%(WO3+B2O3+C) coating is mainly composed of in-situ synthesized WB-CrB particulate phases and the Cr3C2 stripe phase uniformly dispersed in the y(NiFe) dendrite matrix.
     (3) The average hardness of the WB-CrB particulate reinforced composite coating was enhanced to HV0.31350, which is 68.7 percent higher than that of pure Ni60 coatings (HV0.3800). Friction tests showed that its excellent wear resistance is 7 times as high as that of pure Ni60 coatings. The improvement in hardness and wear resistance is due to the presence of a great deal of in-situ synthesized WB-CrB particles and their well distribution in the composite coatings.
引文
[1]王忠诚.钢铁热处理基础[M].北京:化学工业出版社,2008
    [2]过孝民.环境污染成本评估理论与方法[M].北京:中国环境科学出版社,2009
    [3]关振中.激光加工工艺手册(第二版)[M].北京:中国计量出版社,2007
    [4]J. Dutta Majumdar, B. Ramesh Chandra, A.K. Nath etal. Compositionally graded SiC dispersed metal matrix composite coating on Al by laser surface engineering [J]. Materials Science and Engineering A,2006,433(1-2):241-250
    [5]屈晓斌,陈建敏,周惠娣等.材料的磨损失效及其防护研究现状与发展趋势[J].摩擦学学报,1999,19(2):187-192
    [6]宣天鹏.材料表面功能镀覆层及其应用[M].北京:机械工业出版社,2008
    [7]王宇飞,杨振国.材料失效的数值模拟技术及其应用前景[J].金属热处理,2007,增刊:45-48
    [8]Z. Xiong, G. X. Chen, X. Y. Zeng. Effects of process variables on interfacial quality of laser cladding on aeroengine blade material GH4133 [J]. Journal of Materials Processing Technology,2009,209(2):930-936
    [9]P. S. Sidky, M. G. Hoeking. Review of inorganic coatings and coating process for reducing wear and corrosion [J]. British Corrosion Journal,1999,34(3):171-182
    [10]C. P. Paul, H. Alemohammad, E. Toyserkani, etal. Cladding of WC-12 Co on low carbon steel using a pulsed Nd:YAG laser [J]. Materials Science and Engineering A,2007,467(1-2):170-176
    [11]徐滨士.表面工程再制造工程的现状及展望[J].材料工程,2003,增刊:1-6
    [12]A. Viswanathan, D. Sastikumar, P. Rajarajan, etal. Laser irradiation of AlSi316L stainless steel coated with Si3N4 and Ti [J]. Optics & Laser Technology,2007, 39(8):504-1513
    [13]刘佳睿.材料耐磨耐蚀及其表面技术概论[M].北京:机械工业出版社,1986
    [14]Y. Pu, B. Guo, J. Zhou. Microstructure and tribological properties of in situ synthesized TiC, TiN and SiC reinforced Ti3Al intermetallic matrix composite coatings on pure Ti by laser cladding [J]. Applied Surface Science,2008,255(5): 2697-2703
    [15]T. M. Yue, Y P. Su. Laser cladding of SiC reinforced Zr65A17SNilOCu17.5 amorphous coating on magnesium substrate [J]. Applied Surface Science,2008, 255(5):1692-1698
    [16]. H. C. Man, S. Zhang, F. T. Cheng. Improving the wear resistance of AA 6061 by laser surface alloying with NiTi [J]. Materials Letters,2007,61(19-2): 4058-4061
    [17]J. F. Ready. LIA Handbook of laser materials processing [M]. Orlando:Laser institute of America,2001
    [18]陈继民.激光微技术的发展现状[J].激光与光电子学进展,2006,43(9):25-29
    [19]刘其斌,李绍杰.航空发动机叶片铸造缺陷激光熔覆修复的研究[J].金属热处理,2006,31(3):52~55
    [20]T. M Yue, Y. P Su, H. O Yang. Laser cladding of Zr65A17.5Ni10Cu17.5 amorphous alloy on magnesium [J]. Materials Letters,2007,61:209-212
    [21]王玉英.激光加工技术在汽车工业中的应用[J].激光技术及应用.2006,(10):29-33
    [22]潘邻.激光表面改性技术的现状与展望[J].科技进展,2005,5(1):5-6
    [23]应小东,李午申,冯灵芝.激光表面改性技术及国内外发展现状[J].焊接, 2003,(1):5-8
    [24]张永康,周建中,叶云霞等.激光加工技术[M].北京:化学工业出版社,2004
    [25]郎旭元,张元钟.激光技术在汽车工业中的应用[J].机械工程师,2006,A(6):20-23
    [26]李艳芳,卫英慧.金属材料表面激光热处理的研究与应用[J].太原理工大学学报,2002,33(2):142-145
    [27]J. Yao, Q. Zhang, M.Gao, etal. Microstructure and wear property of carbon nanotube carburizing on steel by laser surface remelting [J]. Applied Surface Science,2008,254(21):7092-7097
    [28]K. Y. Benyounis, O. M. Fakron, J. H. Abboud. Rapid solidification of M2 high-speed steel by laser melting [J]. Materials & Design,2009,30(3):674-678
    [29]W. R. Osorio, N. Cheung, J. E. Spinelli, etal. Microstructural modification by laser surface remelting and its effect on the corrosion resistance of an Al-9wt%Si casting alloy [J]. Applied Surface Science,2008,254(9):2763-2770
    [30]A. K. Mondal, S. Kumar, C. Blawert, etal. Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy [J].Surface and Coatings Technology,2008,202(14):3187-3198
    [31]李同道,王勇,韩彬.高铬铸钢激光熔凝组织与性能研究[J].热加工工艺,2008,37(1):40-42
    [32]左铁钏.21世纪的先进制造—激光技术与工程[M].北京:科学出版社,2006
    [33]刘艳梅,迟彩芬.用激光热处理汽车汽缸套表面技术应用探讨[J].中国科技信息,2008,(21):165-167
    [34]李泉华.激光热处理在汽车零件生产中的应用[J].激光集锦,1997,7(5):16-24
    [35]苗志毅,胡悦华.齿轮的激光淬火[J].机械传动,2004,28(5):49-51
    [36]牛薪,晁明举,周笑薇等.激光熔覆原位生成B4C颗粒增强镍基复合涂层的研究[J].中国激光,2005,A32(11):1583~1588
    [37]何宜柱,斯松华,徐锟等.Cr3C2对激光熔覆钻基合金涂层组织与性能的影响[J].中国激光,2004,31(9):1143
    [38]I. Manna, J. Dutta Majumdar, B. Ramesh Chandra, etal. Laser surface cladding of Fe-B-C, Fe-B-Si and Fe-B-C-Si-Al-C on plain carbon steel [J]. Surface and Coatings Technology,2006,201(1-2):434-440
    [39]C. P. Paul, A. Khajepour. Automated laser fabrication of cemented carbide components [J]. Optics & Laser Technology,2008,40:735-741
    [40]Jyotsna Dutta Majumdar, Ajeet Kumar, Lin L. Direct laser cladding of SiC dispersed AlSi 316L stainless steel [J]. Tribology International,2009,42(5): 750-753
    [41]张魁武.国外激光熔覆材料、工艺组织性能的研究[J].金属热处理,2002,27(6):1-8
    [42]L. Dubourg, J. Archambeault. Technological and scientific landscape of laser cladding processing in 2007 [J]. Surface and Coating Technology,2008,202: 5863-5869
    [43]R. S. Razavi, M. Salehi, M. Monirvaghefi, etal. Corrosion behaviour of laser gas-nitrided Ti-6Al-4V alloy in nitric acid solution [J]. Journal of Materials Processing Technolog,2008,203(1-3):315-32
    [44]田永生.钛合金表面激光碳氮硼合金化组织结构与耐磨性能研究[D].济南:山东大学,2006
    [45]G. R. Gordani, S. Reza, H. H. Sayed, etal. Laser surface alloying of an elcetroless Ni-P coating with Al-356 substrate [J]. Optics and Lasers in Engineering,2008, 46(7):550-557
    [46]胡木林,谢长生,陶曾毅.激光表面强化技术及其应用[J].金属加工,2003, (7):5-9
    [47]任乃飞,杨继昌,蔡兰等.激光冲击对金属材料机械性能的影响[J].应用激光,1998,22(4):235-238
    [48]周建忠,杨继昌,张永康.激光冲击对球铁表面性能的影响[J].应用激光,2001,25(2):91-95
    [49]陈家壁.激光原理及应用[M].北京:电子工业出版社,2004
    [50]Anders Hjornhede, Anders Nylund. Adhesion testing of thermally sprayed and laser deposited coatings [J]. Surface and Coatings Technology,2004, (184): 208-218
    [51]晁明举,袁斌.MgO对镍基碳化钨激光熔覆层组织耐磨性的影响[J].应用激光,2002,22(2):126-131
    [52]晁明举,杨坤,袁斌等.In2O3对NiCrBSiC激光熔覆层的影响[J].焊接学报,2005,26(8):27-30
    [53]孙会来,赵方方,林树忠等.激光熔覆研究现状与发展趋势[J].激光杂志,2008,29(1):4-6
    [54]Dong-sheng Wang, Er-jun Liang, Ming-ju Chao, etal. Investigation on the microstructure and cracking susceptibility of laser-clad V2O5/NiCrBSiC alloy coatings [J]. Surface and Coatings Technology,2008,202(8):1371-1378
    [55]张庆茂,王忠东,刘喜明等.工艺参数对送粉激光熔覆层几何形貌的影响[J].焊接学报,2000,21(2):43-46
    [56]C. P. Paul, A. Khajepour. Automated laser fabrication of cemented carbide components [J]. Optics & Laser Technology,2008,40:735-741
    [57]范小红,耿林.Ti6A14V表面激光熔覆NiCrBSi+B4C涂层的组织结构[J].中国表面工程,2006,19(1):28-32
    [58]U. de Oliveira, V. Ocelik, J. Th. M. De Hosson. Microstresses and microstructure in thick cobalt-based laser deposited coatings [J]. Surface and Coatings Technology,2007,201(14):6363-6371
    [59]ZhangQ. M, LiuX. M, Sun N, etal. Fundmental Investigation on Overlapping Coating Formed by Broad-beam power Feeding Cladding [J]. Heat Treatment of Metals,2001, (2):25-28.
    [60]王玉英.激光加工技术在汽车工业中的应用[J].激光技术及应用,2006,(10):29-33
    [61]A. Conde, F. Zubiri, J. de Damborenea. Cladding of Ni-Cr-B-Si Coatings with a High Power Diode Laser [J]. Materials Science and Technology,2002, (334): 33-238
    [62]杨绍令,王兴璞,李振波.激光加工处理技术在冶金备件修复中的应用[J].山东冶金,2004,26(5):30-31
    [63]Andrew J. Pinkerton, LinL. The Effect Laser Pulse Width on Multiple layer 316L Steel Cladding Microstructure and Surface Finish [J]. Applied Surface Science, 2003, (208-209):411-416
    [64]李满华,陆华才,符永宏.激光加工技术在机械工业中的应用[J].农机化研究,2004,(5):222-223
    [65]江海河.激光加工技术应用的发展及展望[J].光电子技术与信息,2001,14(4):1-12
    [66]张魁武.国外激光加工应用实例[J].激光与红外,1996,26(3):208-209
    [67]刘喜明.镍基合金+WC激光熔覆层的显微组织形成机理及控制[J].应用激光,2006,26(5):299-302
    [68]U. de Oliveira, V. Ocelik, J. Th. M. De Hosson. Analysis of coaxial cladding processing conditions [J]. Surface and Coating Technology,2005,197:127-136
    [69]张庆茂,刘喜明,李波等.宽带激光熔覆F305粉热有效利用率的分析[J].金属热处理,2000,25(8):1-3
    [70]Chiang. K. A, Chen. Y. C. Microstructural characterization and microscopy analysis of laser cladding Stellite12 and tungsten carbide [J]. Journal of Materials Processing Technology,2007,182(1-3):297-302
    [71]向兴华,穆晓冬,刘正义等.Ni基自熔合金涂层与钢基材的表面形态及其作用[J].焊接学报,2002,26(3):45-48
    [72]王文丽.原位自生颗粒增强镍基激光熔覆涂层研究[D].郑州:郑州大学,2007
    [73]赵文珍.金属材料表面技术[M].西安:西安交通大学出版社,1992
    [74]刘继常,李力钧.激光熔覆成形金属薄壁结构零件试验研究[J].机械工程学报,2004,40(10):185-188
    [75]黄国栋,张悦仁.应用激光熔覆技术提高核阀零件质量[J].中国机械工程,1993,4(2):22-24
    [76]Cao B, Chen Z. H, Gao Y. J. Thermodynamic Behavior of Non-equilibrium Solidification of Metals and Alloys [J]. The Chinese Journal of Nonferrous Metals,1998,8(1):15-19
    [77]董世运,马运哲,徐滨士.激光熔覆材料研究现状[J].材料导报,2006,20(6):5-11
    [78]李胜,胡乾午,曾晓雁.激光熔覆专用铁基合金粉末的研究进展[J].激光技术,2004,28(6):591-594
    [79]雷廷权,李强,孟庆昌.激光熔覆熔铸Ni-Cr-B-Si-C微观组织结构的比较[J].中国表面工程,1998,(3):20-26
    [80]雏江涛,郭洪,梁二军等.镍基合金的宽带激光熔覆[J].中国激光,2001,28(10):957-959
    [81]祝柏林,胡木林,谢长生.激光熔覆层开裂问题的研究现状[J].金属热处理,2000,25(7):1-4.
    [82]宋武林,朱蓓蒂,崔昆等.激光熔覆组织对其开裂敏感性的影响[J].应用激光,1995,15(3):122-124
    [83]CHEN J, YANG H O, LI YM, etal. The research on two kinds of cracking behavior and mechanism of cladding in rapid laser forming process [J]. Applied Laser,2002,22(3):300-304
    [84]R. Jendrzejewski, G. Sliwinski, M. Krawczuk. Temperature and stress during laser cladding of double-layer coatings [J]. Surface and Coatings Technology, 2006,201:3328-3334
    [85]陈浩,潘春旭,潘邻等.激光熔覆耐磨涂层的研究进展[J].金属热处理,2002,27(9):5-10
    [86]宋武林,周刚,曾大文等.铁基合金中Creq/Nieq对其激光熔覆层组织结构开裂敏感性的影响[J].激光技术,1999,23(3):142-145
    [87]孙海琴,晁明举,敬晓定等.原位生成VC颗粒增强镍基熔覆层研究[J].激光杂志,2008,28(5):69-71
    [88]张现虎.原位合成复合颗粒增强镍基激光熔覆层研究[D].郑州:郑州大学,2009
    [89]刘其斌,李绍杰.航空发动机叶片铸造缺陷激光熔覆修复的研究[J].金属热处理,2006,31(3):52~55
    [90]邓迟,王勇.稀土对激光熔覆生物陶瓷涂层纵截面组织形貌的影响[J].表面技术,2006,35(2):31~33
    [91]徐大鹏,周建忠,郭华锋等.激光熔覆裂纹产生机理及控制方法分析[J].工具技术,2007,41(4):24-28
    [92]吴萍,周昌轵,唐西南.激光合金化熔覆制备耐磨陶瓷梯度涂层[J].金属学报,1994,3(23):508-512
    [93]晁明举,梁二军,袁斌.TiO2对高硬度镍基合金激光熔覆层组织的影响[J].焊接学报,2003,24(4):28-32
    [94]陈家庆,蔡镜仑.石油行业中激光热处理的应用现状与展望[J].石油钻采工艺,1995,17(3):34-39
    [95]闫忠琳,叶宏.激光熔覆技术及其在模具中的应用[J].激光杂志,2006,27(2):73-74
    [96]周笑薇,王小珍.激光熔覆技术在工业中的应用[J].中州大学学报,2005,22(4):110-111
    [97]许鹏.炮钢表面激光熔覆纯铬粉末的研究[D].长春:长春理工大学,2006
    [98]严学华,孙少纯,蒋宗宇.原位反应复合材料研究进展[J].铸造设备研究,2001,(1):27-30
    [99]张庆茂,何金江,刘文今等.激光熔覆制备原位颗粒增强金属基复合表层组织性能的研究[J].应用激光,2002,22(2):109-112
    [100]张松,张春华,康煜平等.钛合金表面激光熔覆原位生成TiC增强复合涂层[J].中国有色金属学报,2001,11(6):1026-1030
    [101]孙荣禄,王云山,杨洗陈等.钛合金表面激光熔覆TiCp/Ni基合金复合耐磨涂层[J].光学技术,2003,29(5):625-627
    [102]孙志强,张荻,丁剑等.原位增强镁基复合材料研究进展与原位反应体系热力学[J].材料科学与工程,2002,20(4):579-585
    [103]Zhang Qingmao, He Jinjiang, Liu Wenjin, etal. Microstructure characteristics of ZrC-reinforced composite coating produced by laser cladding [J]. Surface and Coatings Technology,2003,162(2-3):140-146
    [104]熊容廷,段汉桥,严有为等.原位合成颗粒增强铁基复合材料的研究进展[J].现代铸铁,2004,(3):22-26
    [105]马明星,刘文今,钟敏霖等.铌对激光熔覆铁基原位合成颗粒增强复合涂层组织的影响[J].应用激光,2006,26(3):145-147
    [106]Sen Yang, Na Chen, Wenjin Liu, etal. Fabrication of nickel composite coatings reinforced with TiC particles by laser cladding [J]. Surface and Coatings Technology,2004,183:254-26
    [107]刘然,薛向欣,姜涛等.硼及其硼化物的应用现状与研究进展[J].材料导报, 2006,20(6):1~4
    [108]杨思敏.新型陶瓷材料的性能及应用前景[J].金属世界,2006,(06):43~45
    [109]蒋明.硼化物的性质应用[J].无机盐工业,1981,(01):58
    [110]乐志强,薄胜民,王光建.无机精细化学品手册[M].北京:化学工业出版社,2001.766~767
    [111]敬晓定.激光熔覆原位生成硼化物增强镍基复合涂层的研究[D].郑州:郑州大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700