用户名: 密码: 验证码:
可控串补的次同步振荡阻尼特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来大容量汽轮发电机组不断投运,远距离送电时大都需要借助串联补偿技术来解决功率送出的问题,故而与此相关的轴系扭振问题将更加突出;另外随着可控串补(TCSC)应用的日益增多,所面临的实际运行状况也更加多样,考验也日趋增多。而现有关于TCSC对次同步振荡(SSO)阻尼作用的研究虽多,却在一些方面仍然存有争议,为了充分掌握TCSC的特性,为其有效的运行提供理论指导,非常有必要对TCSC抑制SSO的能力方面做更进一步的研究。本文即以其次同步振荡阻尼特性为研究对象,针对已有研究存在的问题,重点对TCSC的次同步频率阻抗特性、应用于SSO分析的TCSC模型、含TCSC系统的扭振稳定性分析方法、影响TCSC阻尼SSO作用的因素以及TCSC的SSO附加阻尼控制进行了深入的研究,主要内容包括:
     1.针对TCSC次同步频率阻抗特性已有研究中存在的不足,建立了一种基于合适的电源激励、考虑不同触发同步方式、计及次同步频率分量对晶闸管导通开断影响的TCSC次同步频率阻抗特性的独立解析分析方法。依据该方法详细分析了TCSC次同步频率阻抗特性异于固定串补(FSC)的原因,并全面考察了触发同步方式、晶闸管触发角、次同步频率、主电路参数对此阻抗特性的影响作用。
     2.将TCSC次同步频率阻抗计算应用于频率扫描法,继而根据系统等效阻抗、系统电气阻尼系数、扭振模式的衰减因子、发电机轴系模式参数之间的关系,建立了通过频率扫描对含TCSC系统的轴系扭振稳定性进行初步评估的方法,从而解决了传统的频率扫描法无法应用于含晶闸管元件的TCSC系统的问题,同时还以图形的形式直观形象地说明了如何根据系统次同步频率等效阻抗来分析扭振的(不)稳定程度。
     3.依据动态相量建模方法,在一定的假设条件下,分别建立了基于线路电流过零点触发、等间隔触发的开环以及闭环恒阻抗控制的TCSC动态相量模型,从而拓展了此建模方法在TCSC触发同步方式和控制策略方面的应用。为方便模型接入网络进行系统分析,还利用PSASP的自定义建模功能以注入电流的形式实现了这些模型。在此基础上,采用特征值分析法将其与EMTP时域仿真进行了比对,结果验证了动态相量模型的正确性。
     4.以IEEE First Benchmark Model系统为例,分别采用频率扫描法和特征值分析法,比较了只采用FSC、TCSC以及二者配合使用时各扭振模式的稳定性,同时考察了TCSC触发控制方式、晶闸管触发角、控制参数、主电路参数以及与FSC配合使用时其所占补偿比例等因素对阻尼作用的影响。结果表明TCSC具有一定的阻尼SSO的能力,但并非在任何情况下扭振模式的阻尼情况均优于FSC;不同的触发控制方式、控制参数、TCSC主电路参数以及FSC和TCSC配合使用的比例对不同串补度区域的阻尼产生不同的效果,故触发控制方式及各参数的选取需做多方面的权衡。
     5.提出了一种兼顾阻尼效果和控制可靠性的TCSC的SSO附加阻尼控制策略。该策略以基于远端转速偏差信号的阻尼控制为主用,基于本地电气量信号的控制为备用,当远端信号传输中断或延时波动过大时,迅速由主用控制切换至备用控制,从而避免了单一远端信号控制可靠性不足、单一本地信号控制效果不理想的问题。时域仿真的结果验证了此主备控制策略的有效性。
With more and more large stream turbine generator units being put into operation, series compensation techniques are required in most long-distance power transmission cases, in order to solve problems on transfer capacity. However, this trend also highlights related risk of shaft torsional vibration. Moreover, operation scenarios are more diversified with the increase of applications of Thyristor Controlled Series Capacitor (TCSC), and it further brings about more challenges. On the other hand, although many researches are contributed to the effect of TCSC on Subsynchronous Oscillation (SSO), controversies still exist on many related topics. Therefore, it is highly necessary to do some further research on the capability of TCSC for SSO damping which is selected as the study object of this paper, in order to fully understand characteristics of TCSC and provide theoretical guidance for its effective operation.
     From this viewpoint, aiming at problems in existing researches, this paper focuses on subsynchronous frequency impedance characteristics of TCSC, TCSC modeling for SSO analysis, methods for torsional vibration analysis of systems with TCSC, factors influencing TCSC's capability for damping SSO, and supplementary damping control of TCSC for SSO. The main contents include the follows.
     1. In the light of problems in existing researches on subsynchronous frequency impedance characteristics of TCSC, an independent analytic method is proposed for this characteristic analysis, based on an appropriate source excitation, considering different synchronization methodologies for firing control and the influence of subsynchronous frequency component on turn-on and turn-off of thyristors. Based on this method, reasons of subsynchronous frequency impedance characteristics of TCSC different from Fixed Series Compensation (FSC) is analyzed in detail, and also the influence of synchronization methodology for firing control, firing angle, subsynchronous frequency, and main circuit parameters.
     2. Applying the above analytic means of TCSC's subsynchronous frequency impedance in frequency scan method, based on mutual relations among system subsynchronous frequency equivalent impedance, system electrical damping coefficient, decrement factor of torsional modes and shaft modal parameters, a methodology for preliminary evaluation on shaft torsional vibration stability of systems with TCSC via frequency scan is further proposed. Therefore, the problem that traditional frequency scan method cannot be utilized in systems with TCSC is solved. Figures are used to elaborate how to analyze the extent of torsional vibration (un)stability according to subsynchronous frequency equivalent impedance of the system.
     3. By means of dynamic phasor modeling method and with some hypotheses, four types of dynamic phasor models of TCSC are established respectively based on two control methodologies and two synchronization methodologies for firing control including open-loop and close-loop constant impedance control and line current zero-crossing based and equidistant interval based synchronization methodology, which expands utilization of dynamic phasor modeling method. These models are developed in the form of injected current in PSASP by its user defined(UD) modeling function, for the convenience of model's interconnection with the system. Moreover, the results of eigenvalue analysis based on these models are compared with those of EMTP time-domain simulation, and the correctness of these models is verified.
     4. Frequency scan and eigenvalue analysis are applied respectively in IEEE First Benchmark Model system, to compare stability of torsional modes among with FSC only, TCSC only and both FSC and TCSC applied. The effects on SSO damping of firing control methodology, firing angle, control parameters, main circuit parameters of TCSC, and compensation ratio of TCSC to FSC when they are used together are also observed. The results show that TCSC has a certain capability to damp SSO, but the damping of torsional modes with TCSC is not entirely better than with FSC in all circumstances. Different firing control methodologies, control parameters, main circuit parameters of TCSC, and compensation ratios of TCSC to FSC make different impact on damping in different compensation level areas, and therefore selection of these methodologies and parameters needs to be well balanced.
     5. A supplementary damping control strategy of TCSC for SSO considering both damping effect and control reliability is proposed, in which the damping control based on remote shaft speed deviation as the main and the one based on local electrical quantity as the standby. When there is a pause or excessive delay fluctuation in remote signal transmission, main control will be switched to standby control promptly, and therefore the problem of lacking reliability or having weak control effect when relying only on the remote signal or local signal is solved. Effectiveness of this main/standby control scheme is verified by time-domain simulation.
引文
[1]Courts A L, Starr E C. Experience with 500kV series capacitor installations and new protection schemes on the BPA system. International Conference on Large High Voltage Electric Systems, Paris (France), August 27-September 4,1980, paper 31-09.
    [2]徐政,张帆.托克托电厂串补送出方案次同步谐振问题的计算和分析.中国电力,2006,39(11):21-26.
    [3]李国宝,张明,郭锡玖,等.上都电厂串补输电系统次同步谐振解决方案研究.中国电力,2008,41(5):75-78.
    [4]刘世宇,谢小荣,王仲鸿.我国火电基地串补输电系统的次同步谐振问题.电网技术,2008,32(1):5-8.
    [5]IEEE Subsynchronous Resonance Working Group. Terms, Definitions and symbols for subsynchronous oscillations. IEEE Transactions on Power Apparatus and Systems,1985, 104(6):1326-1334.
    [6]Hall M C, Hodges D A. Experience with 500kV subsynchronous resonance and resulting turbine generator shaft damage at Mohave generating station. IEEE Power Engineering Society Winter Meeting,1976:22-29.
    [7]IEEE Subsynchronous Resonance Working Group. First benchmark model for computer simulation of subsynchronous resonance. IEEE Transactions on Power Apparatus and Systems,1977,96(5):1565-1572.
    [8]Hingorani N G. High Power Electronics and Flexible AC Transmission System. IEEE Power Engineering Review, July,1988.
    [9]何大愚.柔性交流输电技术的定义、机遇及局限性.电网技术,1996,20(6):18-24.
    [10]Hedin R, Henn V, Johnson A H, et al. Advanced series compensation (ASC):Transient network analyzer studies compared with digital simulation studies. EPRI FACTS Conference, Boston (USA),1992.
    [11]Christl N, Hedin R, Sadek K, et al. Advanced series compensation (ASC) with thyristor controlled impedance. CIGRE, Paris (France),1992, paper 14-37-38-05.
    [12]Piwko R J, Wenger C A, Damsky B L, et al. The Slatt thyristor controlled series capacitor project-design, Installation, Commissioning and System Testing. CIGRE, Paris (France), 1994, paper 14-104.
    [13]Piwko R J, Wenger C A, Kinney S J. Subsynchronous resonance performance tests of the Slatt thyristor controlled series capacitor. IEEE Transactions on Power Delivery,1996, 11(2):1112-1119.
    [14]Angquist L. Synchronous voltage reversal control of thyristor controlled series capacitor. Stockholm:Royal Institute of Technology Doctoral Dissertation,2002.
    [15]Angquist L, Ingestrom G, Jonsson H A. Dynamical performance of TCSC schemes. CIGRE, Paris (France),1996, paper 14-302.
    [16]葛俊,童陆园,耿俊成,等.TCSC抑制次同步谐振的机理研究及其参数设计.中国电机工程学报,2002,22(6):25-29.
    [17]Kabiri K, Henschel S, Dommel H W. Resistive behavior of thyristor-controlled series capacitors at subsynchronous frequencies. IEEE Transactions on Power Delivery,2004, 19(1):374-379.
    [18]高俊,丁洪发TCSC的次频阻抗特性.电力系统自动化,2001,25(12):24-28.
    [19]Zhu W, Spee R, Mohler RR, et al. An EMTP study of SSR mitigation using the thyristor controlled series capacitor. IEEE Transactions on Power Delivery,1995,10(3):1479-1485.
    [20]陈陈,郁惟镛,朱子述,等.伊敏-大庆500kV系统串联补偿方案研究报告.1996年7月.
    [21]灵活交流输电系统(可控串补)技术课题组.伊敏-冯屯500kV可控串补系统分析——96年工作汇报技术报告.1997年2月.
    [22]中国电力科学研究院.伊敏可控串补系统分析研究(报告一~九).1997年9月.
    [23]中国电力科学研究院.伊冯500kV线路可控串补电磁暂态分析和绝缘配合(中期技术报告).1997年10月.
    [24]清华大学电机系可控串补课题组.可控串补阶段工作报告.1997年9月.
    [25]东南大学课题组.伊敏500kV输电系统可控串补动态模拟.1997年8月.
    [26]中国电力科学研究院,清华大学,上海交通大学等.超高压输电系统中灵活交流输电(可控串补)技术总结报告系列.1999年.
    [27]周孝信.超高压输电系统中灵活交流输电(可控串补)技术报告.2000年.
    [28]郭剑波,武守远,李国富,等.甘肃成碧220kV可控串补国产化示范工程研究.电网技术,2005,29(19):12-17.
    [29]汤海雁,武守远,徐桂芝,等.成碧可控串补工程阻尼控制试验分析.电网技术,2006,30(16):35-39.
    [30]夏道止.电力系统分析.北京:水利电力出版社,1995.
    [31]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2002.
    [32]IEEE Subsynchronous Resonance Working Group. Proposed terms and definitions for subsynchronous oscillations. IEEE Transactions on Power Apparatus and Systems,1985, 104(6):1326-1334.
    [33]IEEE Committee Report. Reader's guide to subsynchronous resonance. IEEE Transactions on Power Systems,1992,7(1):150-157.
    [34]Padiyar K R. Analysis of subsynchronous resonance in power systems. Boston, USA: Kluwer Academic Publishers,1999.
    [35]周孝信,郭剑波,林集明,等.电力系统可控串联电容补偿.北京:科学出版社,2009.
    [36]Agrawal B L, Farmer R G. Use of frequency scanning techniques for subsynchronous resonance analysis, IEEE Transactions on Power Apparatus and Systems,1979,98(2): 341-348.
    [37]徐政,罗惠群,祝瑞金.电力系统次同步振荡问题的分析方法概述.电网技术,1999,23(6):36-39.
    [38]Canay I M. A novel approach to the torque interaction and electrical damping of the synchronous machine, part Ⅰ:theory. IEEE Transactions on Power Apparatus and Systems, 1982,101(10):3630-3638.
    [39]Canay I M. A new approach to the torque interaction and electrical damping of the synchronous machine, part Ⅱ:application to an arbitrary network. IEEE Transactions on Power Apparatus and Systems,1982,101(10):3639-3647.
    [40]黄家裕,岑文辉.同步电机基本理论及其动态行为分析.上海:上海交通大学出版社,1989.
    [41]徐政.复转矩系数法的适用性分析及其时域仿真实现.中国电机工程学报,2000,20(6):1-4.
    [42]IEEE SSR Working Group. Countermeasures to subsynchronous resonance problems. IEEE Transactions on Power Apparatus and Systems,1980,99(5):1810-1818.
    [43]李建久.次同步振荡对汽轮发电机组的动态行为及轴系扭振特性的研究.武汉:华中理工大学博士学位论文,1989.
    [44]袁越,葛耀中,张保会.自适应分相重合闸对机组轴系扭振和系统暂态稳定影响的研究.电力系统自动化,1997,21(5):19-22.
    [45]Ning T S. Subsynchronous overcurrent relay for generators connected to a series compensated power system. IEEE PES Special Report, No.76CH1066-0-PWR,1976.
    [46]Agrawal B L, Farmer R G. Application of subsynchronous oscillation relay-type SSO. IEEE Transaction on Power Apparatus and Systems,1981,100(5):2442-2451.
    [47]钟胜.与超高压输电线路加装串补装置有关的系统问题及其解决方案.电网技术,2004,28(6):26-30.
    [48]Tang J F, Young J A. Operating experience of the Navajo static blocking filter. IEEE PES Special Publication,1981, No.81TH0086-9-PWR:20-22.
    [49]Iravani M R, Mathur R M. Two countermeasures for damping torsional interactions and transient torques of turbine-generators. IEEE Transactions on Power Systems,1987,2(2): 406-412.
    [50]Kilgore L A, Ramey D G, South W H. Dynamic filter and other solution to the subsynchronous resonance problems. Proceedings of the 37th American Power Conference, 1975:923-929.
    [51]Hammad A E, Sadek M E. Application of a thyristor controlled VAR compensator for damping subsynchronous oscillations in power systems. IEEE Transactions on Power Apparatus and Systems,1984,103(1):198-212.
    [52]Hingorani N G, Bhargava B, Garrigue G F, et al. Prototype NGH subsynchronous resonance damping, part Ⅰ:field installation and operation experience. IEEE Transactions on Power Systems,1987,2(4):1034-1039.
    [53]Hauer J F, Mittelstadt W A, Piwko R J, et al. Modulation and SSR tests performed on the BPA 500kV thyristor controlled series capacitor unit at Slatt substation. IEEE Transactions on Power Systems,1996,11(2):801-806.
    [54]Saito O, Mukac H, Murotani K, et al. Suppression of self-excited oscillations in series compensated transmission lines by excitation control of synchronous machines. IEEE Transactions on Power Apparatus and Systems,1975,94(5):1777-1778.
    [55]Andrew Yan, Yaonan Yu. Multi mode stabilization of torsional oscillations using output feedback excitation control. IEEE Transactions on Power Apparatus and Systems,1982, 101(5):1245-1253.
    [56]张帆,徐政.直流输电次同步阻尼控制器的设计.电网技术,2008,32(11):13-17.
    [57]Padiyar K R, Varma R K. Static VAR system auxiliary controllers for damping torsional oscillations. International Journal of Electrical Power & Energy Systems,1990,12(4): 271-286.
    [58]韩光,童陆园,葛俊,等.TCSC抑制次同步谐振的机理分析.电力系统自动化,2002,26(2):18-21.
    [59]韩彦华,李琥,施围.可控串补等值阻抗的计算方法研究.电工技术学报,2003,18(1):96-99.
    [60]Daneshpooy A, Gole A M, Frequency response of the thyristor controlled series capacitor. IEEE Transactions on Power Delivery,2001,16(1):53-58.
    [61]汤海雁,武守远,周孝信.可控串补次同步频率等效阻抗特性的机理分析.中国电机工程学报,2008,28(12):1-6.
    [62]曹路,陈珩.可控串联补偿抑制次同步谐振的机理.电力系统自动化,2001,25(4):25-30.
    [63]吕世荣,刘晓鹏,郭强,等TCSC抑制次同步谐振的机理分析.电力系统自动化,1999,23(6):14-18.
    [64]Naoto Kakimoto, Anan Phongphanphanee. Calculation of frequency response of thyristor-controlled series capacitor. Electrical Engineering in Japan,2002,139(3):35-44.
    [65]Paserba J J, Miller N W, Larsen E V, et al. A thyristor controlled series compensation model for power system stability analysis. IEEE Transactions on Power Delivery,1995, 10(3):1471-1478.
    [66]Swift F J, Wang H F. Application of the controlled series compensator in damping power system oscillations. IEE Proceedings-Generation, Transmission and Distribution,1996, 143(4):359-364.
    [67]Choi S S, Jiang F, Shrestha G. Suppression of transmission system oscillations by thyristor-controlled series compensation. IEE Proceedings-Generation, Transmission and Distribution,1996,143(1):7-12.
    [68]Jovcic D, Pillai G N. Analytical modeling of TCSC dynamics. IEEE Transactions on Power Delivery,2005,20(2):1097-1104.
    [69]Pillai G N, Jovcic D. SSR analysis with a new analytical model of thyristor controlled series capacitor. The 15th Power Systems Computation Conference, Liege (Belgium),2005, paper 34-3.
    [70]张慧媛,姜建国,冯宇.可控串补装置的动态建模及数字仿真研究.中国电机工程学报,2003,23(5):14-18.
    [71]Jalali S G, Lasseter R H, Dobson I. Dynamic response of a thyristor controlled switched capacitor. IEEE Transactions on Power Delivery,1994,9(3):1609-1615.
    [72]Rajaraman R, Dobson I, Lasseter R H, et al. Computing the damping of subsynchronous oscillations due to a thyristor controlled switched capacitor. IEEE Transactions on Power Delivery,1996,11(2):1120-1127.
    [73]李炳熙.高维动力系统的周期轨迹:理论和应用.上海:上海科学技术出版社,1984.
    [74]Othman H A, Angquist L. Analytical modeling of thyristor-controlled series capacitors for SSR studies. IEEE Transactions on Power Systems,1996,11(1):119-127.
    [75]刘晓冬,杨煜,陈陈.基于采样-数据模型方法的可控串联补偿系统对次同步振荡抑制作用的计算分析.中国电机工程学报,2001,21(2):1-5.
    [76]江振华,程时杰,傅予力,等.含有可控串联补偿电容的电力系统次同步谐振研究.中国电机工程学报,2000,20(6):47-52.
    [77]Sanders S R, Noworolski J M, Liu X Z, et al. Generalized averaging method for power conversion circuits. IEEE Transactions on Power Electronics,1991,6(2):251-259.
    [78]Mattavelli P, Verghese G C, Stankovic A M. Phasor dynamics of thyristor-controlled series capacitor systems. IEEE Transactions on Power Systems,1997,12(3):1259-1267.
    [79]Mattavelli P, Stankovic A M, Verghese G C. SSR analysis with dynamic phasor model of thyristor-controlled series capacitor. IEEE Transactions on Power Systems,1999,11(1): 200-208.
    [80]何瑞文,蔡泽祥.结合谐波特征的可控串补动态相量法建模与特性分析.中国电机工程学报,2005,25(5):28-32.
    [81]党杰,刘涤尘,柏晓路,等.考虑谐波特性的简化TCSC动态相量法模型.中国电机工程学报,2007,27(28):74-78.
    [82]党杰,刘涤尘,廖清芬,等.计及电抗器支路电阻的TCSC动态相量法模型.高电压技术,2008,34(3):542-545.
    [83]田芳.含晶闸管元件的电力系统小干扰稳定性分析.北京:中国电力科学研究院博士学位论文,2001.
    [84]Pilotto L A S, Bianco A, Long W F, et al. Impact of TCSC control methodologies on subsynchronous oscillations. IEEE Transactions on Power Delivery,2003,18(1):243-252.
    [85]张帆,徐政TCSC对发电机组次同步谐振阻尼特性影响研究.高电压技术,2005,31(3):68-70.
    [86]Vuorenpaa P, Rauhala T, Javentausta P, et al. On effect of TCSC structure and synchronization response on subsynchronous damping. International conference on power system transients, Lyon (France), June 4-7,2007.
    [87]Abardeh M H, Sadeh J. Effects of TCSC parameters and control structure on damping of sub-synchronous resonance. The 4th international power engineering and optimization conference, Selangor (MALAYSIA), June 23-24,2010.
    [88]Kakimoto N, Phongphanphanee A. Subsynchronous resonance damping control of thyristor-controlled series capacitor. IEEE Transactions on Power Delivery,2003, 18(3):1051-1059.
    [89]张少康,李兴源,张振,等TCSC及其主动阻尼控制对次同步谐振的抑制.电网技术,2010,34(1):22-26.
    [90]Wang L, Huang C W. Suppression of subsynchronous resonance using robust Hoo TCSC damping controllers. Power Engineering Society 1999 Winter Meeting, IEEE,1999, 1(31):610-615.
    [91]周长春,刘前进,Angquist L,等.抑制次同步谐振的TCSC主动阻尼控制.中国电机工程学报,2008,28(10):130-135.
    [92]汤海雁.TCSC抑制次同步谐振的机理分析及底层控制算法研究.北京:中国电力科学研究院博士学位论文,2008.
    [93]Joshi S R, Cheriyan E P, Kulkarni A M. Output feedback SSR damping controller design based on modular discrete-time dynamic model of TCSC. IET Generation, Transmission & Distribution,2009,3(6):561-573.
    [94]程时杰,曹一家,江全元.电力系统次同步振荡的理论与方法.北京:科学出版社, 2009.
    [95]中国电力科学研究院.动态相量法机电/电磁暂态分析方法研究及其自定义模型专题报告.2001年7月.
    [96]袁野,程林,孙元章.考虑时延影响的互联电网区间阻尼控制.电力系统自动化,2007,31(8):12-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700