用户名: 密码: 验证码:
胖大海酸性多糖结构和功能性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胖大海(Semen Sterculiae Lychnophera)为梧桐科苹婆属植物(Sterculia lychnophora Hance)的干燥成熟种子,是一种传统的清咽润喉的中药材,也是卫生部公布第三批药食两宜的资源。由于受生长地域环境和气候的限制,胖大海主要产于东南亚的热带地区,我国不产,于20世纪70年代从柬埔寨和泰国分别引进长粒和圆粒胖大海,只有在海南和西双版纳两地生长良好,但仅有长粒胖大海在西双版纳已结果多年,成片种植,故国内胖大海资源主要依靠从东南亚国家进口。目前国内外对胖大海的研究较少,仅限于做茶饮、甜点和含片等清咽润喉的保健品,开发利用程度较低,缺乏对其活性成分的系统研究和利用。胖大海多糖是胖大海的主要生物活性成分,本课题以越南产胖大海为原料,对胖大海多糖的提取、分离纯化,活性多糖的结构表征和溶液的性质进行研究,主要研究内容如下:
     对胖大海化学成分的初步分析:粗蛋白12.36%,粗脂肪5.89%,碳水化合物53.23%,还原糖29.45%,结果发现胖大海多糖含量丰富。采用去离子水和0.05 mol/L NaOH溶液提取胖大海粗多糖,对其得率、纯度和固有粘度进行比较,发现水溶性多糖(W-SP)的得率(13.8%)、纯度(69.7%)和固有粘度(1.71 dL/g)都明显高于NaOH提取的多糖(A-SP),分析原因可能在碱性溶液提取过程中部分多糖发生降解。
     对W-SP、A-SP和碱不溶性多糖(IMP)的化学成分、单糖组成以及抗炎活性进行研究。分别测得总糖含量为69.74%、44.14%、80.18%,糖醛酸含量为14.78%、7.35%、5.35%,蛋白质含量为9.12%、13.54%、3.45%;发现三种多糖均由Rha、Ara、Gal、Glc和Xyl单糖组成,只是含量有所不同,在W-SP和A-SP中Glc的含量均高于IMP多糖。以二甲苯致小鼠耳廓肿胀试验为模型对W-SP、A-SP和IMP的急性炎症抗炎活性进行筛选,结果发现,W-SP和A-SP均有抑制小鼠耳廓肿胀作用,但W-SP抑制率(17.84%)高于A-SP(4.15%),IMP基本无抗炎活性。
     运用响应面分析法以提取得率、纯度和相对粘度为指标,优化了水溶性粗多糖(W-SP)的提取工艺参数:提取温度60-65oC,提取时间2.3-3.1h,料水比75:1。
     水溶性粗多糖经过DEAE纤维素柱层析分离得到两个组分:W-SPN为中性多糖,W-SPA为酸性多糖。W-SPN的化学成分:总糖90.18%,蛋白质2.51%,灰分1.17%;主要是由Glc单糖组成。W-SPA的化学成分:总糖85.86%,蛋白质3.02%,灰分4.05%,糖醛酸40.13%;主要由Rha、Ara、Gal、Xyl和Glc单糖组成的;经酶法和HPAEC-PAD分析发现其糖醛酸主要由GalA(96.89%)组成,还有少量GlcA(3.11%)。
     经Sepharose CL-6B凝胶柱和HPSEC分析发现,W-SPN和W-SPA都是相对分子质量的均一组分,测得其相对分子质量分别为586,800 Da和1,125,000 Da;经过单糖组成和FT-IR分析确定W-SPA是一种果胶类多糖,并用FT-IR测得W-SPA的酯化度为68%。
     采用急性炎症抗炎模型对W-SPN和W-SPA进行活性筛选,结果表明,W-SPN对小鼠耳廓肿胀的抑制率(3.21%)远低于W-SPA(26.29%)。采用植入棉球致大鼠肉芽组织增生试验为模型,考察了W-SPA的慢性炎症抗炎活性,结果发现W-SPA能抑制肉芽肿28.38%,达到阿司匹林抑制率(34.38%)的82%,并且发现W-SPA对急、慢性炎症的抗炎活性都具有剂量依赖性。
     采用多糖部分酸水解和甲基化分析的化学方法,结合HPAEC、GC-MS和1D NMR、2D NMR技术对胖大海酸性多糖W-SPA进行结构分析,结果表明,W-SPA主要是由1,4-α-D-GalpA连接形成的半乳糖醛酸聚糖(HG)构成的“光滑区”和由1,4-α-D-GalpA通过O-4位与1,2-、1,2,4-α-L-Rhap的O-2交替连接形成的鼠李半乳糖醛酸聚糖-I(RG-I)构成的“毛发区”组成。其中,HG多糖链上有部分糖醛酸的羧基被甲酯化,部分的C-2和C-3位被乙酰基取代;RG-I链上有62.21%的鼠李糖在O-4位上发生取代。由T-, 1,3-, 1,5-L-Araf和T-, 1,4-, 1,6-, 1,3,6-D-Galp连接形成的阿拉伯聚糖、半乳聚糖和阿拉伯半乳聚糖构成了多糖W-SPA的支链。55.76%的L-Araf以非还原末端的形式连接在1,3-L-Araf的O-3、1,5-L-Araf的O-5以及1,6-D-Galp的O-3和主链鼠李糖的O-4位上;38.45%的L-Araf构成了阿拉伯聚糖。57.17%的D-Galp以非还原末端的形式连接,22.95%的1,6-D-Galp在O-3位上被取代。少量的蛋白质可能以O-糖苷的形式连接在W-SPA的多糖链上,但这还需要进一步确证。
     采用动态和静态光散射技术研究了酸性多糖大分子在溶液中的性质。经研究发现,W-SPA分子在水、5 mol/L尿素和100 mmol/L NaNO3溶液中均存在聚集,影响了多糖大分子的光散射分析,但在25 mmol/L NaOH溶液中能够消除分子的聚集现象。采用静态光散射技术测得W-SPA分子的重均分子量Mw为913,200 Da,旋转半径Rg为51.85 nm,第二维里系数A2为2.70×10-4 cm3 mol/g2。用动态光散射测得流体动力学半径Rh为39.3 nm,系数ρ=Rg/Rh为1.32表明W-SPA分子在25 mmol/L NaOH溶液中是一种多分支紧凑的无规线团构型。经过HPSEC分析测得W-SPA的Mark–Houwink-Sakurada方程指数α为0.586,表明W-SPA为紧凑的无规线团的分子链,ρ和α所反映的分子构型是基本一致的。
     对W-SPA的流变学性质进行了研究。通过稳态剪切流变实验发现,W-SPA在高浓度下表现的是剪切变稀的非牛顿流体,在低浓度下是典型的牛顿流体。与高甲氧基果胶类似,W-SPA本身不能形成胶体,在酸性和共溶质如糖的存在条件下才能形成胶体。在W-SPA的线性粘弹区采用动态流变分析了多糖的机械谱图,结果发现W-SPA的弹性模量(固态行为)和损失模量(流体行为)都依赖于多糖的浓度和切变频率。
Boat-fruited sterculia seed (Semen Sterculiae Lychnophorae) is a traditional Chinese herb, specified as the ripe seeds of Sterculia lychnophora Hance in the Chinese pharmacopoeia, and is one of the third batch as both edible and medicinal resources published by Ministry of Health, China. Due to the limitation of region and climate, boat-fruited sterculia seed is mainly produced in the tropical zone of Southeast Asia. China is not the original production country of boat-fruited stercilia seed; it was not until the 1970s that Chinese scientists introduced and cultivated long grain seeds from Cambodia and round ones from Thailand. As a result, only in Hainan and Xishuangbanna the trees grew well and blossomed but the seeds were harvested only in Xishuangbanna. Therefore the seed resource in China depends on the import from Southeast Asia. So far boat-fruited sterculia seeds are primarily used for making tea, desserts and healthy buccal tablets etc, and only a little information has been published. Therefore, there is lack of systematic study of its bioactive components. Since polysaccharide is one of the main bioactive components in boat-fruited sterculia seeds, the objectives of the current project were to extract, isolate and purify the polysaccharides with anti-inflammatory bioactivity from boat-fruited sterculia seeds, and to study the structure and functional properties of the bioactive polysaccharide.
     Chemical composition analysis revealed that boat-fruited sterculia seeds imported from Vietnam contained 12.36% crude protein, 5.89% crude fat, 53.23% carbohydrate and 29.45% reducing sugar. The yield (13.8%), purity (69.7%) and intrinsic viscosity (1.71 dL/g) of crude polysaccharides (W-SP) from water extraction were higher than the polysaccharides (A-SP) extracted from water-insoluble residues with 0.05 mol/L NaOH at 40 oC, indicating that polysaccharides might be partially degraded in NaOH solution possibly due to beta-elimination.
     Chemical and monosaccharide compositions of W-SP, A-SP and alkali-insoluble mucilage polysaccharides (IMP) were analyzed and the results were as following: the total carbohydrate were 69.74%、44.14% and 80.18%, uronic acid were 14.78%, 7.35% and 5.35%, and protein were 9.12%、13.54% and 3.45%, respectively. They were complex heteropolymers containing a range of neutral sugars, including rhamnose, arabinose, galactose, glucose and small amounts of xylose.
     Acute anti-inflammatory activity tested in a model of ear edema formation in mice induced by dimethylbenzene was used to monitor the bioactivity of the three fractions. It was found that W-SP exhibited a significant inhibitory effect (inhibition rate 17.84%) compared to that of A-SP (4.15%) and IMP (0.67%). Hence, water extraction was used to obtain the crude polysaccharides and the extraction procedure was optimized using Surface Response Methodology (RSM). The obtained optimal parameters of the extraction procedure of W-SP by RSM were: temperature 60-65°C, time 2.3-3.1 h, and water to solid ratio 75:1.
     A neutral and an acidic fraction (W-SPN and W-SPA) were obtained from the crude polysaccharides (W-SP) following an ion exchange chromatography on a DEAE-Cellulose column. The neutral polysaccharide W-SPN was composed mainly of glucose (90.18%) and small amounts of protein and ash. The acidic fraction (W-SPA) consisted of galacturonic acids (39.30%), glucuronic acids (1.26%), rhamnose (11.36%), arabinose (17.46%), galactose (15.70%), xylose (0.63%) and glucose (0.35%), with a total carbohydrate of 85.86% and small amounts of protein and ash.
     Both polysaccharides were identified by gel filtration chromatography on Sepharose CL-6B column and HPSEC as homogeneous in molecular weight: their molecular weights were 586,800 Da and 1,125,000 Da, respectively. W-SPA was identified as a pectic polysaccharide confirmed by monosaccharide composition and FT-IR analysis. The degree of esterification (DE) value of W-SPA was 68% based on a FT-IR method.
     Acute anti-inflammatory activity of W-SPN and W-SPA was tested in a model of ear edema formation in mice. W-SPA exhibited a much higher anti-inflammatory activity (inhibition rate 26.29%) compared with W-SPN (3.21%). Further chronic anti-inflammatory activity of W-SPA was estimated by a well-accepted model of hyperplasia of granuloma tissue in rats: the inhibition rate of W-SPA was 28.38% which is 82% of the effect of aspirin (inhibition rate 34.38%). The current study revealed that W-SPA presented a significant dose-dependent inhibitory effect at low concentration range on both acute and chronic anti-inflammatory experiments. Therefore, W-SPA was chosen for further studies aimed at elucidation of its detailed structure, which was essential for the understanding of its mechanism of action.
     Structure characterization of W-SPA was carried out using partial acid hydrolysis and methylation analysis, combined with HPAEC-PAD, GC-MS and 1D & 2D NMR spectroscopy techniques. The backbone of W-SPA was found to contain two characteristic features: the first is homogalacturonan (HG) zones referred to as the‘smooth’regions characterized by a linear linkage of 1,4-α-D-GalpA; the second is rhamnogalacturonan-I (RG-I) zones, also called‘hairy’regions consisting of a←4)-α-D-GalpA-(1→2)-α-L-Rhap-α-(1→backbone partially substituted at O-4 of the rhamnose units. 20.8% of rhamnosyl residues were only 1,2- linked while 62.2% of residues were 1,2,4- linked (with the O-4 position substitution). On the HG chains carboxyl groups were partially methyl esterified and partially O-acetylated on C-2 and/or C-3. Side chains of W-SPA consisted of araban, galactan and arabinogalactan by the linkages of T-, 1,3-, 1,5-L-Araf and T-, 1,4-, 1,6-, 1,3,6-D-Galp, attached to the backbone via the O-4 position of the rhamnose residues. 55.8% of L-Araf were situated as the nonreducing terminals, which were linked to the O-3 position of 1,3-L-Araf , O-5 position of 1,5-L-Araf and O-3 position of the 1,6-D-Galp units except the O-4 position of the backbone rhamnosyl residues. Araban were composed mainly of 38.5% of 1,3-L-Araf and small amounts of 1,5-L-Araf. 57.2% D-Galp were situated as the nonreducing terminals, and in addition 23.0% of D-Galp units were the linkage of 1,3,6-D-Galp and 3.7% units were 1,6-D-Galp linkage. A small amount of proteins were possibly bonded with the W-SPA molecular chain by O-glycopeptide bonds, however, this speculation needed further confirmation.
     Solution properties of polysaccharide molecules were investigated by dynamic and static light scattering techniques. W-SPA molecules formed aggregates in pure water, 5 mol/L urea and 100 mmol/L NaNO3 solutions. These aggregates could be only partially eliminated by filtration of the solutions with 0.1μm membrane filter. However, when W-SPA was dissolved in 25 mmol/L NaOH solution at room temperature overnight, there was no observable aggregations: there was only one population of particles with a mean diameter of 51.8 nm in the dynamic light scattering measurement. The Zimm plot from static light scattering measurement for W-SPA in 25 mmol/L NaOH solution was obtained, and weight average molecular weight (Mw), radius of gyration (Rg) and the second virial coefficient (A2) were derived as 9.132×105 Da, 51.85 nm, 2.70×10-4 cm3 mol/g2, respectively. The hydrodynamic radius (Rh) was 39.3 nm by dynamic light scattering measurement. W-SPA in NaOH solution was found to be a branching and exhibited a relatively compact random coiled conformation as evidenced by the characteristic ratioρ=Rg/Rh=1.32. In Mark-Houwink-Sakurada equation,αvalue obtained by HPSEC was 0.586, indicating W-SPA molecule was a little compact random coiled chain, likely a consequence of molecular branching. This observation confirmed the compact random coiled conformation obtained from the characteristic ratioρ.
     Steady-shear rheological measurements of W-SPA showed a non-Newtonian shear-thinning flow behavior at high concentrations and a Newtonian flow behavior at low concentrations. Similar to other HM pectins, W-SPA could not form a gel on by itself; however, gelation occurred when a co-solute was added under acidic conditions. The mechanical spectra within the linear viscoelastic region were a function of W-SPA concentration and temperature. Both fluid-like (G") and solid-like (G′) behaviors were observed depending on concentration and frequency.
引文
[1]中华人民共和国药典委员会.中华人民共和国药典(第一卷)[M].北京:化学工业出版社,2000,pp216-217
    [2] Wang, R., Yang, X., Ma, C., Shang, M., Liang, J., Wang, X., Cai, S., & Shoyama, Y. Alkaloids from the seeds of Sterculia lychnophora (Pangdahai). Phytochemistry, 2003, 63(4), 475-478
    [3]肖培根.新编中药志(第二卷)[M].北京:化学工业出版社,2002,pp517-521
    [4] Somboonpanyakul, P., Wang, Q., Cui, W., Barbut, S., & Jantawat, P. Malva nut gum (Part I): Extractionand physicochemical characterization. Carbohydrate Polymers, 2006, 64(2), 247-253
    [5] Xu, H. X., Lee, S. H. S., Lee, S. F., White, R. L., & Blay, J. Isolation and characterization of an anti-HSV polysaccharide from Prunella vulgaris. Antiviral Research, 1999, 44(1), 43-54
    [6] Sun, Y., Tang, J., Gu, X., & Li, D. Water-soluble polysaccharides from Angelica sinensis (Oliv.) Diels: Preparation, characterization and bioactivity. International Journal of Biological Macromolecules, 2005, 36(5), 283-289
    [7] Pereira, B. M. R., Silva, B. P., Pereira, N. A., & Parente, J. P. Anti-inflammatory and immunologically active polysaccharides of Periandra mediterranea. Phytochemistry, 2000, 54(4), 409-413
    [8] Pereira da Silva, B., & Paz Parente, J. An anti-inflammatory and immunomodulatory polysaccharide from Orbignya phalerata. Fitoterapia, 2001, 72(8), 887-893
    [9] Pereira da Silva, B., & Paz Parente, J. Bioactive polysaccharides from Costus spicatus. Carbohydrate Polymers, 2003, 51, 239-242
    [10] Hokputsa, S., Harding, S. E., Inngjerdingen, K., Jumel, K., Michaelsen, T. E., Heinze, T., et al. Bioactive polysaccharides from the stems of the Thai medicinal plant Acanthus ebracteatus: their chemical and physical features. Carbohydrate Research, 2004, 339(4), 753-762
    [11] Inngjerdingen, K. T., Debes, S. C., Inngjerdingen, M., Hokputsa, S., Harding, S. E., Rolstad, B., et al. Bioactive pectic polysaccharides from Glinus oppositifolius (L.) Aug.DC., a Malian medicinal plant, isolation and partial characterization. Journal of Ethnopharmacology, 2005, 101(2), 204-214
    [12] Diniz, R. O., Garla, L. K., Schneedorf, J. M., & Carvalho, J. C. T. Study of anti-inflammatory activity of Tibetan mushroom, a symbiotic culture of bacteria and fungi encapsulated into a polysaccharide matrix. Pharmacological Research, 2003, 47(1), 49-52
    [13]陈建民,曹培让,宋洪涛.胖大海多糖PPⅢ的纯化及性质的研究[J].中国中药杂志,1996,21(1),39-41
    [14]陈建民,李文魁,沈一行,彭会明,徐秉玖.胖大海中多糖的成分分析和含量测定[J].中药材,1994,17(8),32-34
    [15] Somboonpanyakul, P., Barbut, S., Jantawat, P., & Chinprahast, P. Textural and sensory quality of poultry meat batter containing malva nut gum, salt and phosphate. LWT, 2007, 40, 498-505
    [16] Yamada, T., Itoh, A., Kanzaki, M., Yamakura, T., Suzuki, E., & Ashton, P. S. Local and geographical distributions for a tropical tree genus, Scaphium (Sterculiaceae) in the Far East. Plant Ecology, 2000, 148, 23-28
    [17] Baird, I. G., & Dearden, P. Biodiversity conservation and resource tenure regimes: A case study from Northeast Cambodia. Environmental Management, 2003, 32(5), 541-550
    [18] Bann, C. An economic analysis of tropical forest land use options, Ratanakiri Province, Cambodia. Economy and environment program for Southeast Asia. International Development Research Centre (IDRC), Singapore, 1997
    [19]刘金茂.胖大海及其混伪品的鉴别[J].中草药,1992,23(5),269-270
    [20]茅莉萍,张丽云.胖大海的真伪鉴别[J].时珍国医国药,2006,17(4),615-616
    [21]李荣英,巫金华.长粒胖大海在西双版纳引种成功和存在问题[J].中药材,2003,26(8),545-546
    [22]巫金华,李荣英,里二.胖大海树开花结果习性观察[J].中药材,1998,21(10),487-489
    [23]王世敏,吴德勋,张仲伟,张柳绿.胖大海在海南岛生长状况观察[J].中药材,1998,21(6),271-274
    [24]刀秀英,孟芹,李学兰.胖大海的质量对比分析[J].中草药,2000,31(7),556-558
    [25]陈建民,李文魁,李惠灵,沈一行,俞敏倩.胖大海化学成分的研究[J].中药材,1995,18(11),567-569
    [26]王如峰,杨秀伟,马超美,尚明英,杨珊,王闽川,蔡少青.胖大海中脂肪酸成分的气-质联用分析[J].中国中药杂志,2003,28(6),533-535
    [27]杨云,张晶,陈玉婷.天然药物化学成分提取分离手册[M].北京:中国中医药出版社,2003, 1,pp.569-570
    [28]李文魁,陈建民,巫金华.国产与进口胖大海中微量元素的比较研究[J].光谱学与光谱分析,1993,13(6),45-47
    [29] Tateishi, K., Shibata, H., Matsushima, Y., & Iijima, T. Isolation of two new IAA glucopyranoside of 3,7- dihydroxy-2-indolinone-3-acetic acid and 80-O-b-D- glucopyranoside of 8-hydroxy-2-quinolone-4- carboxylic acid, from immature sweet corn kernels (Zea mays L). Agricultural and Biological Chemistry, 1987, 51, 3445-3447
    [30] Yu, Y. N., & Li, X. The chemical constituents of Brucea javanica. Acta Pharmacologica Sinica, 1990, 25, 382-386
    [31] Chung, H. S., & Woo, W. S. A quinolone alkaloid with antioxidant activity from the aleurone layer of anthocyanin-pigmented rice. Journal of Natural Products, 2001, 64, 1579-1580
    [32] Jung, J. H., Lee, C. O., Kim, Y. C., & Kang, S. S. New bioactive cerebrosides from Arisaema amurense. J Journal of Natural Products, 1996, 59, 319-322
    [33] Markham, K. R., Ternai, B., Stanley, R., Geiger, H., & Mabry, T. J. 13C NMR of flavonoids-II. Flavonoids other than flavone and flavonol aglycones. Tetrahedron 1976, 34, 1389-1397
    [34] Shibuya, H., Kawashima, K., Sakagami, M., Kawanishi, H., Shimomura, M., & Ohashi, K.. Sphingolipids and glycerolipids. I. Chemical structure and ionophoretic activities of soya-cerebrosides I and II from soybean. Chemical and Pharmaceutical Bulletin, 1990, 38, 2933-2938
    [35]赵余庆,袁昌鲁,李铣,吴立军.红毛五加化学成分的研究[J].中国中药杂志,1991,27,421-424
    [36] Si, J. Y., Chen, D. H., Chang, Q., Lian, W. Y., & Wang, Y. The chemical constituents of the rhizome of Acanthopanax obovatus. Acta Botanica Sinica, 1993, 35, 483-485
    [37] Fry, S. C. The growing plant cell wall: Chemical and metabolic analysis. Harlow, U. K.: Longman Scientific and Technical, 1988
    [38] Vinkx, C. J. A., Reynaert, H. R., Grobet, P. J., & Delcour, J. A. Physicochemical and functional properties of rye nonstarch polysaccharides. V. Variability in the structure of water-soluble arabinoxylans. Cereal Chemistry, 1993, 70, 311-317
    [39] Weterlund, E., Andersson, R. & ?man, P. Isolation and chemical characterization of water-soluble mixed-linkedβ-glucans, and arabinoxylans in oat milling fractions. Carbohydrate polymers, 1993, 20,115-123
    [40] Autio, K., Myllym?ki, O., Suortti, T., Saastamoinen, M., & Poutanen, K. Physical properties of (1→3), (1→4)-β-glucan preparates isolated from Finnish oat varieties. Food Hydrocolloids, 1992, 5, 513-522
    [41] Wang, Q., Wood, P. J., Huang, X., Cui, W. Preparation and characterization of molecular weight standards of low polydispersity from oat and barley (1→3), (1→4)-β-D-glucan. Food Hydrocolloids, 2003, 17, 845-853
    [42] Vinkx, C. J. A., van Nieuwenhove, C. G., & Delcour, J. A. Physicochemical and functional properties of rye nonstarch polysaccharides. III. Oxidative gelation of a fraction containing water-soluble pentosana and proteins. Cereal Chemistry, 1991, 68, 617-622
    [43] Zhao, G., Kan, J., Li, Z., & Chen, Z. Structural features and immunological activity of a polysaccharide from Dioscorea opposita Thunb roots. Carbohydrate Polymers, 2005, 61, 125-131
    [44] Hokputsa, S., Gerddit, W., Pongsamart, S., Inngjerdingen, K., Heinze, T., Koschella, A., Harding, S. E., & Paulsen, B. S. Water-soluble polysaccharides with pharmaceutical importance from Durian rinds (Durio zibethinus Murr.): isolation, fractionation, characterisation and bioactivity. Carbohydrate Polymers, 2004, 56 471-481
    [45] Trombetta, D., Puglia, C., Perri, D., Licata, A., Pergolizzi, S. C., Lauriano, E. R., De Pasquale, A., Saija, A., & Bonina, F. P. Effect of polysaccharides from Opuntia ficus-indica (L.) cladodes on the healing of dermal wounds in the rat. Phytomedicine, 2006, 13, 352-358
    [46] Hensel, A., Schmidgall, J., & Kreis, W. The plant cell wall–A potential source for pharmacologically active polysaccharides. Pharmaceutica Acta Helvetiae, 1998, 73, 37-43
    [47] Ebringerová, A., Kardo?ová, A., Hromádková, Z., & H?íbalová, V. Mitogenic and comitogenic activities of polysaccharides from some European herbaceous plants. Fitoterapia, 2003, 74, 52-61
    [48]周郑坤,周文明,贺明宇,吴小青.胖大海水溶性多糖的提取[J].西北林学院学报, 2006,21(4),129-131
    [49]徐祥浩,徐颂军.中药胖大海名实考[J].中药材,1987, (2),52-53
    [50]刘会前,吴秀平.一种劣质胖大海的鉴别[J].时针国医国药,1997,8(2),165
    [51]周长坚,林键,许凌枚,陈强,张霖.复方胖大海的药理研究[J].福建中医学院学报,1994,4(3),30-33
    [52] Hocking, P. G. M. Quartery Journal of crude drugs research, 1962, 2, 213
    [53]启明.胖大海治疗便秘[J].家庭中医,1994,(4),45
    [54]王本祥.现代中药药理[M].天津:天津科学技术出版社,1997, pp986
    [55]杜力军,孙绍美,於兰,陈建民,巫金华.国产与进口胖大海对小鼠抗炎和小肠推进作用比较[J].中药材,1995,18(8),409-411
    [56]可军,等. 1962年的中药研究所的科学研讨会,1963,pp323
    [57]张石生,刘国栋,何家扬,陈一戎.胖大海抑制草酸钙结晶形成的实验结果与临床观察[J].中华泌尿外科杂志,1996,17(1),51-53
    [58]钟玖平,欧阳健明.酸性粘多糖影响草酸钙结石形成的研究进展[J].中国药物化学杂志,2002,12(5),305-310
    [59]陈焱,刘春晓.酸性粘多糖与尿石形成[J].国外医学.泌尿系统分册, 1998, 18(4), 188-190
    [60]陈焱,刘春晓,张积仁.茯苓多糖防石作用的实验研究[J].中华泌尿外科杂志,1999,20(2),114-115
    [61] Huang, D., Guo, H., & Sun, Z. Medicines preventing the formation of calcium oxalate calculus in urinary system. China Pharmaceuticals, 2001, 10(11), 77-78
    [62]余传星,朱玲.胖大海治疗菌痢的实验研究[J].中医药研究,1997,(1),46-48
    [63] Morris, V. J. Gelation of polysaccharide. In: Hill, S. E., Ledward, D. A., & Mitchell, J. R. Functional properties of food macromolecules (2nd ed.). Gaithersburg, Maryland: Aspen Publishers, Inc., 1998, pp.167-175
    [64] Pérez, S., Mazeau, K., & du Penhoat, C. H. The three-dimensional structures of the pectic polysaccharides. Plant Physiology and Biochemistry, 2000, 38(1/2), 37-55
    [65] Reid, J. S. G., Carbohydrate metabolism: Structural carbohydrates, in: Dey, P. M., & Harborne, J. B. (Eds.), Plant Biochemistry, Academic Press, 1997, pp.205–236
    [66] Iacomini, M., Serrato, R. V., Sassaki, G. L., Lopes, L., Buchi, D. F., & Gorin, P. A. J. Isolation and partial characterization of a pectic polysaccharide from the fruit pulp of Spondias cytherea and its effect on peritoneal macrophage activation. Fitoterapia, 2005, 76, 676-683
    [67] Inngjerdingen, K. T., Debes, S. C., Inngjerdingen, M., Hokputsa, S., Harding, S. E., Rolstad, B., Michaelsen, T. E., Diallo, D., & Paulsen, B. S. Bioactive pectic polysaccharides from Glinus oppositifolius (L.) Aug. DC., a Malian medicinal plant, isolation and partial characterization. Journal of Ethnopharmacology, 2005, 101, 204-214
    [68] Wang, X., Liu, L., & Fang, J. Immunological activities and structure of pectin from Centella asiatica. Carbohydrate Polymers, 2005, 60, 95-101
    [69] Popov, S. V., Popova, G. Y., Ovodova, R. G., & Ovodov, Y. S. Antiinflammatory activity of the pectic polysaccharide from Comarum palustre. Fitoterapia, 2005, 76(3), 281-287
    [70] Carvalho, J. C. T., Sertié, J. A. A., Barbosa, M. V. J., Patrício, K. C. M., Caputo, L. R. G., Sarti, S. J., et al. Anti-inflammatory activity of the crude extract from the fruits of Pterodon emarginatus Vog. Journal of Ethnopharmacology, 1999, 64(2), 127-133
    [71] Garbacki, N., Gloaguen, V., Damas, J., Bodart, P., Tits, M., & Angenot, L. Anti-inflammatory and immunological effects of Centaurea cyanus flower-heads. Journal of Ethnopharmacology, 1999, 68, 235-241
    [72] Lee, J., Shim, J. S., Lee, J. S., Kim, M., Chung, M., & Kim, K. H. Pectin-like acidic polysaccharide from Panax ginseng with selective antiadhesive activity against pathogenic bacteria, Carbohydrate Research, 2006, 341(9), 1154-1163
    [73] Ridley, B. L., O’Neill, M. A. & Mohnen, D. Pectins: structure, biosynthesis, and oligogalacturonide -related Signaling. Phytochemistry, 2001, 57, 929-967
    [74] Paulsen, B. S., & Barsett, H. Bioactive Pectic Polysaccharides. Advances in Polymer Science, 2005, 186, 69-101
    [75] Ishii, T., O-acetylated oligosaccharides from pectins of potato tuber cell walls. Plant Physiology. 1997, 113, 1265-1272
    [76] Komalavilas, P., & Mort, A. J. The acetylation at O-3 of galacturonic acid in the rhamnose-rich region of pectins. Carbohydrate Research, 1989, 189, 261-272
    [77] Rihouey, C., Morvan, C., Borissova, I., Jauneau, A., Demarty, M., & Jarvis, M. Structural features of CDTA-soluble pectins from flax hypocotyls. Carbohydrate Polymers, 1995, 28, 159-166
    [78] Lerouge, P., O’Neill, M. A., Darvill, A. G., & Albersheim, P. Structural characterization of endo-glycanase-generated oligoglycosyl side chains of rhamnogalacturonan I. Carbohydrate Research, 243, 359-371
    [79] Saulnier, L., & Thibault, J.-F.,Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. Journal of the Science of Food and Agriculture, 1999, 79, 396-402
    [80] Doco, T., Williams, P., Vidal, S., & Pellerin, P. Rhamnogalacturonan II, a dominant polysaccharide in juices produced by enzymic liquefaction of fruits and vegetables. Carbohydrate Research, 1997, 297, 181-186
    [81] Szpunar, J., Pellerin, P., Makarov, A., Doco, T., Williams, P., & Lobinski, R. Speciation of metal-carbohydrate complexes in fruit and vegetable samples by size-exclusion HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 1999, 14, 639-644
    [82] Tahiri, M., Pellerin, P., Tressol, J.C., Doco, T., Pepin, D., Rayssiguier, Y., Coudray, C., The rhamnogalacturonan-II dimer decreases intestinal absorption and tissue accumulation of lead in rats. Journal of Nutration, 2000, 130, 249-253
    [83] Shin, K. S., Kiyohara, H., Matsumoto, T., Yamada, H. Rhamnogalacturonan II dimers cross-linked by borate diesters from the leaves of Panax ginseng C.A. Meyer are responsible for expression of their IL-6 production enhancing activities. Carbohydrate Research, 1998, 307, 97-106
    [84] Kobayashi, M., Matoh, T., & Azuma, J. Two Chains of Rhamnogalacturonan II Are Cross-Linked by Borate-Diol Ester Bonds in Higher Plant Cell Walls. Plant Physiology, 110, 1017-1020
    [85] Chapman, H. D., Morris, V. J., & Selvendran, R. R. Static and dynamic light-scattering studies of pectic polysaccharides from the middle lamellae and primary cell walls of cider apples. Carbohydrate Research, 1987, 165, 53-68
    [86] Sorochan, V. D., Dzizenko, A. K., Bodin, N. S., & Ovodov, Y. S. Light-scattering studies of pectic substances in aqueous solution. Carbohydrate Research, 1971, 20, 243-249
    [87] Plashchina, I. G., Semenova, M. G., Braudo, E. E., & Tolstoguzov, V. B. Structural studies of the solutions of anionic polysaccharides. IV. Study of pectin solutions by light-scattering. Carbohydrate Polymers, 1985, 5, 159-179
    [88] Li, W., Wang, Q., Cui, S.W., Huang, X. & Kakuda, Y. Elimination of aggregates of (1→3), (1→4)-β-D- -glucan in dilute solutions for light scattering and size exclusion chromatography study. Food Hydrocolloids, 2006, 20, 361-368
    [89] Wang, Q., Huang, X., Nakamura, A., Burchard, W., & Hallett, F. R. Molecular characterization of soybeanpolysaccharides: an approach by size exclusion chromatography, dynamic and static light scattering methods. Carbohydrate Research, 2005, 340, 2637-2644
    [90] Harding, S. E., Berth, G., Ball, A., Mitchell, J. R. & de la Torre, J. G. The Molecular Weight Distribution and Conformation of Citrus Pectins in Solution Studied by Hydrodynamics. Carbohydrate Polymers, 1991, 16, 1-15
    [91] Berth, G., Dautzenberg, H., Lexow, D., & Rother, G. The Determination of the Molecular Weight Distribution of Pectins by Calibrated GPC Part I. Calibration by Light Scattering and Membrane Osmometry. Carbohydrate Polymers, 1990, 12, 39-59
    [92] Cros, S., Garnier, C., Axelos, M. A. V., Imberty, A., Pérez, S. Solution conformations of pectin polysaccharides: Determination of chain characteristics by small angle neutron scattering, viscometry, and molecular modeling. Biopolymers, 1996, 39(3), 339-351
    [93] Engelsen, S. B., Cros, S., Mackie, W., Pérez, S. A molecular builder for carbohydrates: Application to polysaccharides and complex carbohydrates. Biopolymers, 1996, 39(3), 417-433
    [94] Oakenfull, D., & Scott, A. Hydrophobic interaction in the gelation of HM pectins. Journal of Food Science, 1984, 49, 1093-1098
    [95] Walkinshaw, M. D., & Arnott, S. Conformations and interactions of pectins: I. X-ray diffraction analyses of sodium pectate in neutral and acidified forms. Journal of Molecular Biology, 1981, 153(4), 1055-1073
    [96] Walkinshaw, M. D., & Arnott, S. Conformations and interactions of pectins: II. Models for junction zones in pectinic acid and calcium pectate gels. Journal of Molecular Biology, 1981, 153(4), 1075-1085
    [97] Morris, E. R., Gidley, M. J., Murray, E. J., Powell, D. A. & Rees, D. A. Characterization of pectin gelation under conditions of low water activity, by circular dichroism, competitive inhibition and mechanical properties. International Journal of Biological Macromolecules, 1980, 2, 327-330
    [98]吴寿金,赵泰,秦永祺.现代中草药化学成分[M].北京:中国医药科技出版社,2002,pp. 5-20
    [99] Nergard, C. S., Matsumoto, T., Inngjerdingen, M., Inngjerdingen, K., Hokputsa, S., Harding, S. E., et al. Structural and immunological studies of a pectin and a pectic arabinogalactan from Vernonia kotschyana Sch. Bip. ex Walp. (Asteraceae). Carbohydrate Research, 2005, 340, 115-130
    [100] Sakurai, M. H., Matsumoto, T., Kiyohara, H., & Yamada, H. Detection and Tissue Distribution of Anti-Ulcer Pectic Polysaccharides from Bupleurum falcatum by Polyclonal Antibody. Planta Medica, 1996, 62, 341-346
    [101] Yamada, H., Komiyarna, K., Kiyohara, H., Cyong , J.-C., Hirakawa, Y., & Otsuka, Y. Structural Characterization and Antitumor Activity of a Pectic Polysaccharide from the Roots of Angelica acutiloba. Planta Medica, 1990, 56, 182-186
    [102] Fu, J-T., & Rao, M. A. Rheology and structure development during gelation of low-methoxyl pectin gels: the effect of sucrose. Food Hydrocolloids, 2001, 15(1), 93-100
    [103] Wang, Q., Pagan, J., & Shi, J. Pectin from Fruits. In: Shi, J., Mazza, G., & Le Maguer, M. (Eds.) Functional Foods II- Biochemical and Processing Aspects. Boca Raton, USA: CRC Press, 2002, pp. 263-309
    [104] May, C. D. Pectins. In: Philips, G. O., & Williams, P. A. Handbook of Hydrocolloids. Cambridge, UK: Woodhead Publishing, 2000, pp. 169-188
    [105] Kj(?)niksen, A. L., Hiorth, M., & Nystr?m, B. Association under shear flow in aqueous solutions of pectin. European Polymer Journal, 2005, 41, 761-770
    [106] Liu, L., Fishman, M. L. Hicks, K. B. Pectin in controlled drug delivery– a review. Cellulose, 2007, 14(1), 15-24
    [107] Ohno, N. Structural diversity and physiological functions of b-glucans. International Journal of Medicinal Mushrooms, 2005, 7, 167-188
    [1] Cui, S. W. Polysaccharide gums from agriculture products: Processing, structure and functionality. Lancaster, USA: Technomic Publshing, 2001, 61-66
    [2] Sun, Y., Tang, J., Gu, X., et al. Water-soluble polysaccharides from Angelica sinensis (Oliv.) Diels: Preparation, characterization and bioactivity. International Journal of Biological Macromolecules, 2005, 36(5), 283-289
    [3]张庆轩,杨普江,杨国华.大豆种皮果胶的制备及果胶性质分析[J].食品研究与开发,2005,26(5),40-43
    [4] Somboonpanyakul, P., Wang, Q., Cui, W., et al. Malva nut gum (Part I): Extraction and physicochemical characterization. Carbohydrate Polymers, 2006, 64(2), 247-253
    [5] Nilsson, M., Saulnier, L., Andersson, R., et al. Water unextractable polysaccharides from three milling fractions of rye grain. Carbohydrate Polymers, 1996, 30, 229-237
    [6] Eriksson, I., Andersson, R., & ?man, P. Extraction of pectic substances from dehulled rapeseed. Carbohydrate Research, 1997, 301, 177-185
    [7] Sun, R. C., & Hughes, S. Fractional isolation and physico-chemical characterization of alkali-soluble polysaccharides from sugar beet pulp. Carbohydrate polymers, 1999, 38, 273-281
    [8]吴寿金,赵泰,秦永祺.现代中草药化学成分[M].北京:中国医药科技出版社,2002,pp. 23-24
    [9] AOCS. Official Methods and Recommended Practices (5th ed.). Illinois, USA: The American Oil Chemists' Society, 1997
    [10] AOAC. Official Methods of Analysis (18th ed.). Maryland, USA: AOAC International, 2005
    [11]黄伟坤.食品检测与分析[M].北京:中国轻工业出版社,1989
    [12] Dubois, M., Gilles, K. A., Hamilton, J. K., et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28(3), 350-356
    [13]陈建民,曹培让,宋洪涛.胖大海多糖PPⅢ的纯化及性质的研究[J].中国中药杂志,1996,21(1),39-41
    [14] Blumenkrantz, N., & Asboe-Hansen, G. New method for quantitative determination of uronic acids. Analytical Biochemistry, 1973, 54(2), 484-489
    [15] Bradford, M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1), 248-252
    [16] Albersheim, P., Nevins, D. J., English, P. D., et al. A method for the analysis of sugars in plant cell-wall polysaccharides by gas-liquid chromatography. Carbohydrate Research, 1967, 5(4), 340-345
    [17] Li, W., Cui, S. W., Wang, Q. Solution and conformational properties of wheatβ-D-Glucans studied by light scattering and viscometry. Biomacromolecules, 2006, 7, 446-452
    [18] Sosa, S., Balick, M. J., Arvigo, R., Esposito, R. G., et al. Screening of the topical anti-inflammatory activity of some Central American plants. Journal of Ethnopharmacology, 2002, 81(2), 211-215
    [19] Yu, R., Song, L., Zhao, Y., et al. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia, 2004, 75(5), 465-472
    [20]李荣英,巫金华.长粒胖大海在西双版纳引种成功和存在问题[J].中药材,2003,26(8),545-546
    [21] Li, J., Fan, L., Ding, S., & Ding, X. Nutritional composition of five cultivars of chinese jujube. Food Chemistry, 2007, 103(2), 454-460
    [22] Cui, S. W. Food Carbohydrates: Chemistry, physical properties, and applications. Taylor & Francis Group: CRC Press, 2005, 70-72
    [23]张惟杰.糖复合物生化研究技术(第二版)[M].杭州:浙江大学出版社,1998
    [24] Bertolini, A., Ottani, A., & Sandrini, M. Dual acting anti-inflammatory drugs: a reappraisal. Pharmacological Research, 2001, 44(6), 437-450
    [25]肖培根.新编中药志(第二卷)[M].北京:化学工业出版社,2002,517-521
    [26] Cui, W., Mazza, G., Oomah, B. D., & Biliaderis, C. G. Optimization of an Aqueous extraction process for flaxseed gum by response surface methodology. Food science and technology Lebensmittel-wissenschaft and technologie, 1994, 27, 363-369
    [27] Tanyildizi, M. S., ?zer, D., & Elibol, M. Optimization of a-amylase production by Bacillus sp.using response surface methodology. Process Biochemistry, 2005, 40(7), 2291-2296
    [28] Vohra, A., & Satyanarayana, T. Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochemistry, 2002, 37(9), 999-1004
    [29] Levigne, S., Ralet, M.-C., & Thibault, J.-F. Characterisation of pectins extracted from fresh sugar beet under different conditions using an experimental design. Carbohydrate Polymers, 2002, 49, 145-153
    [30]吴有炜.试验设计与数据处理[M].苏州:苏州大学出版社,2002
    [31] Lee, W. C., Yusof, S., Hamid, N. S. A, & Baharin, B. S. Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). Journal of Food Engineering, 2006, 73(1), 55-63
    [32] Shi, X. Q., Chang, K. C., Schwarz, J. G., Wiesenborn, D. P., & Shih, M. C. Optimizing pectin extraction from sunflower heads by alkaline washing. Bioresoure Technology, 1996, 58(3), 291-297
    [33] Muralidhar, R. V., Chirumamil, R. R., Marchant, R., & Nigam, P. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochemical Engineering Journal, 2001, 9(1), 17-23
    [1] Hill, S. E., Ledward, D. A., & Mitchell, J. R. Functional properties of food macromolecules (2nd edition). Gaithersburg, Maryland: Aspen Publishers, 1998, 169-175
    [2] Pérez, S., Mazeau, K., & du Penhoat, C. H. The three-dimensional structures of the pectic polysaccharides. Plant Physiology and Biochemistry, 2000, 38, 37-55
    [3] Cui, S. W. Food Carbohydrates: Chemistry, physical properties, and applications. Taylor & Francis Group: CRC Press, 2005, 60-63
    [4] Dubois, M., Gilles, K. A., Hamilton, J. K., et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28(3), 350-356
    [5] Bradford, M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1), 248-252
    [6] Wang, Q., Wood, P. J., Cui, W., & Ross-Murphy, S. B. The effect of autoclaving on the dispersility and stability of three neutral polysaccharides in dilute aqueous solutions. Carbohydrate Polymers, 2001, 45(4), 355-362
    [7] Wang, Q., Wood, P. J., Huang, X., & Cui, W. Preparation and characterization of molecular weight standards of low polydispersity from oat and barley (1→3) (1→4)-β-D-glucan. Food Hydrocolloids, 2003, 17(6), 845–853
    [8] Wood, P. J., Weisz, J., & Blackwell, B. A. Structural studies of (1→3),(1→4)-β-D-glucans by 13C-nuclear magnetic resonance spectroscopy and by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenase. Cereal Chemistry, 1994, 71(3), 301-307
    [9] Blumenkrantz, N., & Asboe-Hansen, G. New method for quantitative determination of uronic acids. Analytical Biochemistry, 1973, 54(2), 484-489
    [10] Nakamura, A., Furuta, H., Maeda, H., Takao, T., & Nagamatsu, Y. Structural studies by stepwiseenzymatic degradation of the main backbone of soybean soluble polysaccharides consisting of galacturonan and rhamnogalacturonan. Bioscience Biotechnology and Biochemistry, 2002, 66(6), 1301-1313
    [11] Matsuhashi, S., Inoue, S., & Hatanaka, C. Simultaneous measurement of the galacturonate and neutral sugar contents of pectic substances by an enzymic-HPLC method. Bioscience Biotechnology and Biochemistry, 1992, 56(7), 1053-1057
    [12] Singthong, J., Cui, S. W., Ningsanond, S., & Goff, H. D. Structural characterization, degree of esterification and some gelling properties of of Krueo Ma Noy (Cissampelos pareira) pectin. Carbohydrate Polymers, 2004, 58, 391-400
    [13] Sosa, S., Balick, M. J., Arvigo, R., Esposito, R. G., et al. Screening of the topical anti-inflammatory activity of some Central American plants. Journal of Ethnopharmacology, 2002, 81(2), 211-215
    [14] Yu, R., Song, L., Zhao, Y., et al. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia, 2004, 75(5), 465-472
    [15] Diniz, R. O., Garla, L. K., Schneedorf, J. M., & Carvalho, J. C. T. Study of anti-inflammatory activity of Tibetan mushroom, a symbiotic culture of bacteria and fungi encapsulated into a polysaccharide matrix. Pharmacological Research, 2003, 47(1), 49-52
    [16] Braccini, I., Grasso, R. P., & Pérez, S. Conformational and configurational features of acidic polysaccharides and their interactions with calcium ions: a molecular modeling investigation. Carbohydrate Research, 1999, 317(2), 119-130
    [17]陈建民,曹培让,宋洪涛.胖大海多糖PPⅢ的纯化及性质的研究[J].中国中药杂志,1996,21(1),39-41
    [18] Somboonpanyakul, P., Wang, Q., Cui, W., Barbut, S., & Jantawat, P. Malva nut gum (Part I): Extraction and physicochemical characterization. Carbohydrate Polymers, 2006, 64(2), 247-253
    [19] Phillips, G. O., & Williams, P. A. Handbook of Hydrocolloids. Woodhead Publishing, 2000, 171-172
    [20] Dische, Z. A new specific color reaction of hexuronic acids. Journal of Biological Chemistry, 1947, 167, 189-198
    [21] Bitter, T., & Muir, H. M. A modified uronic acid carbazole reaction. Analytical Biochemistry, 1962, 4(4), 330-334
    [22] Galambos, J. T. The reaction of carbazole with carbohydrates: I. Effect of borate and sulfamate on the carbazole color of sugars. Analytical Biochemistry, 1967, 19(1), 119-132
    [23] Galambos, J. T. The reaction of carbazole with carbohydrates: II. Effect of borate and sulfamate on the ultraviolet absorption of sugars. Analytical Biochemistry, 1967, 19(1), 133-143
    [24] Honda, S., Suzuki, S., Takahashi, M., Kakehi, K., & Ganno, S. Automated Analysis of Uronic Acids by High-Performance Liquid Chromatography with Photometric and Fluorimetric Postcolumn Labeling Using 2-Cyanoacetamide. Analytical Biochemistry, 1983, 134, 34-39
    [25] Gnanasambandam, R., & Proctor, A. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chemistry, 2000, 68(3), 327-332
    [26] Ka?uráková, M., Capeka, P., Sasinková, V., Wellner, N., & Ebringerová, A. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydrate Polymers, 2000, 43(2), 195-203
    [27] Coimbra, M. A., Barros, A., Rutledge, D. N., & Delgadillo, I. FTIR spectroscopy as a tool for the analysisof olive pulp cell wall polysaccharide extracts. Carbohydrate Research, 1999, 317(3), 145-154
    [28] Filippov, M. P. Practical infrared spectroscopy of pectic substances. Food Hydrocolloids, 1992, 6, 115-142
    [29] Barros, A. S., Mafra, I., Ferreira, D., Cardoso, S., Reis, A., Lopes da Silva, J. A., & Delgadillo, I. Determination of the degree of methylesterification of pectic polysaccharides by FT-IR using an outer product PLS1 regression. Carbohydrate Polymers, 2002, 50, 85-94
    [30] Gnanasambandam, R., & Proctor, A. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chemistry, 2000, 68, 327-332
    [31] Pereira, B. M. R., Silva, B. P., Pereira, N. A., & Parente, J. P. Anti-inflammatory and immunologically active polysaccharides of Periandra mediterranea. Phytochemistry, 2000, 54(4), 409-413
    [32] Pereira da Silva, B., & Paz Parente, J. An anti-inflammatory and immunomodulatory polysaccharide from Orbignya phalerata. Fitoterapia, 2001, 72(8), 887-893
    [33] Pereira da Silva, B., & Paz Parente, J. Bioactive polysaccharides from Costus spicatus. Carbohydrate Polymers, 2003, 51, 239-242
    [34] Popov, S. V., Popova, G. Y., Ovodova, R. G., & Ovodov, Y. S. Antiinflammatory activity of the pectic polysaccharide from Comarum palustre. Fitoterapia, 2005, 76(3), 281-287
    [35] Kiho, T., Sakai, M., Uka, S., Hara, C., & Tanaka, Y. Anti-inflammatory effect of the polysaccharide from the fruit bodies of Auricularia species. Carbohydrate Research, 1985, 142, 344-351
    [36] Garbacki, N., Gloaguen, V., Damas, J., Bodart, P., Tits, M., & Angenot, L. Anti-inflammatory and immunological effects of Centaurea cyanus flower-heads. Journal of Ethnopharmacology, 1999, 68, 235-241
    [37] Barreto, D. W., & Parente, J. P. Chemical properties and biological activity of a polysaccharide from Cyrtopodium cardiochilum. Carbohydrate Polymers, 2006, 64, 287-291
    [38] Yu, R., Song, L., Zhao, Y., Bin, W., Zhang, H., et al. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia, 75(5), 2004, 465-472
    [39] Sosa, S., Baricevic, D., Cinco, M., Padovan, D., Tubaro, A., & Della Loggia, R. Preliminary investigation on the anti-inflammatory and anti-microbial activities of propolis. Pharmaceutical and Pharmacological Letters, 1997, 4, 168-71
    [40] Trowbridge, H. O., & Emling, R. C. Inflammation: A Review of the Process (5th Edition). Berlin, Germany: Quintessence Publishing Company, Incorporated, 1997
    [41] Choi, E., & Koo, S. Anti-nociceptive and anti-inflammatory effects of the ethanolic extract of potato (Solanum tuberlosum). Food and Agricultural Immunology, 2005, 16(1), 29-39
    [42] Carvalho, J. C. T., Sertié, J. A. A., Barbosa, M. V. J., Patrício, K. C. M., Caputo, L. R. G., Sarti, S. J., et al. Anti-inflammatory activity of the crude extract from the fruits of Pterodon emarginatus Vog. Journal of Ethnopharmacology, 1999, 64(2), 127-133
    [1]陈建民,曹培让,宋洪涛.胖大海多糖PPⅢ的纯化及性质的研究[J].中国中药杂志,1996,21(1),39-41
    [2]陈建民,李文魁,沈一行,彭会明,徐秉玖.胖大海中多糖的成分分析和含量测定[J].中药材,1994,17(8),32-34
    [3] Somboonpanyakul, P., Wang, Q., Cui, W., Barbut, S., & Jantawat, P. Malva nut gum (Part I): Extraction and physicochemical characterization. Carbohydrate Polymers, 2006, 64(2), 247-253
    [4] Cui, S. W. Food Carbohydrates: Chemistry, physical properties, and applications. Taylor & Francis Group: CRC Press, 2005, 60-63
    [5] Wang, X., Dong, Q., Zuo, J., & Fang, J. Structure and potential immunological activity of a pectin from Centella asiatica (L.) Urban. Carbohydrate Research, 2003, 338, 2393-2402
    [6] Samuelsen, A. B., Cohen, E. H., Paulsen, B. S., Brüll, L. P., & Thomas-Oates, J. E. Structural studies of a heteroxylan from Plantago major L. seeds by partial hydrolysis, HPAEC-PAD, methylation and GC–MS, ESMS and ESMS/MS. Carbohydrate Research, 1999, 315, 312-318
    [7] Kardo?ová, A., Ebringerová, A., Alf?ldia, J., Nosál’ová, G., Matáková, T., & H?íbalová, V. Structural features and biological activity of an acidic polysaccharide complex from Mahonia aquifolium (Pursh) Nutt. Carbohydrate Polymers, 2004, 57, 165-176
    [8] Dong, Q., Yao, J., & Fang, J. Structural characterization of the water-extractable polysaccharides from Sophora subprostrata roots. Carbohydrate Polymers, 2003, 54, 13-19
    [9] Taylor, R. L., & Conrad, H. E. Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl groups. Biochemistry, 1972, 11, 1383–1388
    [10] York, W. S., Darvill, A. G., McNeil, M., Stevenson, T. T., & Albersheim, P. Isolation and characterization of plant cell wall components. Methods in Enzymology, 1986, 118, 3–40
    [11] Ciucanu, I., & Kerek, F. A simple and rapid method for the permethylation of carbohydrates. Carbohydrate Research, 1984, 131(2), 209–217
    [12] Needs, P. W., & Sevendran, R. R. Avoiding oxidative degradation during sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide. Carbohydrate Research, 1993, 245(1), 1-10
    [13] Hakomori, S. A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. The Journal of Biochemistry, 1964, 55(2), 205-208
    [14]张惟杰.糖复合物生化研究技术(第二版)[M].杭州:浙江大学出版社,1998
    [15]吴寿金,赵泰,秦永祺.现代中草药化学成分[M].北京:中国医药科技出版社,2002,pp. 23-24
    [16]张力田.碳水化合物[M].北京:轻工业出版社,1988,300-303
    [17] Lindberg, B. L., L?nngren, J., & Svensson, S. Specific degradation of polysaccharides. Advances in Carbohydrate Chemistry and Biochemistry, 1975, 31, 185-240
    [18] Purdie, T., & Irvin, J. C. Purdie methylation. Journal of the Chemical Society, 1903, 83, 1021
    [19] Haworth, W. N. Haworth methylation. Journal of the chemical Society, 1915, 107, 13
    [20] Pérez, S., Mazeau, K., & du Penhoat, C. H. The three-dimensional structures of the pectic polysaccharides. Plant Physiology and Biochemistry, 2000, 38, 37-55
    [21] Ridley, B. L., O’Neil, M. A., & Mohnen, D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 2001, 57, 929-967
    [22] Zhao, Z., Li, J., Wu, X., Dai, H., Gao, X., Liu, M., & Tu, P. Structures and immunological activities of two pectic polysaccharides from the fruits of Ziziphus jujuba Mill. cv. jinsixiaozao Hort.. Food Research International, 2006, 39, 917-923
    [23] Agrawal, P. K. Determination of the chemical structure of complex polysaccharides by heteronuclear NMR Sstroscopy. Phytochemistry, 1992, 31, 3307
    [24] Duan, J., Zheng, Y., Dong, Q., & Fang, J. Structural analysis of a pectic polysaccharide from the leaves of Diospyros kaki. Phytochemistry, 2004, 65, 609-615
    [25] Duan, J., Wang, X., Dong, Q., Fang, J., & Li, X. Structural features of a pectic arabinogalactan with immunological activity from the leaves of Diospyros kaki. Carbohydrate Research, 2003, 338, 1291-1297
    [26] Habibi, Y., Heyraud, A., Mahrouz, M., & Vignon, M. R. Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits. Carbohydrate Research, 2004, 339, 1119-1127
    [27] Golovchenko, V. V., Ovodova, R. G., Shashkov, A. S., & Ovodov Y. S. Structural studies of the pectic polysaccharide from duckweed Lemna minor L.. Phytochemistry, 2002, 60, 89-97
    [28] Habibi, Y., Mahrouz, M., & Vignon, M. R. Isolation and structural characterization of protopectin from the skin of Opuntia ficus-indica prickly pear fruits. Carbohydrate Polymers, 2005, 60, 205-213
    [29] Colquhoun, I. J., de Ruiter, G. A., Schols, H. A., & Voragen, A. G. Identification by n.m.r. spectroscopy of oligosaccharides obtained by treatment of the hairy regions of apple pectin with rhamnogalacturonase. Carbohydrate Research, 1990, 206, 131-144
    [30] Davis, E. A., Derouet, C., Herve du Penhoat, C., & Morvan, C. Isolation and an NMR study of pectins from flax (Linum usitatissimum L.). Carbohydrate Research, 1990, 197, 205-215
    [31] De Vries, J. A., Den Uijl, C. H., Voragen, A. G. J., Rombouts, F. M., & Pilnik, W. Structural features of the neutral sugar side chains of apple pectic substances. Carbohydrate Polymers, 1983, 3, 193-205
    [32] Vignon, M. R., & Garcia-Jaldon, C. Structural features of the pectic polysaccharides isolated from retted hemp bast fibres. Carbohydrate Research, 1996, 296, 249-260
    [33] Cui, W. W., Eskin, M. N. A., Biliaderis, C. G., & Marat, K. NMR characterization of a 4-O-methyl-β-D-glucuronic acid-containing rhamnogalacturonan from yellow mustard (Sinapis alba L.) mucilage. Carbohydrate Research, 1996, 292, 173-183
    [34] Cardoso, S. M., Silva, A. M. S., & Coimbra, M. A. Structural characterisation of the olive pomace pectic polysaccharide arabinan side chains. Carbohydrate Research, 2002, 337, 917-924
    [35]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学,2002,28(2),240-247
    [36]李波,陈海华,许时婴.二维核磁共振谱在多糖结构研究中的应用[J].天然产物研究与开发,2005,117(4),523-526
    [37] Martin, G. E., & Zektzer, A. S. Two-dimensional NMR methods for establishing molecular connectivity. New York, USA: VCH Publishers, Inc., 1988
    [38] Wang, X., Liu, L. & Fang, J. N. Immunological activities and structure of pectin from Centella asiatica. Carbohydrate Polymers, 2005, 60, 95-101
    [39] Polle, Y. A., Ovodova, R. G., Shashkov, A. S., & Ovodov, Y. S. Some structural features of pectic polysaccharide from tansy, Tanacetum vulgare L. Carbohydrate polymers, 2002, 49, 337-344
    [40] Bushneva, O. A., Ovodova, R. G., Shashkov, A. S., & Ovodov, Y. S. Structure studies on hairy region of pectic polysaccharide from Campion Silene vulgaris (Oberna behen). Carbohydrate polymers, 2002, 49, 471-478
    [41]杨立.二维核磁共振简明原理及图谱解析[M].兰州:兰州大学出版社,1996
    [42] Sun, R. C., & Hughes, S. Fractional isolation and physico-chemical characterization of alkali-soluble polysaccharides from sugar beet pulp. Carbohydrate Polymer, 1999, 38, 273-281
    [43] Lamport, D. T. A., Katona, L., & Roerig, S. Galactosylserine in extension. Biochemistry Journal, 1973, 133, 125-131
    [44]姜荷.姬松茸菌丝体中抗肿瘤、免疫活性多糖的研究[D].江南大学博士论文,2005
    [45] Edge, A. S. B., & Spiro, R. G. Structure of the O-linked oligosaccharides from a major thyroid cell surface glycoprotein. Archives of Biochemistry and Biophysics, 1997, 343 (1), 73-80
    [1] Burchard, W. Chapter 4 Light scattering techniques. In Ross-Murphy, S. B. Physical techniques for the study of food biopolymers. New York, USA: Blackie Academic and Professional, 1994
    [2] Li, W., Cui, S. W., Wang, Q. Solution and Conformational Properties of Wheatβ-D-Glucans Studied by Light Scattering and Viscometry. Biomacromolecules, 2006, 7, 446-452
    [3] Burchard, W. Chapter 7 Light scattering from polysaccharides. In Dumitriu, S. Polysaccharides: Structural diversity and functional versatility (2th Ed.). New York, USA: Marcel Dekker, 2004
    [4] Chapman, H. D., Morris, V. J., & Selvendran, R. R. Static and dynamic light-scattering studies of pectic polysaccharides from the middle lamellae and primary cell walls of cider apples. Carbohydrate Research, 1987, 165, 53-68
    [5] Berth, G., Anger, H., Plashchina, I. G., Braudo, E. E., & Tolstoguzov, V. B. Structural study of the solutions of acidic polysaccharides. II. Study of some thermodynamic properties of the dilute pectin solutions with different degrees of esterification. Carbohydrate Polymers, 1982, 2, 1-8
    [6] Plashchina, I. G., Semenova, M. G., Braudo, E. E., & Tolstoguzo, V. B. Structural Studies of the Solutions of Anionic Polysaccharides. IV. Study of Pectin Solutions by Light-scattering. Carbohydrate Polymers, 1985, 5, 159-179
    [7] Ousalem, M., Busnel, J. P., & Nicolai, T. A static and dynamic light scattering study of sharp pectin fractions in aqueous solution. International Journal of Biological Macromolecules, 1993, 15, 209-213
    [8] Gomez, C., Navarro, A., Manzanares, P., Horta, A., & Carbonell, J. V. Physical and structural properties of barley (1→3), (1→4)-β-D-glucan. Part I. Determination of molecular weight and macromolecular radius by light scattering. Carbohydrate Polymers, 1997, 32, 7-15
    [9] Wang, Q., Huang, X., Nakamura, A., Burchard, W., & Hallett, F. R. Molecular characterization of soybean polysaccharides: an approach by size exclusion chromatography, dynamic and static light scatteringmethods. Carbohydrate Research, 2005, 340, 2637-2644
    [10] V?rum, K. M., Smidsr¢d, O., & Brant, D. A. Light scattering reveals micelle-like aggregation in the (1→3), (1→4)-β-D-glucans from oat aleurone. Food Hydrocolloids, 1992, 5, 497-511
    [11] Zhang, L., Yang, L., & Chen, J. Conformational change of theβ-D-glucan of Auricularia auricular-judae in water-dimethyl sulfoxide mixtures. Carbohydrate Research, 1995, 276, 443-447
    [12] Zhang, P., Zhang, L., & Cheng, S. Effects of urea and sodium hydroxide on the molecular weight and conformation ofα-(1→3)-D-glucan from Lentinus edodes in aqueous solution. Carbohydrate Research, 2000, 327, 431-438
    [13] Kj?niksen, A. L., Hiorth, M., & Nystr?m, B. Association under shear flow in aqueous solutions of pectin. European Polymer Journal, 2005, 41, 761-770
    [14] Fu, J-T., & Rao, M. A. Rheology and structure development during gelation of low-methoxyl pectin gels: the effect of sucrose. Food Hydrocolloids, 2001, 15(1), 93-100
    [15] Wang, Q., Pagan, J., & Shi, J. Pectin from Fruits. In: Shi, J., Mazza, G., & Le Maguer, M. (Eds.) Functional Foods II- Biochemical and Processing Aspects (pp. 263-309). Boca Raton, USA: CRC Press, 2002
    [16] Sun, S. F. Physical chemistry of macromolecules: basic principles and issues (2nd ed.). New Jersey, USA: John Wiley & Sons, Inc., 2004
    [17] Aivaliotis, M., Samolis, P., Neofotistou, E., Remigy, H., Rizos, A. K., &Tsiotis, G. Molecular size determination of a membrane protein in surfactants by light scattering. Biochimica et Biophysica Acta, 2003, 1615, 69-76
    [18] Liu, Y., Bo, S., Zhu, Y., & Zhang, W. Determination of molecular weight and molecular sizes of polymers by high temperature gel permeation chromatography with a static and dynamic laser light scattering detector. Polymer, 2003, 44, 7209-7220
    [19] Cui, S. W. Food Carbohydrates: Chemistry, physical properties, and applications. Taylor & Francis Group: CRC Press, 2005, 60-63
    [20] Kouchi, S., Kondo, S., Ooi, K., Ichikawa, H., & Dobashi, T. Viscoelastic and Light Scattering Studies on Thermally Induced Sol to Gel Phase Transition in Fish Myosin Solutions. Biopolymers, 2003, 69, 498-507
    [21] Chu, B. & Liu, T. Characterization of nanoparticles by scattering techniques. Journal of Nanoparticle Research, 2000, 2, 29-41
    [22] Li, W., Wang, Q., Cui, S.W., Huang, X., & Kakuda, Y. Elimination of aggregates of (1→3), (1→4)-β-D- -glucan in dilute solutions for light scattering and size exclusion chromatography study. Food Hydrocolloids, 2006, 20, 361-368
    [23] Tao, Y. & Zhang, L. Determination of Molecular Size and Shape of Hyperbranched Polysaccharide in Solution. Biopolymers, 2006, 83, 414-423
    [24] Xu, X., & Zhang, L. Aggregation and Disaggregation of Aeromonas Gum in an Aqueous Solution under Different Conditions. Journal of Polymer Science: Part B: Polymer Physics, 2000, 38, 2644-2651
    [25] Haxaire, K., Braccini, I., Milas, M., Rinaudo, M., & Pérez, S. Conformational behavior of hyaluronan in relation to its physical properties as probed by molecular modeling. Glycobiology, 2000, 10(6), 587-594
    [26] Petkowicz, C. L. O., Reicher, F., & Mazeau, K. Conformational analysis of galactomannans: from oligomeric segments to polymeric chains. Carbohydrate Polymers, 1998, 37, 25-39
    [27] Morris, E. R., Cutler, A. N., Ross-Murphy, S. B., Rees, D. A., & Price, J. Concentration and shear ratedependence of viscosity in random coil polysaccharide solutions. Carbohydrate Polymers, 1981, 1(1), 5-21
    [28] Singthong, J., Ningsanond, S., Cui, S. W., & Goff, H. D. Extraction and physicochemical characterization of Krueo Ma Noy pectin. Food Hydrocolloids, 2005, 19, 793-801
    [29] L(?)fgren, C., Walkenstr?m, P., & Hermansson, A-M. Microstructure and rheological behavior of pure and mixed pectin gels. Biomacromolecules, 2002, 3, 1144-1153
    [30] L(?)fgren, C., Guillotin, S., Evenbratt, H., Schols, H., & Hermansson, A.-M. Effects of calcium, pH, and blockiness on kinetic rheological behavior and microstructure of HM pectin gels. Biomacromolecules, 2005, 6, 646-652
    [31] Oakenfull, D., & Scott, A. Hydrophobic interaction in the gelation of high methoxyl pectins. Journal of Food Science, 1984, 49(4), 1093-1098
    [32] Morris, E. R., Gidley, M. J., Murray, E. J., Powell, D. A., & Rees, D. A. Characterization of pectin gelation under conditions of low water activity, by circular dichroism, competitive inhibition and mechanical properties. International Journal of Biological Macromolecules, 1980, 2(5), 327-330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700