用户名: 密码: 验证码:
山东省常用恢复树种径向生长与气候关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用植被生态学理论恢复森林生态系统,提倡和强调用乡土树种重建乡土森林植被(Native forest with native trees),容易在较短的时间内恢复当地森林生态系统。本地乡土种作为生态恢复和重建的目标,和探索关键技术的研究对象,加强对其生长特性的了解意义重大。研究表明树木的生长尤其是径向生长和立地环境密切相关并受气候变化的影响,通过研究树轮宽度的生长变异,不但可以了解树木历年的生长情况及其所在地历年气候的变化情况,还能够帮助人们预测未来气候变化以及研究气候变化对树木生长和森林结构与功能的影响,为探讨生态恢复与重建措施提供令人信服的证据。本研究选择外来树种刺槐(Robinia pseudoacacia L.)和两种乡土树种赤松(Pinus densiflora Sieb.et Zucc.)、麻栎(Quercus acutissima Carr.)作为研究对象,旨在为适宜树种选择提供重要的理论依据。刺槐作为一个较常用的混交树种和植被重建的先锋树种对我国温带大部分地区植被恢复和生态重建具有重大的意义,并且刺槐林已成为山东省分布最广和面积最大的落叶阔叶林。赤松林作为山东省地带性的针叶林,也是面积较大的针叶林。已有的研究表明赤松作为一个亚顶级乡土针叶种,不但成为主要的森林建群树种,也能够为其他地带性落叶阔叶树种入侵、生长提供基础,创造适生条件,这对于在荒山秃岭科学地营造赤松林以及重建山东省地带性落叶阔叶林群落有重大意义。而麻栎作为山东省的典型的、地带性的乡土落叶阔叶树种,其生长、发育、繁衍和分布与当地的生态条件,特别是气候和土壤条件相适应。这三种树种作为山东乃至中国华北生态恢复与重建的先锋种、顶级优势种代表,研究其树木径向生长与环境气候因子之间的关系,能从生理生态学方面为山东乃至中国北方的生态恢复引种造林、森林抚育、演替提供依据,具有非常重要的理论价值和实践意义。
     本研究考虑到地理位置的代表意义和三种树种的发展现状,选取莱芜房干(LF)、枣庄抱犊崮(ZB)、东营仙河(DX)、青岛崂山(QL)、德州临邑(DL)、菏泽曹县(HC)六个较典型地区作为此次研究样地,基于国际树木年轮数据库(ITRDB)的标准进行野外取样,对样本进行交叉定年和宽度测量。参数结果显示样本平均敏感度较高,刺槐分布范围在0.25~0.5之间,赤松分布范围在0.20~0.30之间,麻栎分布范围在0.25~0.30之间,均符合平均敏感度取值要求(>0.1),表明三种树种受气候因子的限制作用明显,年轮宽度足以反映样点地区环境变化。研究选用指数函数曲线来模拟三个树种径向生长趋势,经过检验是可靠的,都达到极显著水平,据此求得树轮指数序列(RWI)。选择当年生长季(CG:4、5、6、7、8、9、10月),生长季外(OG:11、12、1、2、3月),上一个生长季(PG:4、5、6、7、8、9、10月)的月平均气温(T_m)和月降水量(P_m)作为气象因子与树轮指数序列进行相关分析。
     刺槐在6个样点的相关分析显示,刺槐径向生长在莱芜房干地区主要受上一年11月降水、当年2、3月的降水和温度以及当年7月的温度限制;在青岛崂山地区主要受当年5月的温度,以及当年2、10月降水的控制;在东营仙河地区主要受当年3月的温度、上一年11月和当年9月的降水影响;在德州临邑地区主要受上一年5月和当年3月温度、当年10月降水限制;在菏泽曹县地区主要受上一年12月的温度以及当年7月的温度和降水控制;在枣庄抱犊崮地区则主要受上一年12月和当年7月的温度显著影响。由此可以看出,刺槐的生长在生长季前期和生长旺季都主要受到温度的限制,而夏季降水高峰过去之后,刺槐生长对降水的需求则明显表现出来,并且由于温度和降水的滞后效应,上一年秋冬季的温度和降水对刺槐生长也具有显著影响。具体到各个地区由于气候差异,温度和降水的限制作用也有所差异。
     赤松在莱芜房干和青岛崂山的相关分析显示,莱芜房干当年2月降水和10月温度对赤松径向生长有正相关作用,10月的降水对赤松径向生长有负相关作用;在青岛崂山,赤松径向生长与当年2-5月、9月温度有负相关。这表明生长季前期和末期的气候因子对赤松生长影响较大,但两个地区的影响作用也不同,这可能是由赤松自身生理特性以及地区气候差异而导致的结果。赤松为喜光树种,在莱芜房干生长季末温度升高伴随降水增加能够增强光合作用,仍能促进赤松生长,但降水过度增加造成光照减少,影响光合作用反而制约赤松生长。在青岛崂山,赤松生长与春季低温相适应,温度升高使树木呼吸作用加强,而光合作用受阻,从而抑制赤松生长。
     麻栎在莱芜房干和枣庄抱犊崮的相关分析显示,麻栎径向生长在莱芜房干主要受上一年12月的温度,上一年5、11月和当年5、6月降水的限制;在枣庄抱犊崮主要受上一年6、12月和当年1、2、9、10月的温度,以及上一年11月降水的显著影响。这是因为枣庄抱犊崮的降水丰富从而降低对树木生长的限制作用,温度的影响表现的更加明显;莱芜房干的降水远低于枣庄抱犊崮,在温度与枣庄抱犊崮较接近的情况下,降水成为麻栎生长的主要限制因子。
     对刺槐、赤松、麻栎分别进行单年分析,对每年的温度和降水因子求距平,检查与其相应的树轮指数变化,研究显示相关分析的结果能够充分解释产生宽轮和窄轮的原因,进一步验证了相关分析的可靠性和稳定性。
     应用多重逐步线性回归模型描述树木径向生长与环境因子之间关系,结果表明各线性回归方程的方差解释比值较高,F检验显著,这说明模型整体拟合效果较好,同时又采用岭回归分析建立多重回归方程,尽管岭回归分析比多重逐步线性回归分析的精确度减小,但更符合实际,并且方程整体高度显著。
     综上所述,本研究结果得到了刺槐、赤松、麻栎在不同地区生长的不同气候限制因子,对三个树种径向生长与气候因子间的关系进行了定量描述,为植被生态恢复与重建过程中人工造林和封山育林的经营管理和保护提供了科学指导依据,对生态恢复与重建的定量化和模型化研究提供了补充,具有重要的理论和实践意义。
Applying Vegetation ecology theory to reconstruct forest ecosystem is a new focus of restoration ecology, which emphasizes reconstruction of the native forest with the native trees to restore local forest ecosystem. Therefore, the native trees become the aim of ecological restoration as well as the study object of developing key techniques. Thorough study on the growth traits should be done. The growth especially radial growth of trees has great relations to site conditions and climate changes. Base on the growth variance of tree ring width, we can get some information of the annual growth of the trees and the annual climatic changes in their locations. The effects of the future climatic changes on tree growth and forest structure and function can be predicted, which can provide a credible evidence for ecological restoration measures. In this article three important north species are selected, Robinia psendoacacia L. (black locust) , Pinus densiflora Sieb. et Zucc. (red pine) and Quercus acutissima Carr.(sawtooth oak) to study the relationships between climatic changes and tree radial growth. Black locust, as a perfect hybrid species and a pioneer species in restoring vegetation, is very valuable in restoring vegetation and ecological construction in temperate zone of China In the drought and semi-drought areas, such as Loess Plateau, applying black locust has made better progress. And the largest and broadest broadleaf tree in Shandong province is black locust. Red pine, as the native conifer, has the largest afforestation areas in Shandong province. Some previous studies show that red pine can provide foundation and create conditions for invading and growing of other zonal deciduous broadleaf trees, which is significant for constructing restoring red pines scientifically and restoring deciduous broadleaf trees. Sawtooth oak, as the native deciduous broadleaf tree, its growth, reproduction and distribution accommodate to local environment such as climate and soil conditions. The relationship between tree radial growth and climatic factors of black locust, red pine and sawtooth oak are investigated in this study, which can provide the foundation for ecological restoration from physiological ecology of Shandong province and north China. There is great theoretic value and practical value of artificial afforestation, forest tending and succession in this study.
     Considering geographical meaning and developing conditions of three species, Laiwu Fanggan (LF ), Zaozhuang Baodugu (ZB ), Dongying Xianhe (DX), Qingdao Laoshan (QL), Dezhou Linyi (DL) and Heze Caoxian (HC) are chosen as sampling plots. We carry out the fieldwork basing on ITRDB. The result indicates that MS is high enough. The MS of black locusts, red pines and sawtooth Oak are respectively from 0.25 to 0.5, 0.2 to 0.3 and 0.25 to 0.3, which shows that the growth of the three species are limited by climatic factors. We choose exponential function to simulate growth trend of three species and get the RWI. Monthly mean temperature and monthly precipitation of current growth season (Apr, May, Jun., Jul., Aug., Sep., Oct.) , out of growth season (Nov., Dec, Jan., Feb., Mar.) , and previous growth season (Apr., May, Jun., Jul., Aug., Sep., Oct.) are selected as climatic factors to process correlation analysis between climatic factors and RWI.
     Correlation analyses of black locusts in six locations indicate that the radial growth is mostly limited by precipitation in previous winter, precipitation and temperature in current spring and temperature of Jul. in LF. In QL it is mostly controlled by temperature and precipitation in current spring and precipitation of Oct.. In DX it is limited by temperature in current spring and precipitation of previous autumn and Sep.. In DL it is effected mostly by temperature of previous May and current Mar. and precipitation of Oct.. It is controlled by temperature of previous winter, temperature and precipitation of Jul. in HC. Also it is affected mostly by temperature of previous winter and current summer. Therefore, the growth of black locust is mostly limited by temperature in its prophase and midseason of growth season. After peak precipitation in summer, the positive needs of the precipitation for growth show obviously. And for the Lagging effect of temperature and precipitation, the temperature and precipitation in previous autumn and winter influence greatly on the growth of black locust.
     Correlation analyses of red pines in LF and QL indicate that precipitation of February, temperature and precipitation of Oct. have prominent effect on the radial growth in LF, and in QL the growth is mostly limited by temperature of Feb., Mar., Apr., May and Sep.. As a species fond of light, red pine can be accelerated because rising temperature at the end of growing season with precipitation increasing could strengthen photosynthesis in LF. But excessive precipitation can affect photosynthesis leading to the reduction of the growth. In QL low temperature in spring can be satisfied with the growth. On the contrary rising temperature may aggravate evaporation so as to restrain the growth.
     Correlation analyses of sawtooth oak in LF and ZB indicate that the radial growth is controlled mostly by the precipitation of previous spring, temperature and precipitation of previous autumn and winter, precipitation of May and Jun. in LF. In ZB the growth is effected obviously by temperature of previous Jun., temperature and precipitation of previous autumn and winter, temperature of Jan., Feb., Sep. and Oct.. It shows that the rich precipitation can reduce the limitation on the growth in ZB, which make the temperature effect more obviously. Because the precipitation in LF is far lower than that in ZB, it becomes the primary limiting factor on the growth in LF with the case of temperature being nearly in both two locations.
     The Stepwise Multiple Regression is applied to describe the relation between the radial growth and environmental factors. The results show that the variance explanation ratio is much higher in each equation and F test is prominent. Moreover, the Ridge Regression Analysis also is used to build the equation to get better results.
     Based on the results, the climatic limiting factors are shown and the relationships between the radial growth of three species and the climatic factors are quantitatively described in this study, which can provide scientific foundation for vegetation ecological restoration and provide supplement for the quantitative and modeling studies in ecological restoration, and it is valuable in theory and practice.
引文
1 Akkemik, U. Dendroclimatology of umbrella pine (Pinus pine L.) in Istanbul, Turkey. Tree-Ring Bulletin, 2000, 56:17-20
    2 Archambault, S. & Y. Bergeron. An 802-year tree-ring chronology from Quebec boreal forest. Canadian Journal of Forest Research, 1992, 22:674-682
    3 Becker, M. The role of climate on present and past vitality of silver fir forests in the Vosges Mountains of northeastern France. Canadian Journal of Forest Research, 1989, 19:1110-1117
    4 Bhattarcharyya, A., V.C.LaMarche & F.W. Telewski. Dendrochronological reconnaissance of the conifers of northwest Indian. Tree-Ring Bulletin, 1988, 48: 21-30
    5 Borgaonkar H.P., G.B. Pant & K.R. Kumar. Ring width variations in Cedrusdeodara and its climatic response over the Western Himalaya. Intern J. Climatology, I996, 16 (12) : 1409-1422
    6 Borgaonkar H.P., G.B. Pant & K.R. Kumar. Tree-ring chronologies from western Himalya and their dendroclimatie potential. International Association of Wood Anatomists, 1999, 20:295-309
    7 Carita A., Molinasm & E. Gutierrez. Annual cork ring width variability of Quercus suber L. in relation to temperature and precipitation (Extramadura, southwestern Spain). Forest Ecology and Management, 1996, 86 (3) : 113-120
    8 Caritat, A., E. Gutierrez & M. Molinas. Influence of weather on cork-ring width. Tree Physiology, 2000, 20:893-900
    9 Ceulemans, R. & M. Mousseau. Effects of elevated atmospheric CO_2 on wood plants. Newphytologist, 1994, 127:425-446
    10 Cherubini,P., F.H. Sehweingruber & T. Forester. Morphology and ecological significance of intra-annual radial cracks in living conifers. Trees, 1997, 11: 216-222
    11 Cook, E., T. Bird, M. Peterson, M. Barbetti, B. Buckley, R.D'Arrigo, R. Francey & P. Tans. Climate change in Tasmania inferred from a 1089-year tree-ring chronology of Huon pine. Science, 1991, 253:1266-1268
    12 Douglass, A.E. A method for estimating rainfall by the growth of trees. In: Huntington,E. ed. The climatic factors asillustrated in arid America. Lancaster, Pennsylvania: Carnegie Institute of Washington Publication, 1914, 192:101-121
    13 Douglass, A.E. Evidence of climatic effects in the annual rings of trees. Ecology, 1920, 1: 24-32
    14 Edwards, N.T. & P.J. Hanson. Stem respiration in closed canopy upland oak-forest. Tree Physiology, 1996, 16:433-439
    15 Fritts, H.C. Dendrochrological modeling of the effects of climatic change on tree-ring width chronologies from the Chaco Canyon area, southwestern United States. Tree-Ring Bulletin, 1992, 52:31-58
    16 Fritts, H.C. Growth-tings of trees: their correlation with climate. Science, 1966, 154: 973-980
    17 Fritts, H.C. Tree tings and climate. London: Academic Press, 1976, 534
    18 Fritts, H.C., D.G. Smith, J.W. Cardis & C.A. Budelsky. Tree-ring characteristics along a vegetation gradient in northern Arizona. Ecology, 1965, 46:393-401
    19 Gindl, W., M. Grabner & R. Wimmer. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, 2000, 14:409-414
    20 Graumlich, L.J. Subalpine tree growth, climate, and increasing CO_2: an assessment of recent growth trends. Ecology, 1991, 72:1-11
    21 Green, K. & R. Wright. Field response of photosynthesis to CO_2 enhancement in ponderosa pine. Ecology, 1977, 58:687-692
    22 Hughes, M.K., X.D. Wu, X.M. Shao & G.M. Garfin. A preliminary reconstruction of rainfall in North-central China since A.D 1600 from tree-ring density and width. Quaternary Research, 1994, 42:88-99
    23 Jan Esper, Edward R. Cook, Fritz H. Schweingruber. Low-frequency signals in long tree ring chronologies for reconstructing past temperature variability. Science, 2002, 295:2250-2254
    24 Jenkins, M.A. & S.G. Pallardy. The influence of drought on red oak group species growth and mortality in the Missiuri Ozarks. Canadian Journal of Forest Research, 1995, 25:1119-1127
    25 Kienast, F., F.H. Schweingruber, O.U. Braker & E. Schar. Tree-ring studies on conifers along gradients and the potential of single-year analyses. Canadian Journal of Forest Research, 1987, 17: 687-696
    26 LaDeau, S.L. & J.S. Clark. Rising CO_2 levels and the fecundity of forest trees. Science, 2001, 292:95-98
    27 LaMarche, V.C.Jr. & K.K. Hirschboeck. Frost tings in trees as records of major volcanic eruptions. Nature, 1984, 307:121-126
    28 LaMarcbe, V.C.Jr. Paleoclimatic inferences from long tree-ring records. Science (Washington), 1974, 183:1043-1048
    29 LaMarcbe, V.C.Jr., D.A. Graybill, H.C. Fritts & M.R. Rose. Increasing atmospheric and carbon dioxide: tree-ring evidence for growth enhancement in annual vegetation. Science, 1984, 225:1019-1021
    30 Larsen, C.P.S. & G.M MacDonald. Relations between tree-ring widths, climate, and annual area burned in the boreal forest of Alberta. Canadian Journal of Forest Research, 1995, 25:1746-1755
    31 Liang, E.Y. A dendroecological study of Picea meyeri. Ph.D. dissertation of Institute of Botany, the Chinese Academy of Sciences. 2001 (in Chinese with English abstract)
    32 Lloyd A.H. & L.J. Graumlich. Holocene dynamics oftreeline forests in the Sierrs Navada. Ecology, 1997, 78 (4) : 1199-1210
    33 Louis A. Scuderi. A 2000-year tree ring record of annual temperatures in the Sierra Nevada Mountains. Science, 1993, 259:1433-1436
    34 Makinen, H., P. Nojd & K. Mielikainen. Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce (Picea abies (L) Karst.) in south Finland. Trees, 2001, 15:177-185
    35 Nowaek, G.J. & M.D. Abrams. Radial-growth averaging criteria for reconstructing disturbance histories from presettlement origin oaks. Ecological Monographs, 1997, 67:225-249
    36 Oberhuber, W., M. Stumbick & W. Kofler. Climate-tree growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees, 1998, 13: 19-27
    37 Overpeck, J., K. Hughen, D. Hardy, R. Bradley, R. Case, M. Douglas, B. Finney, K. Crajewski, G. Jacoby, A. Jennings, S. Lamoureux, A. Lasca, G. MacDonald, J. Moore, M. Retelle, S. Smith, A. Wolfe & G. Zielinski. Arctic environmental change of the last four centuries. Science, 1997, 278:1251-1256
    38 Peterson, D.W. & D.L. Peterson. Effects of climates on radial growth of subalpine conifers in the North Cascade Mountains. Canadian Journal of Forest Research, 1994, 24:1921-1932
    39 Rogers, H.H., J.F. Thomas & G.E. Bingham. Response of agronomic and forest species to elevated atmospheric carbon dioxide. Science, 1983, 220:428-429
    40 Rolland C. Tree-ring and climaterelationships for A hies alba in the internal alps. Tree-Ring Bulletin, 1993, 53:1-10
    41 Stahle, D.W., M.K. Cleaveland & J.G. Hehr. A 450-year drought reconstruction for Arkansas, United States. Nature, 1985, 316:530-532
    42 Stable, D.W., M.K. Cleaveland, D.B. Blanton, M.D. Therrell & D.A. Gay. The lost colony and Jamestown droughts. Science, 1998, 280:564-567
    43 Swetnam, T.W. Fire history and climate change in giant Sequoia Groves. Science, 1993, 262:885-889
    44 Tardif J & Y. Bergeron. Comparative dendroclimatologioal analysis of two black ash and two white cedar populations from contrasting sites in the lake Duparquet region, northwestern Quebec, Can. J. Forest Res., 1997, 27 (1) : 108-116
    45 Thomas P. & H. Athanasion. Early growth of Pinus nigra and Robinia pseudoacacia stands contributions to soil genesis and landscape improvement on lignite spoil in Ptolemaida, Landscape and Urban Plannin, 1995, 32 (1) : 19-29
    46 Veblen, T.T., K.S. Handley, M.S. Reid & A.J. Rebertus. Methods of detecting past spruce beetle outbreaks in Rocky Mountain subalpine forests. Canadian Journal of ForestResearch, 1991, 21: 242-254
    47 Wimmer, R. & M. Grabner. Effects of climate on vertical resin duct density and radial growth of Norway spruce (Picea abies (L.) Karst.) . Trees, 1997, 11: 271-276
    48 Woodwell, G.M., J.E Hobbie., R.A. Houghton, J.M. Melillo, B. Moore, B.J. Peterson & G.R. Shaver. Global deforestation: contribution to atmospheric carbon dioxide. Science, 1983, 222:1081-1086
    49 Xiong, L.N. Okada & T. Fujiwara. The dendrochrnological potential of the species in the Three Gorges Reservoir region of China. International Association of Wood Anatomists, 000, 21: 181-196
    50 Yamaguchi, D.K., B.F. Atwater, D.E. Buunker, B.E. Benson & M.S. Reid. Tree-ring dating the 1700 Cascadia earthquake. Nature, 1997, 389:922-923
    51 Zhang Q.B., Cheng G., Yao T. et al. A 2326-year tree-ring record of climate variability on the northeastern Qinghai-Tibetan Plateau. Geophysical Research Letters, 2003, 30 (14): 1739-1742
    52 方怀龙.现有林分密度指标的评价.东北林业大学学报,1995,23(4):100-105
    53 勾晓华,陈发虎等.祁连中部地区树轮宽度年表特征随海拔高度的变化.生态学报,2004,24(1):172-176
    54 贺康宁,田阳,张光灿.刺槐日蒸腾过程的Penman-Monteith方程模拟.生态学报,2003,23(2):251-258
    55 侯爱敏,彭少麟,周国逸.树木年轮对气候变化的响应研究及其应用.生态科学,1999,18(3):16-23
    56 黄磊,邵雪梅等.青海沙利克山祁连圆柏千年树轮宽度序列的变化特征.地理研究,2004,23(3):365-373
    57 黄清麟,李元红.中亚热带天然阔叶林研究综述.福建林学院学报,1999,19(2):189-192
    58 黄清麟.亚热带天然阔叶林经营的五大误区.世界林业研究,1998,11(4):31-342
    59 蒋高明,韩兴国,林光辉.大气CO_2浓度升高对植物的直接影响——国外十余年来模拟实验研究之主要手段及基本结论.植物生态学报,1997,21(6):489-502
    60 康兴成.青海都兰地区1835年来的气候变化——来自树轮资料.第四纪研究,1997,1:70-75
    61 兰涛,夏冰,贺善安.马尾松的生长与气候关系的年轮分析.应用生态学报,1994,5(4):422-424
    62 李洪建,王孟本,陈良富,柴宝峰.刺槐林水分生态研究.植物生态学报,1996,20(2):151-158
    63 李江风,袁玉江,由希尧.树木年轮水文学研究与应用.北京:科学出版社,2000
    64 李江风,袁玉江,由希尧.乌鲁木齐河山区流域360年径流量的重建.第四纪研究,1997,2:131-146
    65 李景文.红松混交林生态与经营.哈尔滨:东北林业大学出版社,1997,183-188
    66 刘晨峰,王正宁,贺康宁等.黄土高原半干旱区几种人工林的土壤水分、光照变化及其对林分的影响.西部林业科学,2004,33(3):34-41
    67 刘洪滨,邵雪梅.采用秦岭冷杉年轮宽度重建陕西镇安1755年以来的初春温度.气象学报,2000,58(2):223-233
    68 刘增文,余清珠,王进鑫.刺槐林更新改造对林地水分环境的影响.西北林学院学报,1995,10:53-57
    69 秦建华,姜志林,叶镜中.不同疏伐方法对衫木林生长和产量的影响.1995,19(2):29-33
    70 茹桃勤,李吉跃,孔令省,朱延林.刺槐耗水研究进展.水土保持研究,2005,12(2):135-140
    71 邵雪梅,黄磊等.树轮记录的青海德令哈地区千年降水变化.中国科学D辑,地球科学,2004,34(2):145-153
    72 邵雪梅,吴样定.华山树木年轮年表的建立.地理学报,1994,49(2):174-181
    73 邵雪梅.树轮年代学的若干进展.第四纪研究,1997,3:265-271
    74 王淼,白淑菊,陶大立,单建平.大气增温对长白山林木直径生长的影响.应用生态学报,1995,6(2):128-132
    75 王仁卿,张淑萍,张治国,朱建中.昆嵛山天然赤松种群的数量特征及更新动态.生态学杂志,2000,19(3):61-65
    76 王仁卿,周光裕.山东植被.济南:山东科学技术出版社,2000
    77 王仁卿.山东森林植被恢复的理论方法和实践.山东林业科技,2001,3:11-14
    78 王婷,于丹,李江风,马克平.树木年轮宽度与气候变化关系研究进展.植物生态学报,2003,27(1):23-33
    79 吴祥定,邵雪梅.采用树轮宽度资料分析气候变化对树木生长量影响的尝试.地理学报,1996,51:92-101
    80 吴样定.树木年轮与气候变化.北京:气象出版社,1990
    81 夏冰,邓飞,周康等.树轮分析用于森林干扰强度推测的实例研究.植物资 源与环境学报,2001,10(1):1-6
    82 夏冰,贺善安,兰涛.溧阳马尾松年轮与当地作物产量之间关系的初步研究.植物资源与环境学报,1994,3(1):27-32
    83 杨维西.试论我国北方地区人工植被的土壤干化问题.林业科学,1996,32(1):78-84
    84 张伟,赵善伦,吴志芬.山东赤松种群直径结构及其动态研究.西北植物学报,2001,21(4):749-754
    85 张伟,赵善伦.山东赤松种群的个体生长规律.植物资源与环境学报,2002,11(1):29-34
    86 张伟,赵善伦.山东赤松种群的空间分布型及强度.应用与环境生物学报,2001,7(6):543-549
    1. Biasing T. J., A. M. Solomon & D. N. Duvick. Response functions revisited. Tree-Ring Bulletin, 1984, 44:1-15
    2. Fritts H.C. et al. A revised computer program for standardizing tree-ring series. Tree-Ring Bulletin, 1969, 29 (1-2) : 15-20
    3. Fritts H.C. Relationships offing-widths in arid-site conifers to variations in monthly temperature and precipitation. Ecol Monograph, 1974, 44 (4) : 411-440
    4. Kienast F., F. H. Schweingruber, O. U. Braker & E. Schar. Tree-ring studies on conifers along ecological gradients and the potential of single-year analysis. Canadian Journal of Forest Research, 1987, 17: 683-696
    5. Rolland C. Tree-ring and climate relationships for A bies alba in the internal alps. Tree-Ring Bulletin, 1993, 53: 1-10
    6.晁敏.山东省农业可持续发展战略主体模式研究—以滨州、峄城区、房干村为例,硕士学位论文,山东大学,38-39,1999
    7.楚道文,李海霞.房干生态旅游区开发建设理论、问题和对策.山东省 农业管理干部学院学报,2002,18(1):91-93
    8.葛秀丽.山东省石灰岩山地森林植被现状与恢复途径研究.硕士学位论文,山东大学,2002,14
    9.勾晓华,邵雪梅等.祁连山东部地区树木年轮年表的建立.中国沙漠,1999,19(4):364-367
    10.韩雪梅,王仁卿,郭卫华,韩学梅.房干村生态文明建设分析.In:张凯(主编).山东生态省建设研究.北京:中国科学技术出版社,2004.
    11.韩玉建,李新建,张凤.房干小流域治理开发的做法与成效.中国水土保持,2001,12:35-36
    12.洪楠.统计与图表分析教程.北京:北方交通大学出版社,清华大学出版社,2002
    13.黄以柱.黄河故道区域土地资源开发利用研究.自然杂志,1995,17(4):211-215
    14.贾洪玉,郭秋玲等.青岛崂山建立自然保护区的综合价值及功能分区研究.山东环境,2001,(3):21-22
    15.李宝华,臧晓南.青岛崂山北九水小区森林植物资源调查报告.防护林科技,2002,15(4):58-59
    16.李宝华.青岛崂山植被调查报告.防护林科技,2004,增刊,138-140
    17.李琪,王桂岩等.曹县林业产业考察报告.山东林业科技,2004,(4):41-42
    18.梁尔源等,邵雪梅,林金星等.内蒙古草原沙地白扦年轮生长指数的变异.植物生态学报,2001,25(2):190-194
    19.山东省林业监测规划院.山东省森林资源.济南,2001
    20.王仁卿,周光裕.山东植被.济南:山东科学技术出版社,2000
    21.王秀居,余楠,张爱民.曹县水资源开发利用中存在的问题和对策.山东水利,2005,(3):14
    22.王勇,芦玉芹,赵珊珊.德州市沙化荒漠化土地监测技术报告.山东林业科技,2005,(2):20-21
    23.王勇.德州市林业分类经营现状问题与对策建议.山东林业科技,2004,(4):48-49
    24.吴祥定.树木年轮与气候变化.北京:气象出版社,1990
    25.于法展,阎传海.山东枣庄抱犊崮自然保护区评价研究.徐州师范大学学报(自然科学版),1998,16(3):54-54
    26.张聪敏.青岛百合复合种群的基本特征及遗传结构.硕士学位论文,山东大学,2003,11-16
    27.张维,胡继连等.农区林业发展的影响因素——以山东省菏泽市为例.林业经济问题,2006,26(2):133-137
    28.张宪强.刺槐(Robinia pseudoacacia)克隆种群生态学及对光环境的适应性研究.博士学位论文,山东大学,2006,28
    29.张秀玲.德州市野生植物资源调查.德州学院学报,2004,20(2):64-66
    30.张义丰,宁远.黄河故道的开发利用与发展前景.地理科学进展,1997,16(1):37-43
    31.赵延茂等.黄河三角洲自然保护区科学考察集.北京:中国林业出版社,1995
    1 Akkemik, U. Dendroclimatology of umbrella pine (Pinus pine L.) in Istanbul, Turkey. Tree-Ring Bulletin, 2000, 56:17-20
    2 Bhattarcharyya, A., V.C. LaMarche & F.W. Telewski. Dendrochronological reconnaissance of the conifers of northwest Indian. Tree-Ring Bulletin, 1988, 48:21-30
    3 Biasing T. J., A. M. Solomon & D. N. Duvick. Response functions revisited. Tree-Ring Bulletin, 1984, 44:1-15
    4 Borgaonkar H.P., G.B. Pant & K.R. Kumar. Ring width variations in Cedrusdeodara and its climatic response over the Western Himalaya. Intern J. Climatology, 1996, 16 (12) : 1409-1422
    5 Carita A., Molinasm & E. Gutierrez. Annual cork ring width variability of Quercus suber L. in relation to temperature and precipitation (Extramadura, southwestern Spain) . Forest Ecology and Management, 1996, 86 (3) : 113-120
    6 Cherubini, P., F.H. Schweingruber & T. Forester. Morphology and ecological significance of intm-annual radial cracks in living conifers. Trees, 1997, 11:216-222
    7 Edwards, N.T. & P.J. Hanson. Stem respiration in closed canopy upland oak-forest. Tree Physiology, 1996, 16:433-439
    8 Fritts H.C. et al. A revised comuter program for standardizing tree-ring series. Tree-Ring Bulletin, 1969, 29 (1-2) : 15-20
    9 Fritts H.C. Relationships offing-widths in arid-site conifers to variations in monthly temperature and precipitation. Ecol Monograph, 1974, 44 (4) : 411-440
    10 Fritts H.C. Tree rings and climate. London Academic Press, 1976, 567
    11 Fritts, H.C. & J.S. Dean. Dendrochronological modeling of the effects of climatic change on tree-ring width chronologies from the Chaco Canyon area, Southwestern United States. Tree-Ring Bull., 1992, 52:31-56
    12 Gindl, W., M. Grabner & R. Wimmer. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, 2000, 14:409-414
    13 Graumlich, L.J. Subalpine tree growth, climate, and increasing CO_2: an assessment of recent growth trends. Ecology, 1991, 72:1-11
    14 Hard Makinen, Pekka Nojd, Hans-Peter Kahle, et al. Large-scale climatic variability and radial increment variation of Picea abies(L.)Karst in central and northem Europe. Trees, 2003, 17 (2) : 173-184
    15 Kienast F., F. H. Sehweingruber, O. U. Braker & E. Schar. Tree-ring studies on conifers along ecological gradients and the potential of single-year analysis. Canadian Journal of Forest Research, 1987, 17: 683-696
    16 L. Corcuera, F. Morales, A. Abadia et al. The effect of low temperatures on the photosynthetic apparatus of Quercus ilex subsp, ballota at its lower and upper altitudinal limits in the Iberian peninsula and during a single freezing-thawing cycle. Trees, 2005, 19 (1) : 99-108
    17 Larsen, C.P.S. & G.M. MacDonald. Relations between tree-ring widths, climate, and annual area burned in the boreal forest of Alberta. Canadian Journal of Forest Research, 1995, 25:1746-1755
    18 Makinen, H., P. Nojd & K. Mielikainen. Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce (Picea abies (L) Karst.) in south Finland. Trees, 2001, 15: 177-185
    19 Oberhuber, W., M. Stumbock & W. Kofler. Climate-tree growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees, 1998, 13:19-27
    20 Rolland C. Tree-ring and climate relationships for A bies alba in the internal alps. Tree-Ring Bulletin, 1993, 53:1-10
    21 Stable, D.W., M.K. Cleaveland, D.B. Blanton, M.D. Therrell & D.A. Gay. The lost colony and Jamestown droughts. Science, 1998, 280:564-567
    22 Vaganov, E.A., M.K. Hughes, A.V. Kirdyanov, F.H. Schweingruber & P.P. Silkin. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 1999, 400:149-151
    23 Wimmer, R. & M. Grabner. Effects of climate on vertical resin duct density and radial growth of Norway spruce (Picea abies (L.) Karst. ). Trees, 1997, 11 : 271-276
    24 Xiong, L.N. Okada & T. Fujiwara. The dendrochrnological potential of the species in the Three Gorges Reservoir region of China. International Association of Wood Anatomists, 2000, 21: 181-196
    25 Zhang Q. B., René I. Alfaro & Richard J. Hebda. Dendroecological studies of tree growth, climate and spruce beetle outbreaks in Central British Columbia, Canada. Forest Ecology and Management, 1999, 121: 215-225
    26 葛全胜,郑景云等.过去40年中国气候与物候的变化研究.自然科学进展,2003,13(10):1048-1053
    27 勾晓华,邵雪梅等.祁连山东部地区树木年轮年表的建立.中国沙漠,1999,19(4):364-367
    28 郭瑞才,张兴亮.刺槐退耕还林的先锋树种.山西林业科技,2004,33-36
    29 黄艺,季海波,姜学艳,李婷.盐渍地刺槐体内Na的积累和分布.农村生态环境,2004,20(4):1-5
    30 兰涛,夏冰,贺善安.马尾松的生长与气候关系的年轮分析.应用生态学报,1994,5(4):422-424
    31 李法曾,郑亦津,陈汉斌.山东植物志(下卷).青岛:青岛出版社,1994
    32 梁尔源等,邵雪梅,林金星等.内蒙古草原沙地白扦年轮生长指数的变异.植物生态学报,2001,25(2):190-194
    33 刘禹,马利民等.依据陕西秦岭镇安树木年轮重建3~4月份气温序列.自然科学进展,2001,11(2):157-163
    34 马利民,刘禹,安芷生.秦岭树轮记录中的ENSO事件.海洋地质与第四纪地质,2001,21(8):93-98
    35 马利民.镇安、佛坪树轮气候学研究.中国科学院黄土与第四纪地质国家重点实验室,硕士论文,1998
    36 邵雪梅,范金梅.树轮宽资料所指示的川西过去气候变化.第四纪研究,1999,1:81-89
    37 邵雪梅,吴祥定.华山树木年轮年表的建立.地理学报,1994,49(2):174-181
    38 王仁卿,周光裕.山东植被.济南:山东科学技术出版社,2000
    39 王世绩,张敦伦.刺槐.北京:中国科学技术出版社,1993
    40 吴普,王丽丽,黄磊.五个中国特有针叶树种树轮宽度对气候变化的敏感性.地理研究,2006,25(1):43-52
    41 吴祥定.树木年轮与气候变化.北京:气象出版社,1990
    42 吴泽民,黄成林,马青山.黄山松年轮生长和气候的关系.应用生态学报,1999,10(2):147-150
    43 吴泽民,黄成林,韦朝领.黄山松群落林隙光能效应与黄山松的更新.应用生态学报,2000,11(2):13-18
    44 于大炮,王顺忠,代力民等.长白山北坡落叶松年轮年表及其与气候变化的关系.应用生态学报,2005,16(1):14-20
    45 张社奇,王国栋,田鹏,郭满才.黄土高原剌槐林地土壤微生物的分布特征.水土保持学报,2004,18(6):128-131
    46 郑景云,葛全胜,郝志新.气候增暖对我国近40年植物物候变化的影响.科学通报,2002,47(20):1582-1587
    1 Blasing T. J., A. M. Solomon & D. N. Duvick. Response functions revisited. Tree-Ring Bulletin, 1984, 44: 1-15
    2 Borgaonkar H. P., G. B. Pant & K. R. Kumar. Ring width variations in Cedrusdeodara and its climatic response over the Western Himalaya. Intern J. Climatology, 1996, 16 (12): 1409-1422
    3 Fritts H. C. et al. A revised computer program for standardizing tree-ring series. Tree-Ring Bulletin, 1969, 29 (1-2): 15-20
    4 Fritts H. C. Relationships of ring-widths in arid-site conifers to variations in monthly temperature and precipitation. Ecol Monograph, 1974, 44 (4): 411-440
    5 Fritts H. C. Tree tings and climate. London: Academic Press, 1976, 567
    6 Fritts, H. C.. Dendrochronological modeling of the effects of climatic change on tree-ring width chronologies from the Chaco Canyon area, Southwestern United States. Tree-Ring Bull., 1992, 52: 31-56
    7 Gindl, W., M. Crabner & R. Wimmer. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, 2000, 14: 409-414
    8 Kienast F., F. H. Schweingruber, O. U. Braker & E. Schar. Tree-ring studies on conifers along ecological gradients and the potential of single-year analysis. Canadian Journal of Forest Research, 1987, 17: 683-696
    9 Oberhuber, W., M. Stumbock & W. Kofler. Climate-tree growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees, 1998, 13: 19-27
    10 Rolland C. Tree-ring and climate relationships for A hies alba in the internal alps. Tree-Ring Bulletin, 1993, 53: 1-10
    11 Vaganov, E. A., M. K. Hughes, A. V. Kirdyanov, F. H. Schweingruber & P. P. Silkin. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 1999, 400: 149-151
    12 Wimmer, R. & M. Grabner. Effects of climate on vertical resin duct density and radial growth of Norway spruce (Picea abies (L.) Karst. ). Trees, 1997, 11: 271-276
    13 葛全胜,郑景云等.过去40年中国气候与物候的变化研究.自然科学进展,2003,13(10):1048-1053
    14 勾晓华,邵雪梅等.祁连山东部地区树木年轮年表的建立.中国沙漠,1999,19(4):364-367
    15 李法曾,郑亦津,陈汉斌.山东植物志(上卷).青岛:青岛出版社,1994
    16 梁尔源等,邵雪梅,林金星等.内蒙古草原沙地自扦年轮生长指数的变异.植物生态学报,2001,25(2):190-194
    17 罗广军,王庆茹,刘继生等.延边地区天然赤松生长规律的研究.延边大学农学学报,2005,27(1):6-9
    18 彭剑峰,勾晓华,陈发虎,李金豹.天山云杉和西伯利亚落叶松的树轮气候记录.生态环境,2005,14(4):460-465
    19 钱喜友,王志富,于清.赤松资源的保护及开发利用.林业科技,2001,26(2):3
    20 邵雪梅,范金梅.树轮宽资料所指示的川西过去气候变化.第四纪研究,1999,1:81-89
    21 王仁卿,周光裕.山东植被.济南:山东科学技术出版社,2000
    22 王森林,陈景和等.山东昆嵛山自然保护区植被及赤松保护价值分析.防护林科技,2006,(2):44-46
    23 吴普,王丽丽,黄磊.五个中国特有针叶树种树轮宽度对气候变化的敏感性.地理研究,2006,25(1):43-52
    24 吴祥定.树木年轮与气候变化.北京:气象出版社,1990
    25 吴泽民,黄成林,马青山.黄山松年轮生长和气候的关系.应用生态学报,1999,10(2):147-150
    26 吴泽民,黄成林,韦朝领.黄山松群落林隙光能效应与黄山松的更新.应用生态学报,2000,11(2):13-18
    27 于大炮,王顺忠,代力民等.长白山北坡落叶松年轮年表及其与气候变化的关系.应用生态学报,2005,16(1):14-20
    28 张伟,赵善伦.利用I&和*m指标法对山东赤松种群空间分布格局纹理的研究.生态学杂志,2002,21(1):70-73
    29 张伟,赵善伦.山东赤松种群的个体生长规律.植物资源与环境学报,2002,11(1):29-34
    30 张志华,吴祥定,李冀.利用树木年轮资料重建新疆东天山300多年干旱日数的变化.应用气象学报,1996,7(1):53-150
    1 Biasing T. J., A. M. Solomon & D. N. Duvick. Response functions revisited. Tree-Ring Bulletin, 1984, 44: 1-15
    2 Borgaonkar H. P., G. B. Pant & K. R. Kumar. Ring width variations in Ccdrusdeodara and its climatic response over the Western Himalaya. Inern J. Climatology, 1996, 16 (12): 1409-1422
    3 Carita A., Molinasm & E. Gutierrez. Annual cork ring width variability of Quercus suber L. in relation to temperature and precipitation (Extramadura, southwestern Spain). Forest Ecology and Management, 1996, 86 (3): 113-120
    4 Caritat, A., E. Gutierrez & M. Molinas. Influence of weather on cork-ring width. Tree Physiology, 2000, 20.. 893-900
    5 Fritts H. C. et al. A revised comuter program for standardizing tree-ring series. Tree-Ring Bulletin, 1969, 29 (1-2): 15-20
    6 Fritts H. C. Relationships of ring-widths in arid-site conifers to variations in monthly temperature and precipitation. Ecol Monograph, 1974, 44 (4): 411-440
    7 Fritts H. C. Tree rings and climate. London: Academic Press, 1976, 567
    8 Fritts, H. C. Dendrochrological modeling of the effects of climatic change on tree-ring width chronologies from the Chaco Canyon area, southwestern United States. Tree-Ring Bulletin, 1992, 52: 31-58
    9 Gindl, W., M. Grabner & R. Wimmer. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, 2000, 14: 409-414
    10 Kienast F., F. H. Schweingruber, O. U. Braker & E. Schar. Tree-ring studies on conifers along ecological gradients and the potential of single-year analysis. Canadian Journal of Forest Research, 1987, 17: 683-696
    11 Larsen, C. P. S. & G. M. MacDonald. Relations between tree-ring widths, climate, and annual area burned in the boreal forest of Alberta. Canadian Journal of Forest Research, 1995, 25: 1746-1755
    12 Oberhuber, W., M. Stumbock & W. Kofler. Climate-tree growth relationships of Scots pine stands (Pinus sylvestris L. ) exposed to soil dryness. Trees, 1998, 13: 19-27
    13 Peterson, D. W. & D. L. Peterson. Effects of climates on radial growth of subalpine conifers m the North Cascade Mountains. Canadian Journal of Forest Research, 1994, 24: 1921-1932
    14 Rolland C. Tree-ring and climate relationships for A hies alba in the internal tips. Tree-Ring Bulletin, 1993, 53: 1-10
    15 Vaganov, E. A., M. K. Hughes, A. V. Kirdyanov, F. H. Sehweingruber & P. P. Silkin. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 1999, 400: 149-151
    16 Zhang Q. B., René I. Alfaro, Richard J. Hebda. Dendroecological studies of tree growth, climate and spruce beetle outbreaks in Central British Columbia, Canada. Forest Ecology and Management, 1999, 121: 215-225
    17 卞相玲,臧真荣等.侧柏麻栎混交林水土保持效益研究.山东林业科技,2003,(6):13-14
    18 葛全胜,郑景云等.过去40年中国气候与物候的变化研究.自然科学进展,2003,13(10):1048-1053
    19 勾晓华,陈发虎等.祁连中部地区树轮宽度年表特征随海拔高度的变化.生态学报,2004,24(1):172-176
    20 勾晓华,邵雪梅等.祁连山东部地区树木年轮年表的建立.中国沙漠,1999,19(4):364-367
    21 郭向昕,张洁,何武江等.区域和立地条件对麻栎生长的影响.吉林林业科技,2003,32(3):11-14
    22 兰涛,夏冰,贺善安.马尾松的生长与气候关系的年轮分析.应用生态学报,1994,5(4):422-424
    23 李法曾,郑亦津,陈汉斌.山东植物志(上卷).青岛:青岛出版社,1994
    24 梁尔源等,邵雪梅,林金星等.内蒙古草原沙地白扦年轮生长指数的变异.植物生态学报,2001,25(2):190-194
    25 陆道调,梁宏温.百色地区麻栎林和栓皮栎林的成因分析.云南林业调查规划设计,2000,25(3):50-52
    26 钱益民,白瑞兴等.麻栎引种造林的研究.辽宁林业科技,1996,(1):4-7
    27 邵雪梅,范金梅.树轮宽资料所指示的川西过去气候变化.第四纪研究,1999.1:81-89
    28 王利,丰震,白世红,李建华,董金伟,郭泗亭.麻栎树高与胸径相关关 系的研究.山东林业科技,2005,159(4):33-34
    29 王仁卿,周光裕.山东植被.济南:山东科学技术出版社,2000
    30 吴普,王丽丽,黄磊.五个中国特有针叶树种树轮宽度对气候变化的敏感性.地理研究,2006,25(1):43-52
    31 吴祥定.树木年轮与气候变化.北京:气象出版社,1990
    32 吴泽民,黄成林,马青山.黄山松年轮生长和气候的关系.应用生态学报,1999,10(2):147-150
    33 吴泽民,黄成林,韦朝领.黄山松群落林隙光能效应与黄山松的更新.应用生态学报,2000,11(2):13-18
    34 杨澄,党坤良,刘建军.麻栎人工林水源涵养效能研究.西北林学院学报,1997,12(2):15-19
    35 于成琦,候昆等.不同立地因子与麻栎生长的相关分析.吉林林业科技,2005,34(3):22-29
    36 于大炮,王顺忠,代力民等.长白山北坡落叶松年轮年表及其与气候变化的关系.应用生态学报,2005,16(1):14-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700