用户名: 密码: 验证码:
SnO_2涂覆Al_(18)B_4O_(33)晶须增强铝基复合材料的阻尼及力学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统研究了晶须表面涂覆SnO_2对硼酸铝晶须增强铝基复合材料阻尼及室温力学性能的影响。采用挤压铸造法制备了SnO_2和ABOw质量比分别为0:1,1:20,1:10,1:6的复合材料,晶须体积分数均为20%。
     观察分析了表面涂覆SnO_2的硼酸铝晶须及其增强的纯铝基复合材料的微观组织结构,研究了涂覆量在不同频率及应变振幅下对复合材料阻尼性能的影响。
     SEM、TEM观察及XRD物相检测结果表明,SnO_2均匀地涂覆在晶须表面,并在后续的复合材料挤压铸造制备过程中利用基体和SnO_2的界面反应成功地在界面处引入了低熔点Sn。低熔点Sn的引入改善了界面状态及基体中的位错组态,引起了纯铝基复合材料阻尼及室温力学性能的变化。
     首次发现晶须涂覆复合材料中存在两个明显的阻尼峰P1和P2,涂覆量及应变振幅强烈地影响着复合材料的阻尼性能,尤其在P2峰处更为显著。
     研究表明,P1、P2峰的峰位均随着频率的升高向高温移动,符合Arrehenius关系,说明两峰均受热激活作用。随应变增大,P1向低温移动,P1的阻尼机制归因于位错及晶须与Sn的界面微滑移,因为P1不仅依赖应变而且依赖涂覆量。P2的阻尼机制在不同的应变下发生变化,占主导地位的阻尼机制从Sn的熔化阻尼过渡到晶须与基体的界面阻尼,当温度超过330℃时,其阻尼机制主要为晶界阻尼。
     室温下复合材料的阻尼-应变谱表明,室温下各种涂覆量复合材料的阻尼值基本保持一致。随着应变振幅的增加,复合材料阻尼由两部分组成,即与应变振幅无关及与应变振幅相关的阻尼,而与应变振幅相关的阻尼又可分为阻尼随应变振幅缓慢增加并出现微弱阻尼峰和快速增加两阶段。它们分别对应于位错阻尼及界面微滑移阻尼机制。
     从晶须涂覆复合材料的室温拉伸实验可知,随着晶须表面涂覆量的增加,基体与增强体之间的润湿性提高,界面结合强度由于界面反应数量的增加而得到进一步加强,从而引起室温阻尼在大应变下因界面不易滑移而下降,力学性能因界面结合状态改善而得到提高。
The effect of SnO_2 coating deposited on the whisker’s surface on the damping capacity and room temperature mechanical property of alumina borate whisker reinforced aluminium composites were studied in this dissertation. The composites were fabricated by squeeze casting and the volume fraction of ABOw in the composites was 20%. The mass ratios between SnO_2 and ABOw were 0:1, 1:20, 1:10, 1:6 respectively.
     The microstructure of whiskers coated with SnO_2 and coated composites were investigated. The paper also analysed the effect of coating contents on the damping capacity at different frequencies and strain amplitudes.
     The results indicated that SnO_2 was successfully deposited on the whisker surface and the low melting-point Sn was introduced into the interface of whisker/Al matrix by the reaction between SnO_2 and aluminum matrix during squeeze casting process. The introduction of Sn changed the interfacial microstructure and the dislocation state in the matrix, which deeply influenced on the damping capacity and mechanical behavior of the pure aluminum matrix composites.
     Two damping peaks-P1, P2 have been observed in the coated composites for the first time. The damping capacity was strongly dependent on the coating contents and strain amplitude that extruded more clearly in P2.
     The temperature-damping testes showed that the positions of the two peaks moved to high temperature with the increasing of frequency, which was consistent with the Arrehenius equation. So the two peaks were all thermal activated. The damping mechanism of peak 1 is attributed to the dislocation motion and interface micro-slip between Sn and whisker because the damping capacities of peak 1 in the coated composites depend not only strain but also coating contents. For P2, the dominant damping mechanism was transfer from Sn melting damping into interface damping. When the temperature exceed 330℃, the grain boundary damping becomes the main damping mechanism for the coated composites.
     The strain-damping tests at room temperature revealed that the damping capacity of the coated composites were low and similar. With the increasing of strain amplitude, the damping capacity was composed of two parts: the amplitude independent and dependent damping, and the later could be divided into two steps of slowly increased and rapidly increased damping. The damping of amplitude independent and the slowly increased step was related to the G-L dislocation theory, and for the rapidly increased damping was associated with the damping of interface micro-slip.
     The room temperature tensile tests of coated composites implied that the tensile strength of the coated composites increased with the coating contents, which suggested that the coatings on the whisker surfaces improved the wettability between matrix and whisker and the interface bonding states of the composites. In this case, the room damping capacities of the coated composites decreased with the increasing of coating contents at high strain amplitude.
引文
1毕刚,吴人洁等.硼酸铝晶须增强铝基复合材料的研究.宇航材料工艺. 1999, (3): 18~22
    2胡锐,李华伦等.硼酸铝晶须增强Al基复合材料的性能及制备.兵器材料科学与工程. 2002, 25(4): 69~72
    3 S. W. Kim, S. G. Lee, J. K. Kim, J. Y. Kwon, H. C. Park and S. S. Park. Synthesis of Aluminum Borate Whiskers via Flux Method with and without Microwaves. Journal of Materials Science. 2004, 39(4): 1445~1447
    4 L. M. Peng, X. K. Li, J. H. Wang, M. Gong. Synthesis and Microstructural Characterization of Aluminum Borate Whiskers. Ceramics International. 2006, 32(4): 365~368
    5 J. Wang, G. L. Ning, X. F. Yang, Z. H. Gan, H. Y. Liu, Y. Lin. Large Scale Synthesis of Al4B2O9/Al18B4O33 Whiskers via a Novel Method. Materials Letters. 2008, 62(8~9): 1208~1211
    6 K. Suganuma, T. Fujita, N. Suzuki and K. Niihara. Aluminium Composites Reinforced with a New Aluminium Borate Whisker. Journal of Materials Science Letters. 1990, 9(6): 633~635
    7 L. M. Peng, S. J. Zhu, etc. High Temperature Creep Deformation of Al18B4O33 Whisker-Reinforced 8009 Al Composite. Materials Science and Engineering. 1999, A265: 63~70
    8 S. J. Zhu, T. Iizuka. Fatigue Behavior of Al18B4O33 Whisker-Framework Reinforced Al Matrix Composites at High Temperatures. Composites Science and Technology. 2003, 63(2): 265–271
    9 L. J. Yao, H. Fukunaga. TEM Study on the Interfacial Reaction of Al18B4O33 / Al Composites. Scripta Materialia. 1997, 36(11): 1267~1271
    10 L. J. Yao, S. K.Gen, etc. Reactivity of Aluminum Borate Whisker Reinforced Aluminum Alloys. Materials Science and Engineering. 1997, A225: 59~68
    11黄玉东,耿林,成来飞(材料编委会).中国材料科学工程大典第10卷复合材料工程-金属基复合材料界面.化学工业出版社, 2006: 235~252
    12吴人洁.复合材料.天津大学出版社, 2000: 179~181
    13胡津.晶须增强铝复合材料的腐蚀行为研究.哈尔滨工业大学博士论文.2002: 68,89,124,126
    14葛庭燧.非线性滞弹性内耗的实验和理论研究.金属学报. 1997, 33(1): 9~21
    15张忠明,刘宏昭等.材料阻尼及阻尼材料的研究进展.功能材料. 2001, 32(3): 227~230
    16方前锋,朱震刚,葛庭燧.高阻尼材料的阻尼机理及性能评估.物理. 2000. 29(9): 541~545
    17 D. J. Nelson, J. W. Hancock. Interfacial Slip and Damping in Fibre Reinforced Composites. Journal of Materials Science. 1978, 13(11): 2429~2440
    18 W. A. Lederman. The Damping Properties of Composite Materials. PH.D. Dissertation of WIscomsin-Milwaukee. 1991: 1~5
    19张小农.金属基复合材料的阻尼行为研究.上海交通大学博士论文. 1997: 1~4, 10, 31~35, 43~45, 76, 86
    20张小农,吴人洁,张荻,张国定.高阻尼金属基复合材料的发展途径.材料工程. 1997(9): 34~37
    21李沛勇,戴圣龙.高阻尼铝基复合材料的研究动向.航空材料学报. 2000, 20(3): 165~171
    22 X. S. Hu, Y. K. Zhang, M. Y. Zheng, K. Wu. A Study of Damping Capacities in Pure Mg and Mg–Ni Alloys. Scripta Materialia. 2005, 52(11): 1141~1145
    23 B. C. Moon and Z. H. Lee. Damping Behavior of Al-Zn Alloys Produced by Spray Forming Process. Scripta Materialia. 1998, 38(2): 207~213
    24 J. Zhang, R. J. Perez, E. J. Lavernia. Effect of SiC and Graphite Particulates on the Damping Behavior of Metal Matrix Composites. Materials Science and Engineering. 1994, 42(2): 395~409
    25 J. H. Gu, X. N. Zhang, M. Y. Gu, Z. Y. Liu, G. D. Zhang. The Damping Capacity of Aluminum Matrix Composites Reinforced with Coated Carbon Fibers. Materials Letters. 2004, 58(25): 3170~3174
    26 J. N. Wei. D. Y. Wang, W. J. Xie, J. L. Luo. Effects of Macroscopic Graphite Particulates on the Damping Behavior of Zn–Al Eutectoid alloy. Physics Letters. 2007, 366(1~2): 134~136
    27 M. Fraczkiewicz, A.G. Zhou, M. W. Barsoum. Mechanical Damping in Porous Ti3SiC2. Acta Materialia. 2006, 54(19): 5261~5270
    28 G. H. Wu, Z. Y. Dou, etc. Damping Properties of Aluminum Matrix-Fly Ash Composites. Materials Letters. 2006, 60(24): 2945~2948
    29 S. R. Yu, J. A.Liu, Y. R. Luo, Y. H. Liu. Compressive Behavior and Damping Property of ZA22/SiCp Composite Foams. Materials Science and Engineering A. 2007, 457(1~2): 325~28
    30于思荣等. SiCP/ZL104泡沫复合材料的阻尼性能.复合材料学报. 2007, 24(1): 65~69
    31 J. H. Jun, T. J. Ha and C. S. Choi. The Effect of Deformation on Microstructure and Damping Capacity in a Co-Ni Alloy. Scripta Mater. 2000, 43(7): 603~608
    32 I. Yoshida, D. Monma and T. Ono. Damping characteristics of Ti50Ni47Fe3 Alloy. Journal of Alloys and Compounds. 2008, 448(1~2): 349~354
    33 Y. Zhong, F. Yin, T. Sakaguchi, K. Nagai, K. Yang. Dislocation Structure Evolution and Characterization in the Compression Deformed Mn–Cu Alloy. Acta Materialia. 2007, 55(8): 2747~2756
    34丁冬雁.表面涂覆硼酸铝晶须对6061Al基复合材料组织性能的影响.哈尔滨工业大学博士论文. 2000: 7~10, 44, 72, 81~90
    35 G. Sasaki, W.G. Wang, Y. Hasegawa, etc. Surface Treatment of Al18B4O33 Whisker and Development of Al18B4O33/ZK60 Magnesium Alloy Matrix Composite. Journal of Materials Processing Technology. 2007, 187~188: 429~432
    36李志军. Bi2O3涂覆Al18B4O33晶须增强铝复合材料的界面反应及高温变形行为.哈尔滨工业大学博士论文. 2007: 27, 51~56, 117~118
    37 H.Y. Yue, W.D. Fei, Z.J. Li, L.D. Wang. Effects of ZnO Coating on the Wettability and Tensile Properties of Aluminum Borate Whisker-Reinforced Aluminum Composite. Materials Science and Engineering A. 2006, 441(1~2): 197~201
    38 H. S. Suzuki, K. J. Yamaguchi, H. S. Miyazaki. Fabrication of Thermochromic Composite Using Monodispersed VO2 Coated SiO2 Nanoparticles Prepared by Modified Chemical Solution Deposition. Composites Science and Technology. 2007, 67(15~16): 3487~3490
    39 J. H. Gu, X. N. Zhang, etc. Damping Behaviors of Magnesium Matrix Composites Reinforced with Cu-Coated and Uncoated SiC Particulates.Composites Science and Technology. 2005, 65(11~12): 1736~1742
    40 J. H. Gu, X. N. Zhang, M. Y. Gu. Effect of Surface Coating of Particulate on the overall Damping of Particulate-Reinforced Metal Matrix Composites. Computational Materials Science. 2006, 36(3): 338~344
    41 X. S. Hu, K. Wu, M. Y. Zheng. Effect of Heat Treatment on the Stability of Damping Capacity in Hypoeutectic Mg–Si Alloy. Scripta Materialia. 2006, 54(9): 1639~1643
    42 S. C. Sharma, M. Krishna, A. Shashishankar, S. P. Vizhian. Damping Behaviour of Aluminium/Short Glass Fibre Composites. Materials Science and Engineering A. 2004, 364(1~2): 109~116
    43顾敏.喷射共沉积颗粒增强铝基复合材料阻尼特性的研究.郑州大学博士论文. 2003: 1, 14
    44 R. Gonzalez-Mart?nez, J. Goken. Influence of Aging on Damping of the Magnesium–Aluminium–Zinc Series. Journal of Alloys and Compounds. 2007, 437(1~2): 127~132
    45 Y. J. Zhang, N. H. Ma, H. W. Wang, X. F. Li. Study on Damping Behavior of A356 Alloy after Grain Refinement. Materials and Design. 2008, 29(3): 706~708
    46 G. Covarel, V. Pelosin, A. Riviere. Influence of Annealings on CuAlNi Martensite Studied by Internal Friction. Scripta Materialia. 2002, 46(4): 319~324
    47 J. H. Jun, S. H. Baik, Y. K. Lee and C. S. Choi. The Influence of Aging on Damping Capacity of Fe-17%Mn-X%C Alloys. Scripta Materialia. 1998, 39(1): 39~44
    48 A. Granato, K. Lucke. Theory of Mechanical Damping Due to Dislocations. J.Appl.Phys. 1956, 27(6): 583~592
    49 J. C. Swartz, J. Weertman. Modifacation of the Koehler-Granato-Lucke Dislocation Damping Theory. Journal of Applied Physics. 1961, 32(10): 1860~1865
    50 D. H. Rogerst. An Extension of a Theory of Mechanical Damping Due to Dislocations. Journal of Applied Physics. 1962, 33(3): 781~791
    51 J. Zhang, R. J. Perez, E. J. Lavernia. Dislocation-Induced Damping in Metal Matrix Composites. Journal of Materials Science. 1993, 28: 835~846
    52 Y. J. Zhang, N. H. Ma, etc. Study on Damping Capacity of Aluminum Composite Reinforced with in Situ TiAl3 Rod. Materials and Design. 2008, 29(5): 1057~1059
    53 C. Y. Xie, E. Carreno-Morelli and R. Schaller. Low Frequency Internal Friction Associated with Precipitation in AlMgSi Alloys. Scripta Materialia. 1998, 39(2): 225~230
    54 O. A. Lambri. W. Riehemann. Damping due to Incoherent Precipitates in Commercial QE22 Magnesium Alloy. Scripta Materialia. 2005, 52(2): 93~97
    55张小农,吴人洁等.金属及复合材料界面层阻尼功能研究.中国科学(E辑). 2002, 32(1): 14~19
    56 X. N. Zhang, D. Zhang, R. J. Wu, etc. Mechanical Properties and Damping Capacity of (SiCw+BB4Cp)/ZK60A Mg Alloy Matrix Composite. Scripta Materialia. 1997, 37(11): 1633~1635
    57 L. H. Liao, X. Q. Zhang, etc. The Characteristic of Damping Peak in Mg–
    9Al–Si Alloys. Journal of Alloys and Compounds. 2007, 429(1~2): 163~166
    58 F. M. Mazzolai, A. Biscarini, B. Coluzzi, G. Mazzolai, E. Villa, A. Tuissi. Low-Frequency Internal Friction of Hydrogen-Free and Hydrogen-Doped NiTi Alloys. Acta Materialia. 2007, 55(13): 4243~4252
    59 T. S. Hutchison, D. H. Rogers, R. R. Turkington. Thermally Activated Internal Friction in Aluminum. Journal of Applied Physics. 1965, 36(7): 2213
    60 Z. Trojanova, P. Lukac, W. Riehemann, B. L. Mordike. Study of Relaxation of Residual Internal Stress in Mg Composites by Internal Friction. Materials Science and Engineering. 2002, A324(1~2): 122~126
    61 M. L. Nó, A. Oleaga, C. Esnouf and J. San Juan. Internal Friction at Medium Temperatures in High Purity Magnesium. Physica Status Solidi (a). 1990, 20(2): 419~427
    62 G. Schoeck, E. Bisogni and J. Shyne. The Activation Energy of High Temperature Internal Friction. Acta Metallurgica. 1964, 12(12): 1466~1468
    63 T. Mori, M. Koda, R. Monzen, T. Mura. Particle Blocking in Grain Boundary Sliding and Associated Internal Friction. Acta Metallurgica, 1983, 31(2): 275~283
    64 T. S. Ke. Internal Friction of Metals at very High Temperatures. Journal of Applied Physics. 1950, 21: 414~419
    65李刚. Sn02涂覆硼酸铝晶须增强铝基复合材料的高温性能.哈尔滨工业大学硕士论文. 2007: 17, 40~44
    66 Z. J. Li, W. D. Fei, H. Y. Yue, L. D. Wang. Hot Deformation Behaviors of Bi2O3 Coated Al18B4O33 Whisker Reinforced Aluminum Matrix Composite with High Formability. Composites Science and Technology. 2007, 27(6): 963~973
    67 Z. J. Li, L. D. Wang, W. D. Fei. Effect of Interfacial Bi2O3 Coating on Compressive Deformation Behavior of Aluminum Borate Whisker Reinforced Aluminum Composite at Elevated Temperature. Materials Science and Engineering. 2007, 447(1~2): 275~280
    68 T. Yamanaka, Y. B. Choi, K. Matsugi, O. Yanagisawa, G. Sasaki. Influence of preform preparation condition on infiltration of molten aluminum. Journal of Materials Processing Technology. 2007, 187~188: 530~532
    69 C. G. Kang, K. S. Yun. Fabrication of Metal-Matrix Composites by the Die-Casting Technique and the Evaluation of their Mechanical properties. Journal of Materials. Processing Technology. 1996, 62(11): 116~123
    70郑明毅. SiCw/AZ91镁基复合材料的界面与断裂行为.哈尔滨工业大学博士论文. 1999: 83~90, 92,97,117
    71 Y. J. Zhang, N. H. Ma, H. W. Wang, Y. K. Le, S. C. Li. Effect of Ti on the Damping Behavior of Aluminum Composite Reinforced with in Situ TiB2 Particulate. Scripta Materialia. 2005, 53(10): 1171~1174
    72 A. Wolfenden, J. M. Wolla. Mechanical Damping and Dynamic Modulus Measurements in Alumina and Tungsten Fibre-Reinforced Aluminium Composites. Journal of Materials Science. 1989, 24: 3205~3212
    73 E. Carreno-morelli, S. E. Urreta, R. Schaller. Mechanical Spectroscopy of Thermal Stress Relaxation at Metal–Ceramic Interfaces in Aluminum-based Composites. Acta Materialia. 2000, 48(18~19): 4725~4733
    74 X. Q. Zhang, H. W. Wang, L. H. Liao, N. H. Ma. In Situ Synthesis Method and Dmping Characterization of Magnesium Matrix Composites. Composites Science and Technology. 2007, 67(3~4): 720–727
    75 S. Durieux, C. Esnouf, E. Maire, J. P. Fondere, R. Fougeres, G. Lormand and A. Vincent. On Internal Damping in Metal Matrix Composites: Role of Particle-Matrix Interfacial Region. Scripta Materialia. 1997, 36(2): 189~193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700