用户名: 密码: 验证码:
大比表面钙钛矿型复合氧化物催化剂的合成及甲烷催化燃烧性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿复合氧化物具独特的物理化学性质和催化活性,但因本身的比表面积和孔容较小而限制了其应用,因此,许多研究工作者试图寻找一种大比表面、活性高的钙钛矿复合氧化物制备方法。本文采用固相法、氨基乙酸法、柠檬酸法、氨基乙酸燃烧法、柠檬酸燃烧法等制备一系列La_(0.95)Ce_(0.05)CoO_3钙钛矿催化剂,研究了制备方法对钙钛矿催化剂的比表面积和催化活性的影响。为进一步提高催化剂的比表面积和活性,本文考察了氨基乙酸与金属组分的配比、前驱体溶液pH值、焙烧温度和焙烧时间等制备条件对La_(0.95)Ce_(0.05)CoO_3钙钛矿催化剂比表面、甲烷催化燃烧活性的影响。本文采用柠檬酸燃烧法合成了La_(0.95)Sr_(0.05)Ni_(0.05)Co_(0.95)O_3钙钛矿型复合氧化物,考察了复合掺杂对LaCoO_3催化剂的晶体结构、颗粒度、表面形态、结构、比表面积、平均孔径和孔体积等性能的影响。以大比表面La_(0.95)Ce_(0.05)CoO_3钙钛矿氧化物为载体,制备M/La_(0.95)Ce_(0.05)CoO_3钙钛矿催化剂(M=Pd、Pt、Ni),研究了不同金属组分负载对催化剂结构与性能的影响,同时采用M(M=Pd、Pt、Ni)对La_(0.95)Ce_(0.05)CoO_3钙钛矿氧化物进行掺杂,研究了不同金属掺杂对催化剂结构与性能的影响,比较了负载型与掺杂型催化剂的异同。最后还研究了不同稀土和有机燃料与氧化剂的化学计量比((?))对Ln_(0.8)Sr_(0.2)CoO_3复合氧化物催化剂结构、表面性能和甲烷催化燃烧活性影响。
     以甲烷催化燃烧为探针反应对所合成的催化材料进行了活性评价,研究了制备方法、制备条件、负载和掺杂M、不同稀土和有机燃料与氧化剂的化学计量比((?))等对甲烷催化燃烧活性影响。并分别采用X射线粉末衍射(XRD)、电子显微镜扫描(SEM)、红外光谱(FT-IR)、比表面积和孔径测定(BET)、TG-DTA等技术对催化剂结构、晶相和比表面积进行了表征分析,探讨了各种制备方法和条件、负载和掺杂M对催化材料性能的影响。
     制备方法的研究结果表明,各种方法制备的La_(0.95)Ce_(0.05)CoO_3样品均为单一钙钛矿结构。相对于LaCoO_3化合物,A位掺杂的Ce离子进入了晶格,部分取代了晶格内相应位置上的La离子。按氨基乙酸燃烧法、柠檬酸燃烧法、氨基乙酸法、柠檬酸法及固相法的次序,所制La_(0.95)Ce_(0.05)CoO_3催化剂的孔结构和比表面积依次递减,氧空穴和可移动晶格氧依次减少,甲烷燃烧反应的催化活性依次下降。其中氨基乙酸燃烧法制备的La_(0.95)Ce_(0.05)CoO_3比表面积最大(32.4m~2/g)、粒径最小(10~20nm)、化学吸附氧和晶格氧最多、甲烷催化燃烧活性最好。
     氨基乙酸燃烧法制备条件的研究表明,氨基乙酸与金属组分的不同配比、焙烧温度、焙烧时间和前驱体溶液pH值等制备条件对La_(0.95)Ce_(0.05)CoO_3催化材料的结构和性能有较大影响。氨基乙酸与金属组分配比量太小不利于形成钙钛矿结构,不利于保持样品的大比表面积和提高催化剂的活性;随着焙烧温度的升高、焙烧时间的延长,La_(0.95)Ce_(0.05)CoO_3催化材料的平均孔径、比表面积和孔容逐渐减小,催化剂的吸附氧和晶格氧活动性逐渐减弱,催化活性下降;前驱体溶液pH=7时金属组分的分散程度较好,有利于形成钙钛矿结构,催化材料的催化活性也较高。
     M(M=Pd、Pt、Ni)负载和掺杂的研究表明,La_(0.95)Ce_(0.05)Co_(0.95)Pd(Pt)_(0.05)O_3和Pd(Pt)/La_(0.95)Ce_(0.05)CoO_3催化剂甲烷催化燃烧反应活性明显高于La_(0.95)Ce_(0.05)CoO_3催化剂;Ni/La_(0.95)Ce_(0.05)CoO_3和La_(0.95)Ce_(0.05)Co_(0.6)O_3催化活性变化不大,可能是因为Ni的负载量和掺杂量较大,样品比表面积有所减小;La_(1-x)Sr_xNi_xCo_(1-x)O_3掺杂量较小时,复合掺杂有利于样品孔结构和大比表面积的形成,有利于改善催化活性,但过量掺杂使较多杂相氧化物微晶析出,从而影响了催化剂的活性。
     稀土和有机燃料与氧化剂的化学计量比((?))的研究表明,不同稀土对Ln_(0.8)Sr_(0.2)CoO_3复合氧化物甲烷催化燃烧的催化活性影响不同,其活性顺序为La_(0.8)Sr_(0.2)CoO_3>Ce_(0.8)Sr_(0.2)CoO_3>Nd_(0.8)Sr_(0.2)CoO_3。A位中的不同稀土导致活性单元BO_6八面体的畸变率不同,其畸变率大小顺序与活性顺序相同。不同有机燃料与氧化剂的化学计量比((?))对La_(08)Sr_(02)CoO_3催化剂性能有一定的影响,在(?)=0.76~1.52内,催化剂的甲烷催化燃烧活性随(?)值的增大而提高,其中(?)=1.52时所制备催化剂的比表面积和晶格畸变率最大、平均晶粒度最小、表面吸附氧和氧空穴处的化学吸附氧更容易移动、表观活化能最低,因此活性最高。
     本文制备的一系列催化材料的甲烷催化燃烧反应符合一级反应的动力学特征,基本遵循Eley-Rideal型的反应机理,不同催化材料的甲烷催化燃烧反应活化能各不相同。
Perovskite mixed oxides have been extensively studied due to its particular physical and chemical properties, but the perovskite mixed oxides prepared via conventional synthesis routes have relatively low specific surface areas, pore volume and show low catalytic activity in the reactions, and its applications were limited. So it is urgent affairs to develop a new method to prepare the kind of perovskites with large specific surface areas(SSA) and high catalytic activity. In this dissertation, the perovskite La_(0.95)Ce_(0.05)CoO_3 mixed oxides were synthesized by solide state reaction method, citric-acid method, glycine method, citric-acid combustion method and glycine combustion method in order to study the effects of preparation methods on specific surface area and catalysts performances. It was discussed the effects of the preparation condition, such as glycine-to-metal ratio, pH value of the precurors solution, calcination temperature and calcination time, on the specific surface area and catalytic activity for methane combustion. La_(0.95)Sr_(0.05)Ni_(0.05)Co_(0.95)O_3 was prepared by citric acid combustion method, and the effects of composite doping on structure, surface patterns, pore size, surface area and pore volume of the catalysts were investigated. Catalytic materials M/La_(0.95)Ce_(0.05)CoO_3 were prepared by metal M(M=Pt, Pd, Ni) supported on the perovskite mixed oxides with large SSA , the effects of loaded M on the structure and properties of the catalysts were discussed. La_(0.95)Ce_(0.05)Co_(0.95)M_(0.05)O_3 were prepared and the effects of doped M on the structure and performances of the catalysts were also discussed, its internal causes were discussed. The effects of rare earths and stoichiometric ratio of organic fuel to oxidizer ((?)) on structure, surface properties and catalytic activities of Ln_(0.8)Sr_(0.2)CoO_3 catalysts were studied.
     All catalysts were used successfully for CH4 combustion. The properties of these catalysts, such as crystal structures, particle sizes, surface patterns, pore sizes, surface areas and pore volumes, were characterized by X-ray diffraction (XRD), electron microscopy (TEM/SEM), thermal analysis (TG-DTA), nitrogen adsorption experiments (BET), (FT-IR Spectrometer) IR, temperature-programmed desorption (TPD) and temperature-programmed reduction (TPR), respectively.
     The experiment results show that all catalysts synthesized by different methods were perovskite-type mixed oxides. Doping Ce~(3+) ions on A sites entered the crystal lattices of LaCoO_3 in the place of La~(3+). At the order of La_(0.95)Ce_(0.05)CoO_3 prepared by solidc state reaction method, citric-acid method, glycine method, citric-acid combustion method and glycine combustion method, oxygen vacancies, mobile lattice oxygen, the porous structures and SSA of the La_(0.95)Ce_(0.05)CoO_3catalysts increase gradually, which enhance the catalytic activity of the catalysts. La_(0.95)Ce_(0.05)CoO_3 prepared by glycine combustion method has higher catalytic activity for methane combustion, whose BET specific surface area and crystallite size were 32.4 m~2/g and10~20 nm, respectively. It can be explained in terms of its more mobile chemical-adsorped oxygen and lattice oxygen.
     Preparation conditions of La_(0.95)Ce_(0.05)CoO_3 catalyst were investigated, the results indicate that the structure and properties of catalyst can remarkably affect by glycine/metal molar ratio, calcined temperature, calcined time and pH value of the precurors solution. The increase of glycine/metal molar ratio is propitious to form perovskite structure, increases the BET specific surface area and improves the the catalytic activity of La_(0.95)Ce_(0.05)CoO_3. The BET specific surface area, pore volue and average pore diameter of La_(0.95)Ce_(0.05)CoO_3 perovskite-type catalyst decrease with the increase of calcined temperature and calcined time, which decrease adsorption oxygen, mobile lattic oxygen and the catalytic activity for methane combustion. When pH value of precurors solution is about 7, the performance of the catalysts is improved.
     The results indicate that M/La_(0.95)Ce_(0.05)CoO_3,La_(0.95)Ce_(0.05)Co_(0.95)M_(0.05)O_3 (M=Pt, Pd) synthesized by the modified glycine combustion method are porous catalysts. BET surface areas are large, which are favorable for their catalytic activities. The activity of M/La_(0.95)Ce_(0.05)CoO_3 is better than that of La_(0.95)Ce_(0.05)Co_(0.95)M_(0.05)O_3(M=Pt, Pd), because Pt, Pd disperse in La_(0.95)Ce_(0.05)CoO_3 surface, which increases the catalytic activities of the catalysts. The activitie of Ni/La_(0.95)Ce_(0.05)CoO_3 and La_(0.95)Ce_(0.05)Co_(0.6)Ni_(0.4)O_3 do not change much compared with La_(0.95)Ce_(0.05)CoO_3. The effects of composite doped Sr ions and Ni ions on the properties of La_(1-x)Sr_xNi_xCo_(1-x)O_3 were investigated. The BET specific surface area can be increase and the catalytic performance of La_(1-x)Sr_xNi_xCo_(1-x)O_3 can be improved when part La ions of A-sites and Co ions of B-sites were replaced by Sr ions and Ni ions, respectivly. When x=0.3 perovskite and other phases coexite, which lead to lower catalytic activity of the catalysts.
     The effects of different rare earths (La, Nd, Ce) on structure and catalytic activities of the catalysts are different , the sequences of catalysts activities are La_(0.8)Sr_(0.2)CoO_3>Ce_(0.8)Sr_(0.2)CoO_3>Nd_(0.8)Sr_(0.2)CoO_3. Rare earths on site A lead to lattice distortion of the CoO_6 octahedral, The activities of the catalysts are relative to the distortion of BO_6 octahedra. With the enlarging of distortion of BO_6, catalytic activity of the catalyst increases. All La_(0.8)Sr_(0.2)CoO_3 mixed oxides with the different coefficient of (?) have perovskite structure, whose structure and catalytic activities alter regularly with the change coefficient of (?). The catalytic activities of La_(0.8)Sr_(0.2)CoO_3 ((?)=0.76-1.52) for CH_4 combustion improve gradually with the increase of (?) When (?) is equal to 1.52, the catalytic activity of La_(0.8)Sr_(0.2)CoO_3 is the best, which can be explained in terms of the smaller of average crystal size, the higher of specific surface area, the bigger of lattice distortion, the lower of activation energy and more mobile chemical-adsorped oxygen and lattice oxygen.
     The reaction mechanism of the catalytic combustion of methane over the prepared catalysts was studied, the results indicate that the reaction of the catalytic combustion of methane accords approximately with features of first order kinetics equation. A probable Eley-Rideal mechanism is considered to interprete the observed kinetic results. The activation energy for the catalytic combustion of methane varies with the catalysts prepared by varied methods.
引文
[1] Jesse D,Maddaloni N, Andrew M. Natural gas exergy recovery powering distributed hydrogen production . International Journal of Hydrogen Energy, 2006, Vol. 71(8) : 280-289.
    
    [2] Civera A. Combustion synthesis of perovskite-type catalysis for nature gas combustion. CatalsisTaday,2003,83,(1-4):199-211.
    
    [3] 李新国,叶早发,汪成斌等.无焰式甲烷催化燃烧动力学研究.中正岭学报,2004,32(5): 1-14.
    
    [4] 王军威,田志坚,徐金光等.甲烷高温燃烧催化剂研究进展.化学进展,2003,15(5): 242-.248
    
    [5] Joanna L, Andrzej K, Jerzy (?), et al. Pd/Pt promoted Co_3O_4 catalysts for VOCs combustion:Preparation of active catalyst on metallic carrier. Catalysis Today, 2005, Vol. 105(8):655-661.
    
    [6] Fullerton D J. Deactivation and regeneration of Pt/γ-alumina and Pt/ceria-aluminacatalysts for methane combustion in the presence of H2S. Catalysis Today, 2003, Vol. 81,(4), 659-671.
    
    [7] Ciuparu D, Pfefferle L. Contributions of lattice oxygen to the overall oxygen balanceduring methane combustion over PdO-based catalysts. Catalysis Today, 2002, Vol. 77, (3),167-179.
    
    [8] Hoyle N D, P Kumarasamy P, Self P V, et al. Catalysis of H_2, CO and alkaneoxidation-combustion over Pt/Silica catalysts: evidence of coupling and promotion.Catalysis Today, 1999,47(1): 45-49.
    
    [9] 冯雪风,罗来涛.负载型Au/CdO CO低温催化氧化性能的研究.江西科学,2003,21(6): 80-83.
    
    [10] 严河清,张甜,王鄂凤等.甲烷催化燃烧催化剂的研究进展.武汉大学学报(理学版), 2005,51(4):161-166.
    
    [11] 蒋政,候红霞,郝郑平等.La促进型六铝酸盐Ba_(1-x)La_xFeAl_(11)O_(19)催化甲烷燃烧性能.物理 化学学报,2004,20(11):1313-1319.
    
    [12] Ryuji K, Yoshiaki T, Kazunari S. et al. High temperature catalytic combustion of methaneand propane over hexaaluminate catalysts.Catalysisn Taday, 2003, 83(10) : 223-231.
    
    [13] Anders Ersson, Katarina Persson, Isaac Kweku Adu, et al. A comparison betweenhexaaluminates and perovskites for catalytic combustion applications .Catalysis Today, 2006,112 (4): 157-160.
    
    [14] Tsao-FaYeh, Jia-Lin Bi, Hsin-Gwo Lee, et al. Phase transformation and catalytic activity ofhexaaluminates upon high temperature pretreatment.Journal of Alloys and Compounds,2006,98(2):332-345.
    
    [15] Junwei Wang, Zhijian Tian, Jinguang Xu.Preparation of Mn substituted La-hexaaluminatecatalysts by using supercritical drying.Catalysis Today, 2003,83(4): 213-222.
    
    [16] Toshimasa Utaka, Saud Abdulaziz Al-Drees, Jun Ueda. Partial oxidation of methane over Nicatalysts based on hexaaliminate- or perovskite-type oxides.Applied Catalysis A: General,2003, 247(1): 125-131.
    
    [17] Ryuji Kikuchi, Kazuhiko Takeda, Koshi Sekizawa,Thick-film coating of hexaaluminatecatalyst on ceramic substrates and its catalytic activity for high-temperature methanecombustion. Applied Catalysis A: General, 2001(9): 101-111.
    
    [18] Sung June Cho, Yong Seog Seo, Kwang Sup Song. Surfactant-mediated synthesis of metalsubstituted hexaaluminate from alumina sol Applied Catalysis B: Environmental, 2001, 30(3):351-357.
    
    [19] P. Artizzu-Duart, J. M. Millet, N. Guilhaume, E. Catalytic combustion of methane onsubstituted barium hexaaluminates .Catalysis Today, 2000,59(6): 163-177.
    
    [20] G Groppi, A Belloli E, Tronconi.Catalytic combustion of CO-H_2 on Manganese-substituted hexaaluminates Catalysis Today, 1996, 29(5): 403-407.
    
    [21] 陈春霞.钙钛矿锰氧化物中电荷有序现象研究进展[J].无机材料学报,2005,20(1): 1-6.
    
    [22] 戴洪兴,何洪,李佩衍等.稀土钙钛矿型氧化物催化剂的研究进展[J].中国稀土学报, 2003,21(12):1-14.
    
    [23] Narj(?)s Harrouch Batis, Pierre Delichere and Habib Batis.Physicochemical and catalytic properties in methane combustion of La_(1-x)Ca_xMnO_(3±y) (0≤x≤1; -0.04≤y≤0.24) perovskite-type oxide . Applied Catalysis A: General, 2005, 282(3): 173-180.
    
    [24] 胡勇,吴元欣,吴广文,池汝安,杨小俊.柠檬酸络合法微波烧结制备复合氧化物 La_(1-x)Pb_xMnO_3.稀土,2006,2:50-55.
    
    [25] Stefania S, Andred C. Guido S.In situ combustion synthesis of perovskite cstalysts forefficient and clean methane premixed metal burners[J].Chemical Engineering Science, 2004,59 (10):5091-5098.
    
    [26] Heondo Jeong, Taehwan Kim, Dongsik Kim.Hydrogen production by the photocatalyticoverall water splitting on NtO/Sr_3Ti_2O_7: Effect of preparation method .International Journal ofHydrogen Energy, 2006, 31(8): 1142-1146.
    
    [27] Vasant R. Choudhary and Kartick C. Mondal CO_2 reforming of methane combined withsteam reforming or partial oxidation of methane to syngas over NdCoO_3 perovskite-typemixed metal-oxide catalyst .Applied Energy, 2006, 83(9): 1024-1032.
    
    [28] E.V. Tsipis, J.C. Waerenborgh, V Kharton, E N. Defect formation and transport inmixed-conducting La_(0.90)Sr_(0.10)Al_(0.85)Mg_(0.15)O_(3-δ). Journal of Physics and Chemistry of Solids,2006,67(8): 1882-1887.
    
    [29] Hongxing Dai, Hong He, Peiheng Li, Lizhen Gao and Chak-Tong Au .The relationship ofstructural defect-redox property-catalytic performance of perovskites and their relatedcompounds for CO and NO_X removal .Catalysis Today, 2004, 90(7): 231-244.
    
    [30] 吴跃辉,罗来涛.铈在汽车尾气净化催化剂中的应用[J].江西科学,2006.24(2):200-204.
    
    [31] Shinichi H,Hiroyasu I.Study on the structural and electrical properties of Sr_(1-x)Ce_xMnO.,perovskite-type oxide[J].2000,35 (11):2253-2262.
    
    [32] Belessi V C, Bakas T V, Costa C N, et al.. Synergistic effects of crystal phases and mixed valences in La-Sr-Ce-Fe-O mixed oxidic/perovskitic solids on their catalytic activity for the NO+CO reaction [J]. Applied Catalysis B: Environmental,2000,28(9): 13-28.
    
    [33] Kwang-Sup S, Hao Xing Cui, Sang Don Kim, et al.. Catalytic combustion of CH_4 and CO on La_(1-x)M_xMnO_3 perovskites[J]. Catalysis Today, 1999,47(1): 155-160.
    
    [34] 徐科,严洁.钙钛矿型稀土纳米复合氧化物制备及应用的研究进展[J].贵州大学学报(自 然科学版)2003,20(11):421-425.
    
    [35] Forni L, Oliva C, Vatti F P, et al.. La---Ce---Co perovskites as catalysts for exhaust gas depollution [J]. Applied Catalysis B: Environmental,1996,7(1):269-284.
    
    [36] Tsuchiya B, Morono A, Hodgson E R, et al.. Electron-induced luminescence of SrCeo.95Ybo.05O.ws [J]. Journal of Luminescence, 2005, 112 (4):75-79.
    
    [37] 崔梅生,李明来,张顺利等.钙钛矿催化材料La_(1-x)Ce_xCoO_(3+δ)的制备、表征及甲烷燃烧 催化性质[J].中国有色金属学报,2004,14(9):1580-1584.
    
    [38] Yoshii K, Abse H, Tsutsui S,et al..Structure,magnetism and transport of Ln_(1-x)TiO_3 (Ln=Ceand Pr) [J].Journal of Magnetism and Materials,2001,226(5):900-901.
    
    [39] Ullmann H,Trofimenko N,Tietz F, et al. .Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxide for SOFC cathodes[J].Solid State,2000,138(12):79-90.
    
    [40] Sandra w, Jamal B,Laurence M A. new bicomponent catalyst for NO_X reduction in oxygen-rich atmosphere[J].Comptes Rendus de 1' Academie des Science-Series ⅡC-Chemistry,2000,3 (9):443-450.
    
    [41] Kenichirou U,Yasuyoshi S,Yoshio M. Structure and magnetic property of Ce_(1-x)Eu_xCoO_3 prepared by means of the thermal decomposition of Ce_(1-x)Eu_x[Co(CN)_6]·nH_2O [J].ThermochimicaActa,2005,431(6):117-122.
    
    [42] D. Berger, V. Fruth, I. Jitaru and J. SchoonmanSynthesis and characterisation ofLa_(1-x)Sr_xCoO_3 with large surface area .Materials Letters, 2004, 58(19):2418-2422.
    
    [43] Ching-Huei Wang, Chun-Liang Chen and Hung-Shan Weng .Surface properties and catalytic performance of La_(1-x)Sr_xFeO_3 perovskite-type oxides for methane combustion .Chemosphere, 2004,57(9): 1131-1138.
    
    [44] Xinshu Niu, Honghua Li and Guoguang Liu. Preparation, characterization and photocatalytic properties of REFeO_3 (RE = Sm, Eu, Gd) Journal of Molecular Catalysis A: Chemical, 2005, 232(5):89-93.
    
    [45] Nora A. Merino, Bibiana P. Barbero, Paul Grange and Luis E. Cad(?)sLa_(1-x)Ca_xCoO_3 perovskite-type oxides: preparation, characterisation, stability, and catalytic potentiality for the total oxidation of propane Journal of Catalysis, 2005, 231(4): 232-244.
    
    [46] S. Petrovi(?), V. Raki(?), D.M. Jovanovi(?) and A.T. Oxidation of CO over Ru containing perovskite type oxides .Applied Catalysis B: Environmental, 2006,66(7):249-257.
    [47] A. A. Leontiou, A. K. Ladavos, G. S. Armatas, P. N. Trikalitis and P. J. Pomonis. Kinetics investigation of NO + CO reaction on La-Sr-Mn-O perovskite-type mixed oxides .Applied Catalysis A: General, 2004, 263(6):227-239.
    [48] S. Cimino, L. Lisi, S. De Rossi, M. Faticanti and P. Porta.Methane combustion and CO oxidation on LaAl_(1-x)Mn_xO_3 perovskite-type oxide solid solutions .Applied Catalysis B: Environmental, 2003,43(7):397-406.
    [49] Teotone Vaz and A.V. Salker.Preparation,characterization and catalytic CO oxidation studies on LaNi_(1-x)Co_xO_3 system.Materials Science and Engineering: B,2007,143 (10): 81-84.
    [50] P. Ciambelli, S. Cimino, G. Lasorella, L. Lisi, S. De Rossi, M. Faticanti, G. Minelli and P. Porta.CO oxidation and methane combustion on LaAl_(1-x)Fe_xO_3 perovskite solid solutions. Applied Catalysis B: Environmental, 2002, 37(6):231-241.
    
    [51] Zhang-Steenwinkel Y, Beckers J, Bliek A. Surface properties and catalytic performance in CO oxidation of cerium substituted lanthanum-manganese oxides[J]. Applied Catalysis A: General, 2002,235(8): 79-92.
    [52] Alifanti M, Auer R, Kirchnerova J,et al.. Activity in methane combustion and sensitivity to sulfur poisoning of La_(1-x)Ce_xMn_(1-y)Co_yO_3 perovskite oxides [J]. Applied Catalysis B: Environmental, 2003,41 (3) .71-81. [53] Belessi V C, Ladavos A K, Pomonis P J. Methane combustion on La—Sr—Ce—Fe—O mixed oxides: bifunctional synergistic action of SrFeO_(3-x) and CeO_x phases [J]. Applied Catalysis B: Environmental, 2001, 31(5):183-194.
    [54] Ralf Schneider, Dieter Kiessling, Gerhard Wendt, Wolfgang Burckhardt and Georg Winterstein. Perovskite-type oxide monolithic catalysts for combustion of chlorinated hydrocarbons .Catalysis Today, 1999,47(1): 429-435.
    [55] Robert Auer and Fernand C. Thyrion Kinetics of the Total Oxidation of Methane over a La0.9Ce0.1CoO3 Perovskite Catalyst Ind. Eng. Chem. Res., 41 (4), 680 -690, 2002.
    [56] H. Yugami, H. Naito and H. Arashi. Fabrication of SrMO_3 (M = Ce and Zr) thin films and SrCeO_3/SrZrO_3 superlattices by laser ablation .Applied Surface Science, 1997(4): 222-226 .
    [57] C. Monterrubio-Badillo, H. Ageorges, T. Chartier, J.F. Coudert and P. Fauchais. Preparation of LaMnO_3 perovskite thin films by suspension plasma spraying for SOFC cathodes .Surface and Coatings Technology, 2006, 200(3):3743-3756.
    [58] A. Weidenkaff, C. Diecker, T. Lippert and M. J. Montenegro .Nucleation and growth of epitaxial La_(1-x)Ca_xCoO_(3-δ) films on single crystalline substrates by pulsed reactive crossed-beam laser ablation .Thin Solid Films, 2004(4): 406-410.
    [59] W. B. Wu, K. H. Wong, C. L. Choy and Y. H. Zhang .In situ oxygen control and high thermal stability of epitaxial (La_(1-x)Nd_x)_(0.7)Sr_(0.3)MnO_3 films fabricated by pulsed laser deposition .Thin Solid Films, 2001, 389(6):56-61.
    [60] Tao Yu, Yan-Feng Chen, Zhi-Guo Liu, Nai-Ben Ming and Xiao-Shan Wu. Epitaxial growth of dielectric SrTiO_3 thin films by pulsed laser deposition .Applied Surface Science, 1999,??138-139(1):605-608.
    
    [61] Hailuii Wang, You Cong and Weishen Yang. Partial oxidation of ethane to syngas in anoxygen-permeable membrane reactor Journal of Membrane Science, 2000,209(11): 143-152.
    
    [62] H. X. Dai, C. T. Au, Y. Chan, K. C. Hui and Y. L. Leung. Halide-doped perovskite-typeAMn_(1-x)Cu_xO_(3-δ)(A = La_(0.8)Ba_(0.2)) catalysts for ethane-selective oxidation to ethene.AppliedCatalysis A: General,2001, 213(5):91-102.
    
    [63] H. X. Dai, C. F. Ng and C. T. Au. YBa_2Cu_3O_(7-δ)X_σ(X=F and Cl): Highly Active and DurableCatalysts for the Selective Oxidation of Ethane to Ethene.Journal of Catalysis, 2000, 193(7):65-79.
    
    [64] H. X. Dai, C. F. Ng and C. T. Au.Perovskite-Type Halo-oxide La_(1-x)Sr_xFeO_(3-δ)X_σ(X=F, Cl)Catalysts Selective for the Oxidation of Ethane to Ethene.Journal of Catalysis, 2000,189(1):52-62.
    
    [65] Nora A. Merino, Bibiana P. Barbero, Patricio Ruiz and Luis E. Cad(?)s Synthesis,characterisation, catalytic activity and structural stability of LaCo_(1-y)Fe_yO_(3±λ) perovskitecatalysts for combustion of ethanol and propane Journal of Catalysis, 2006, 240(6):245-257.
    
    [66] Bibiana P. Barbero, Julio Andrade Gamboa and Luis E. Cad(?)s. Synthesis and characterisationof La_(1-x)Ca_xFeO_3 perovskite-type oxide catalysts for total oxidation of volatile organiccompounds .Applied Catalysis B: Environmental, 2006, 65(5):21-30.
    
    [67] Fl(?)vi(?) C.C. Moura, Juliana C. Trist(?)o, Rochel M. Lago and Richard Martel.LaFe_xMo_yMn_zO_3perovskite as catalyst precursors for the CVD synthesis of carbon nanotubes.CatalysisToday, 2008, 133(4): 846-854.
    
    [68] Teiji Nakamura, Makoto Misono and Yukio Yoneda .Reduction-oxidation and catalyticproperties of La_(1-x)Sr_xCoO_3. Journal of Catalysis, 1983, 83(9):151-159.
    
    [69] Yanping Wang, Xujie Yang, Lude Lu and Xin Wang. Experimental study on preparation ofLaMO_3 (M = Fe, Co, Ni) nanocrystals and their catalytic activity .Thermochimica Acta, 2006,443(4): 225-230.
    
    [70] 王海燕.低温燃烧法制备La_(1-x)Cs_xFeO_3复合氧化物及其贫燃条件下对NO催化净化的活 性与机理影响.黑龙江大学自然科学学报,2005,01:19-26.
    
    [71] 林佳祥;周秀霞;蔡跃鹏.钙钛矿型稀土纳米复合氧化物的制备与应用[J].中国粉体工 业,:35-42.
    
    [72] F.H.Ggarzon,R.Mukundan.Solid state ionic devices for combustion gas sensing. Solid StateIonics,2004,76,(1-4):257-271.
    
    [73] Juan N.Environmental catalysis.Applied Catalysis B: Environmental. 1992(4): 221-255.
    
    [74] Junjiang Zhu, Dehai Xiao, Jing Li, Xiangguang Yang and Yue Wu .Kinetics and mechanismof NO decomposition over La_(0.4)Sr_(0.6)Mn_(0.8)Ni_(0.2)O_3 perovskite-type oxides. Journal ofMolecular Catalysis A: Chemical, 2005, 236(7): 182-186.
    
    [75] 郑育英,邓淑华,黄惠民.汽下尾气净化催化剂中的研究进展[J].化工时刊,2004,18??(2):28-32.
    
    [76] 李丽,袁福龙,付宏刚等.La_(1-x)Ce_xFe_(1-y-n)Co_yRu_nO_3三效催化剂的结构表征及催化剂性能 [J].高等学校化学学报,2004,25(9):1679-1683.
    
    [77] 张国,李丽,田国辉等,铈调变锰基钙钛矿化合物的制备及性能研究[J].黑龙江大学自 然科学学报,2004,21(9):120-126.
    
    [78] Jianfeng G, Xingqin L, Dingkun P, et al.. Electrochemical behavior ofLn_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(Ln=Ce, Gd, Sm, Dy) materials used as cathode of IT-SOFC[J].Catalysis Today, 2003, 82 (7) : 207-211.
    
    [79] Kharton V V, Viskup A P, Marozau I P, et al. . Oxygen permeability of perovskite-typeSr_(0.7)Ce_(0.3)MnO_(3-δ) [J]. Materials Letters,2003,57 (6) : 3017-3021.
    
    [80]Melo Jorge M E, Nunes M R, Silva M R, et al. .Metal-Insulator Transition Induced by CeDoping in CaMnO_3 [J]. Chemical Material, 2005, 17(8):2069-2075.
    
    [81] K.X. Jin, C.L. Chen, S.G. Zhao and Z.M. Song.Photo-induced conductivity inLa_(2/3)(Ca_(1-x)Sr_x)_(1/3)MnO_3 (x = 0, 1/3, 2/3) films.Materials Science and Engineering: B, 2006,l27(2):285-288.
    
    [82] Yasuhiro Yamada and Koichiro Tanaka.Photo-induced suppression of ferroelectric transitionin oxygen-isotope-exchanged SrTiO_3 .Journal of Luminescence, 2005, 112(4):259-262.
    
    [83] T. Ogasawara, T. Kise, T. Ishikawa, M. Kuwata-Gonokami and Y. Tokura.Photo-destructionof charge/orbital order in layered perovskite manganite: La_(0.5)Sr_(0.5)MnO_3 Journal ofLuminescence, 2000, 87-89(5):639-641.
    
    [84] Takuma Katayama, Masashi Fujimoto, Masaru Shimizu and TadashiShiosaki.Photo-MOCVD of PbTiO_3 thin films.Journal of Crystal Growth, 1991,115(12):289-293.
    
    [85] W. L. Warren and D. Dimos.Photo-assisted switching and trapping in BaTiO_3 and Pb(Zr,Ti)O_3 ferroelectrics.Journal of Non-Crystalline Solids, 1995, 187(7): 448-452.
    
    [86] Narottam P. Bansal and Zhimin Zhong Combustion synthesis of Sm_(0.5)Sr_(0.5)CoO_(3-x) andLa_(0.6)Sr_(0.4)CoO_(3-x) nanopowders for solid oxide fuel cell cathodes.Journal of Power Sources,2006, 158(7): 148-153.
    
    [87] S. Ekambaram. Solution combustion synthesis and luminescent properties of perovskite redphosphors with higher CRI and greater lumen output. Journal of Alloys and Compounds, 2005,390(3):7-9.
    
    [88] S. M. Zanetti, E. I. Santiago, L. O. S. Bulh(?)es, J. A. Varela, E. R. Leite and E.Longo.Preparation and characterization of nanosized SrBi_2Nb_2O_9 powder by the combustionsynthesis.Materials Letters, 2003, 57(6):2812-2816.
    
    [89] Xiaosheng Peng, He Lin, Wenfeng Shangguan, Zhen Huang.A highly efficient and porous catalyst for simultaneous removal of NO_X and diesel soot. Catalysis Communications (2007):157-161.
    
    [90] A. Magras(?) , A. Calleja , X. G. Capdevila and F. Espiell Synthesis of Gd-doped BaPrO_3nanopowders.Solid State Ionics, 2004,166(3):359-364.
    
    [91] Rong Wu, Piyi Du, Wenjian Weng and Gaorong Han The structures and dielectric properties of Ba_(0.80)Sr_(0.20)TiO_3/Pb_(0.82)La_(0.18)TiO_3 composite thick films with addition of PbO-B_2O_3 glass Journal of the European Ceramic Society, 2006, 26(9):1611-1617.
    
    [92] Y. L. Chai, D. T. Ray, G. J. Chen and Y. H. ChangSynthesis of La_(0.8)Sr_(0.2)Co_(0.5)Ni_(0.5)O_(3-δ) thin films for high sensitivity CO sensing material using the Pechini process Journal of Alloys and Compounds, 2002, 333(2):147-153 .
    
    [93] Abdel Salam Hamdy and D.P. ButtEnvironmentally compliant silica conversion coatings prepared by sol-gel method for aluminum alloys .Surface and Coatings Technology, 2006, 201(9):401-407.
    
    [94] 于洪浩,高文元,孙俊才.La_(0.7)Sr_(0.3-x)Ca_xCo_(0.9)Fe_(0.1)O_3柠檬酸盐法制备和性能.稀土 2005,26(8):1-5.
    
    [95] Dan Xie and Wei Pan Study on BaBi_4Ti_4O_(15) nanoscaled powders prepared by sol-gelmethod .Materials Letters, 2003, 57(6):2970-2974.
    
    [96] Reji Thomas, Shoichi Mochizuki, Toshiyuki Mihara and Tadashi Ishida Preparation offerroelectric Pb(Zr_(0.5)Ti_(0.5))O_3 thin films by sol-gel process: dielectric and ferroelectricproperties.Materials Letters, 2003, 57(4):2007-2014.
    
    [97] R.D. Armstrong Diagnostic criteria for distinguishing between the dissolution-precipitationand the solid state mechanisms of passivation.Corrosion Science, 1971, 11(10):693-697.
    
    [98] C. Alvani, L. Bruzzi, S. Casadio, V. Rondinella, A. Tucci and E. H. Toscano .Preparation ofLi_2ZrO_3 by powder reaction and hydrolysis of metal alkoxides.Journal of the EuropeanCeramic Society, 1989, 5(5): 295-302.
    
    [99] 夏长荣,许大刚.高建峰等.多孔La_(1-x)Sr_xMnO_3的制备及表征.功能材料,2001,32(3): 269-271.
    
    [100] L. B. Kong, J. Ma and R. F. Zhang Possibility of one-step approach to 0.7PZN-0.3BTmultiple ceramics from component constituent oxides .Materials Letters, 2002, 53(3):205-210.
    
    [101] M. Shi, N. Liu, Y.D. Xu, C. Wang, Y.P. Yuan, P. Majewski and F. Aldinger Preparation ofelectrolyte foils La_(0.85)Sr_(0.15)Ga_(0.85)Mg_(0.15)O_(2.85) (LSGM) by means of tape casting Journal ofMaterials Processing Technology, 2005,169(11):179-183.
    
    [102] Feng Li, Hegen Zheng, Dianzhen Jia, Xinquan Xin and Ziling Xue Syntheses ofperovskite-type composite oxides nanocrystals by solid-state reactions. Materials Letters,2002, 53(4):282-286.
    
    [103] Liyan Wu, Xiaoyan Mei and Wenjun ZhengHydrothermal synthesis and characterization ofdouble perovskite Ba_2YSbO_6.Materials Letters, 2006,60(19): 2326-2330.
    
    [104] J.Q. Li, W.A. Sun, W.Q. Ao and J.N. TangHydrothermal synthesis and Magnetocaloriceffect of La_(0.5)Ca_(0.3)Sr_(0.2)MnO_3 Journal of Magnetism and Magnetic Materials, 2006,302(7):463-466.
    
    [105] W.A. Sun, J.Q. Li, W.Q. Ao, J.N. Tang and X.Z. Gong Hydrothermal synthesis andmagnetocaloric effect of La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3 .Powder Technology, 2006,166(8):77-80.
    
    [106] F. Lichtenberg, A. Herrnberger, K. Wiedenmann and J. Mannhart Synthesis of??perovskite-related layered A_nB_nO_(3n+2)=ABO_X type niobates and titanates and study of theirstructural, electric and magnetic properties .Progress in Solid State Chemistry, 2001,29(1): 1-70.
    
    [107] T. R. N. Kutty and R. Vivekanadan BaSnO_3 fine powders from hydrothermal preparations .Materials Research Bulletin, 1987, 22(11): 1457-1465.
    
    [108] Lihong Xue, Qiang Li, Yiling Zhang, Xihe Zhen, Rui Liu and Lin Wang. Microstructure anddielectric properties of PLZST ceramics prepared by a modified coprecipitation.MaterialsScience and Engineering: B, 2006, 132(8):253-257.
    
    [109] Ping-Hua Xiang, Yoshiaki Kinemuchi, Takaaki Nagaoka and Koji Watari. Sinteringbehaviors of bismuth titanate synthesized by a coprecipitation method .Materials Letters, 2005,59(12):3590-3594.
    
    [110] Masahiro Yasukawa, Akane Ioroi, Kaoru Ikeuchi and Toshio Kono. Thermoelectricproperties of La-doped SrPbO_3 ceramics prepared by coprecipitation method .MaterialsLetters, 2004, 58(11):3536-3539.
    
    [111] Cui Xiulan and Liu YuanNew methods to prepare ultrafine particles of some perovskite-typeoxides .Chemical Engineering Journal, 2000, 78(8):205-209.
    
    [112] K. J. Stanly, I. Packia Selvam and V. KumarPrecipitation of fine powders of PbTiO_3 derivedfrom organometallic solution .Materials Letters, 1999,40(8): 118-123.
    
    [113] A. Erbil, W. Braun and B. S. KwakB. J. WilkensL. A. Boatner and J. D. Budai .Oxideferroelectric materials grown by metalorganic chemical vapor deposition.Journal of CrystalGrowth, 1992,124(11):684-689.
    
    [114] H. B. Wang, G. Y. Meng and D. K. Peng Aerosol and plasma assisted chemical vapordeposition process for multi-component oxide La_(0.8)Sr_(0.2)MnO_3 thin film .Thin Solid Films,2000, 368(6):275-278.
    
    [115] Sung-Woong Chung, Su-Ock Chung, Kwangsoo No and Won-Jong Lee Crystallinestructures of the PbTiO_3 films prepared using the ECR PECVD method .Thin Solid Films,1997,295(2):299-304.
    
    [116] Robert J. Bell, Graeme J. Millar and John Drennan Influence of synthesis route on thecatalytic properties of La_(1-x)Sr_xMnO_3 .Solid State Ionics, 2000, 131(6):211-220.
    
    [117] Yi Yang, Kyekyoon Kim and Hyungsoo Choi Fabrication of perovskite-basedPb(Zn_(1/3)Nb_(2/3))O_3 (PZN) thin films using charged liquid cluster beam/Thin Solid Films, 2001,396(9):97-102 .
    
    [118] F. Javier Escudero Sanz, Jean Fran(?)ois Lahitte and Jean-Christophe Remigy .Membranesynthesis by microemulsion polymerisation stabilised by commercial non-ionic . surfactants .Desalination, 2006, 199(11):127-129.
    
    [119] M. A. L(?)pez-Quintela, C. Tojo, M. C. Blanco, L. Garcia Rio and J. R. Leis. Microemulsiondynamics and reactions in microemulsions .Current Opinion in Colloid & Interface Science,2004,9(11):264-278.
    
    [120] Chung-Hsin Lu and Susanta Kumar Saha Synthesis of ultrafine strontium bismuth tantalate??powder by colloid-emulsion technique .Materials Letters, 2000, 42(3): 150-154.
    
    [121] Xiaoming Yang and T.K. Chaki Hollow lead zirconate titanate microspheres prepared bysol-gel/emulsion technique .Materials Science and Engineering B, 1996, 39(2): 123-128 .
    
    [122] Emerson R. Camargo, Elson Longo, Edson R. Leite and V.R.Valmor R. Mastelaro. Phaseevolution of lead titanate from its amorphous precursor synthesized by the OPM wet-chemicalroute Journal of Solid State Chemistry, 2004, 177(6): 1994-2001.
    
    [123] P.K. Panda and B. Sahoo Preparation of pyrochlore-free PMN powder by semi-wetchemical route .Materials Chemistry and Physics, 2005,93(9): 231-236.
    
    [124] 揭雪飞,林维明,董新法.催化电极材料La-Sr-Co-Fe的制备与表征.电源技术,2003, 27(12): 15-19.
    
    [125] Sung Hwa Jhung, Jin-Ho Lee, Ji Woong Yoon, Young Kyu Hwang, Jin-Soo Hwang, Effectsof reaction conditions in microwave synthesis of nanocrystalline barium titanate .MaterialsLetters, 2004, 58(25):3161-3165.
    
    [126] A. Calleja, M. Segarra, I. G. Serradilla, X. G. Capdevila, A. I. Fernandez and F.Espiell .Exploring the polyvinyl alcohol method for preparing cuprates andmanganites Journal of the European Ceramic Society, 2003, 23(9): 1369-1373.
    
    [127] Nobuyuki Kondo, Hiroyuki Itoh, Masato Kurihara, Masatomi Sakamoto, Hiromichi Aonoand Yoshihiko Sadaoka. New high-yield preparation procedure of Ln[Fe(CN)_6]@@@@@@@@@@nH_2O(Ln = La, Gd, and Lu) and their thermal decomposition into perovskite-type oxides Journal ofAlloys and Compounds, 2006,408-412(2):1026-1029.
    
    [128] Zhang Gaoke, Liu Ying, Yang Xia, Wei Yanping, Ouyang Shixi and Liu Hangxing.Comparison of synthesis methods, crystal structure and characterization of strontium cobaltitepowders .Materials Chemistry and Physics, 2006, 99(1):88-95.
    
    [129] Zongying Cai, Xianran Xing, Ranbo Yu, Guirong Liu and Qifeng Xing. Large-scalesynthesis of Pb_(1-x)La_xTiO_3 ceramic powders by molten salt method Journal of Alloys andCompounds, 2006,420(8):273-277.
    
    [130] A.Z. Sim5es, M.A. Ramirez, A. Ries, F. Wang, E. Longo and J.A. Varela .Microwavesynthesis of calcium bismuth niobate thin films obtained by the polymeric precursormethod .Materials Research Bulletin, 2006,41(8):1461-1467.
    
    [131] C. Shivakumara. Low temperature synthesis and characterization of rare earth orthoferritesLnFeO_3 (Ln=La, Pr and Nd) from molten NaOH flux.Solid State Communications, 2006,139(4):165-169.
    
    [132] Haihui Wang, Thomas Schiestel, Cristina Tablet, Michael Schroeder and J(u|¨)rgen CaroMixed oxygen ion and electron conducting hollow fiber membranes for oxygenseparation .Solid State Ionics, 2006,142(7):90-108.
    
    [133] Cheng-Yun Fu, Chin-Liang Chang, Ching-Shiung Hsu and Bing-Hwai Electrostatic spraydeposition of La_(0.8)Sr_(0.2)Co_(0.2)Fe_(0.8)O_3 films .Materials Chemistry and Physics, 2005,91(5):28-35.
    
    [134] A. Yoshikawa, H. Ogino, J. B. Shim, M. Nikl, N. Solovieva and T. Fukuda. Growth and??luminescent properties of Yb~(3+)-doped oxide single crystals for scintillator .application Radiation Measurements, 2004, 38(8):467-470.
    
    [135] Leszek Wachowski .Influence of the method of preparation on the porous structure ofperovskite oxides .Surface and Coatings Technology, 1986,29(12):303-311.
    
    [136] J. Lambert Bates, Larry A. Chick and W. J. Weber. Synthesis, air sintering and properties of lanthanum and yttrium chromites and manganites. Solid State Ionics, May 1992,52 (5): 235-242.
    
    [137] G.L. Chiarello, I. Rossetti, L. Forni, P. Lopinto and G. Migliavacca. Solvent nature effect in preparation of perovskites by flame pyrolysis: 2. Alcohols and alcohols + propionic acid mixtures.Applied Catalysis B: Environmental,2007, 72 (3): 227-232.
    
    [138] Jinhua Piao, Kening Sun, Naiqing Zhang, Xinbing Chen, Shen Xu and Derui Zhou. Preparation and characterization of Pr_(1-x)Sr_xFeO_3 cathode material for intermediate temperature solid oxide fuel cells.Journal of Power Sources,2007, 172 (10):633-640.
    
    [139] J. J. Kingsley and L. R. Pederson. Combustion synthesis of perovskite LnCrO_3 powdersusing ammonium dichromate.Materials Letters, 1993, 18(11):89-96.
    
    [140] Yanping Wang, Junwu Zhu, Lili Zhang, Xujie Yang, Lude Lu and Xin Wang. Preparation and characterization of perovskite LaFeO_3 nanocrystals.Materials Letters, June 2006,60(6): 1767-1770.
    
    [141] Vadim G. Kessler, Gulaim A. Seisenbaeva and Suresh Gohil. Molecular structure design of single source precursors and multivariate analysis of their evaporation in dynamic vacuum using El-Mass spectrometry. An approach to Barium-Strontium Titanate-Niobate as a case study.Surface and Coatings Technoiogy,2007,201 (9): 9082-9088.
    
    [142] Gustavo Valderrama, A. Kiennemann and M.R. Goldwasser.Dry reforming of CH_4 oversolid solutions of LaNi_(1-x)Co_xO_3.Catalysis Today, 2008, 133(4):142-148.
    
    [143] L. Fabbrini, I. Rossetti and L. Forni .La_2O_3 as primer for supporting La_(0.9)Ce_(0.1)CoO_3 oncordieritic honeycombs.Applied Catalysis B: 2005, 56(3): 221-227.
    
    [144] Snezana B. Bo(?)kovi(?), Branko Z. Matovic, Milan D. Vlaji(?) and Vladimir D. Kristi(?).Modified glycine nitrate procedure (MGNP) for the synthesis of SOFC nanopowders.Ceramics International,2007,33(1):89-93.
    
    [145] 上官荣昌,葛欣,张惠良.铈钼氧化物表面氧性质和催化性能[J],物理化学学报 1999,15(6):568-572.
    
    [146] Kharas K C C, Lunsford J H. Catalytic Partal Oxidation of Methane Over BaPbO_3 Possible Involvement of Peroxide lon [J], Journal of the American Chemical, 1989, 111: 2334 -2337.
    
    [147] Ligong Cong, Tianmin He, Yuan Ji, Pengfei Guan, Yinglong Huang and Wenhui Su.Synthesis and characterization of IT-electrolyte with perovskite structure La_(0.8)Sr_(0.2)Ga_(0.85)Mg_(0.15)O_(3-δ) by glycine-nitrate combustion method.Journal of Alloys and Compounds,2003, 348(1):325-331.
    
    [148] Shaomin Liu, Xiaoyao Tan, K. Li and R. Hughes. Synthesis of strontium cerates-basedperovskite ceramics via water-soluble complex precursor routes.Ceramics International,2002, 28(3):327-335.
    
    [149] Zhong-Qing Tian, Hong-Tao Yu and Zhen-Lin Wang. Combustion synthesis andcharacterization of nanocrystalline LaAlO_3 powders.Materials Chemistry and Physics,2007,106(11):126-129.
    
    [150] Bangwu Liu and Yue Zhang. Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_3 nanopowders prepared by glycinenitrate process for solid oxide fuel cell cathode.Journal of Alloys and Compounds, 2008,453(4): 418-422.
    
    [151] M. Liu, R. Wang, D.F. Li and D.T. Liang.A novel combustion route for the preparation ofperovskite-type oxygen permeable materials.Materials Chemistry and Physics, 2007,102(4):132-139.
    
    [152] Liu Ronghui, Du Qingshan, Ma Wenhui, Wang Hua, Yang Bin, Dai Yongnian and Ma Xueju.Preparation and Characterization of Component Materials for Intermediate TemperatureSolid Oxide Fuel Cell by Glycine-Nitrate Process.Journal of Rare Earths, 2006, 24(10):98-103.
    
    [153] J.R.安德森,K.C.普拉特.催化剂表征与测试[M].北京:烃加工出版社,1989.101- 120,125-133.
    
    [154] 严继明,张启元.吸附与凝聚[M].北京:科学出版社,1979.91-130.
    
    [155] 罗勇悦.硕士论文,实用钻基甲烷燃烧催化剂的制备与性能.2004:32-45.
    
    [156] 张详鲮,康衡.配位化学.中南工业大学出版社,1986,7:103-125.
    
    [157] 吴跃辉等.复合掺杂钙钛矿氧化物催化剂的制备方法.石油与天然气化 工,2007,2:101-105.
    
    [158] T. Hirano, H. Purwanto, T. Watanabe and T. Akiyama.Self-propagating high-temperaturesynthesis of Sr-doped LaMnO_3 perovskite as oxidation catalyst. Journal of Alloys andCompounds, 2007,441(8): 263-266.
    
    [159] Nitin K. Labhsetwar, A. Watanabe, T. Mitsuhashi and H. Haneda.Thermally stableruthenium-based catalyst for methane combustion Journal of Molecular. Catalysis A:Chemical,2004, 223(12): 217-223.
    
    [160] Udayshankar G. Singh, Jun Li, Joseph W. Bennett, Andrew M. Rappe, Ram Seshadri andSusannah L. Scott .A Pd-doped perovskite catalyst, BaCe_(1-x)Pd_xO_(3-δ), for COoxidation.Journal of Catalysis, 2007, 249(7): 349-358.
    
    [161] D. Fino, N. Russo, G. Saracco and V. Specchia.Supported Pd-perovskite catalyst for CNGengines' exhaust gas treatment.Progress in Solid State Chemistry, 2007, 35(3):501-511.
    
    [162] Hirohisa Tanaka, Mari Uenishi, Masashi T(?)niguchi, Isao Tan,,et.The intelligent catalysthaving the self-regenerative function of Pd, Rh and Pt for automotive emissionscontrol.Catalysis Today, 2006, 117(9):321-328
    
    [163] B. Ea Kim, F. Varni&e, B. Agius and R. Bisaro. Pt ELECTRODE INVESTIGATION ANDELECTRICAL PROPERTIES OF RF MAGNETRON SPUTTERED Pb(Zr,Ti)O_3.??Microelectronic Engineering, 1995,(29):231-234.
    
    [164] Genira Carneiro de Araujo, Sania Lima, Maria do Carmo Rangel.Characterization of precursors and reactivity of LaNi_(1-x)Co_XO_3 for the partial oxidation of methane. Catalysis Today,2005 (107-108):906-912.
    
    [165] S.Royer,B.Levasseur,H.Alamdari,J.Barbier and D.Duprez.Mechanism of stearic acid oxidation over nanocrystalline La_(1-x)A'_xBO_3 (A' = Sr, Ce; B = Co, Mn): The role of oxygen mobility.Applied Catalysis B: Environmental, 2008, 80(4): 51-61.
    
    [166] 刘培生.多孔材料引论[M].北京:清华大学出版社,2004,9.51-73.
    
    [167] Francesco M, Gerhard L, Verina J. Complex chemical reactions - A review [J]. Chemical Engineering Science, 2000, 55( 2):209-215 .
    
    [168] 刘维桥,孙桂大.固体催化剂实用研究方法.中国石化出版社,2000,65-103.
    
    [169] (日)近滕精-石川达雄,安部郁夫.吸附科学[M].化学工业出版社,2006.57-95.
    
    [170] 张瑛,刘之景.制备纳米多孔材料的模板自组装技术[J].纳米材料与结构,2004,10: 24-29.
    
    [171] 中国科学院大连石油研究所编.石油工业出版社.1959:11-80.
    
    [172] B.Kucharczyk, W. Tylus, Synthesis and characterization of LaCoO_3 by combustion method.Catal.Today ,90 (2004) 121-126
    
    [173] 吴越,扬向光.现代催化原理,科学出版社,2005,5:76-89.
    
    [174] 李玉敏感.工业催化原理,天津大学出版社,1992,11:37-75.
    
    [175] 瓯开吉,王国甲,毕颖丽等.催化作用基础(第三版),科学出版社,2005,2:65-87.
    
    [176] Hsin-Gwo Lee, Tsao-Fa Yeh, Chen-Bin Wang, and Kuang-Shing Chu. Study on Flameless Methane High Temperature Catalytic Combustion Kinetics. Journal of C.C.I.T., 2004, Vol.32(2):1-13.
    
    [177](美)M.Boudart,(法)G.Dje-Mariadassou著,高滋,郑绳安译.多相催化反应动力学,复旦大 学出版社,1988,9:9-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700