用户名: 密码: 验证码:
银纳米粒子的局域表面等离子体共振散射在生化药物分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术已经在各个领域中发挥着独特的优势和潜力。将纳米技术与光散射技术相结合,开创光散射分析的新天地,是近年来光散射分析化学的发展方向和趋势。本文以银纳米粒子为研究对象,探讨了不同大小、形态的银纳米粒子的局域表面等离子体共振散射和吸收性质,并将银纳米粒子作为光散射探针用于生化和药物分析,建立了一系列分析方法。研究论文的主要内容概括如下:
     1.合成了柠檬酸根包被的小粒径银纳米粒子,基于银纳米粒子在溶液中独特的局域表面等离子体共振吸收和散射特性,建立了一种简单、方便、快捷的半定量和定量检测盐酸黄连素的分析方法。银纳米粒子因表面包被有柠檬酸根,而处于静电排斥作用下,能均匀、稳定分散在溶液中,其独特的局域表面等离子体共振吸收性质使银胶溶液显黄色。在一定的pH环境中,当加入带正电的盐酸黄连素之后,由于破坏了银纳米之间的静电排斥作用,银粒子发生聚集,影响了银纳米粒子的局域表面等离子体共振,导致银胶的颜色发生从黄色到蓝色的变化。本文通过紫外可见吸收、光散射光谱等方法,研究了盐酸黄连素诱导下银纳米粒子的聚集过程,并且在优化的实验条件下,实现了浓度范围在0.05~0.4μM之间的盐酸黄连素的色度法检测以及紫外可见吸收定量检测。其中,根据银胶颜色变化而建立的色度检测方法是一种简单、不需要大型仪器、经济、快速的分析方法。
     2.合成了具有强烈的光散射性质的大粒径银纳米粒子。利用银纳米粒子在不同蛋白质上吸附性质不同,建立了一种通过普通LED电筒和载玻片就可以进行可视化的、免标记的免疫分析方法。探讨了银纳米粒子在抗原、抗体固载的玻片上吸附的机理,并优化了银纳米粒子在玻片上的吸附条件,实现了银纳米粒子在抗体结合后的玻片上的选择性吸附。通过普通的荧光分光光度计测定光散射信号,实现了在10~160ng/ml浓度范围抗体的定量检测,检测下限达到5.6ng/ml。此外,在普通的白光LED电筒的照射下,吸附在玻片表面的银纳米粒子,由于具有强烈的局域表面等离子体共振散射性质,可以被肉眼观察到。因此,实现了使用银纳米粒子作为散射可视化探针的固相表面免疫分析法。
     3.基于大粒径的银纳米粒子强烈的局域表面等离子体共振散射性质,我们提出了一种以玻片为固载相、银纳米粒子作为光散射探针、使用荧光分光光度计检测光散射信号的三明治免疫分析方法。该方法可以与高灵敏度的化学发光法媲美,且分析结果与临床检验结果相符合。此外,通过暗场光学显微镜,可以清楚的看到单个银纳米粒子的多色光散射现象,并结合显微光谱技术对单个银纳米粒子的光散射光谱进行了表征,这预示着银纳米粒子强烈的光散射特性可能成为一种新兴的光散射探针而应用于生化分析和标记中,为建立多色银纳米粒子标记的多通道分析方法打下了基础。
     4.通过碘对银纳米粒子的腐蚀,研究了银纳米粒子的组成和形态发生变化后的光散射特性。研究表明,碘离子可以在银纳米粒子表面吸附,导致银纳米粒子局域表面等离子体共振散射和吸收降低;当溶液中加入氯化铜,使碘离子氧化成碘单质后,碘能与银纳米粒子发生明显的化学反应,导致银纳米粒子的局域表面等离子体共振散射和吸收峰完全消失,并生成新的散射峰。进一步通过扫描电子显微成像和暗场显微成像研究表明,银纳米粒子被碘腐蚀后生成了更大粒径的颗粒,并且具有与银纳米粒子明显不同的光散射特性。基于以上原理,建立了在普通荧光分光光度计的定量检测碘的光散射分析方法和可视化的检测手段。这说明碘与银纳米粒子作用后,所产生的强烈的光散射信号,将在生化分析和检测中有潜在的应用前景。
     上述研究内容,探讨了不同大小、形状的银纳米粒子的局域表面等离子体共振散射及吸收性质以及药物、生物大分子与银纳米粒子之间的相互作用,建立了一系列基于银纳米粒子的光散射特性可视化分析方法。这将为银纳米粒子在光散射分析中的应用找到新途径。
The prosperities of nanoscience and nanotechnology have promoted the development of science in all fields. Light scattering technology in analytical chemistry supply much more opportunities and challenges in this evolution for analysts. Combining nanoscience in light scattering detection and establishing light scattering analytical methods based on nanotechnology would have new ways in analytical chemistry. In this thesis, silver nanoparticles (Ag-Nps), which have unique localized surface plasmon resonance scattering properties, have been investigated by interacting with drugs and biomolecules. Thus, new analytical methods based on the scattering of Ag-Nps have been established. The mainly points are as follows:
     1. Citrate-capped silver nanopartilces with small size were synthesized, and a visual colorimetric method for the detection of berberine hydrochloride was proposed based on the color change caused by the aggregation of Ag-Nps. It was found that citrate-capped AgNps dispersed in water owing to the electrostatic repulsion from each other by the negative charged surface, presenting a bright yellow color. However, the presence of positively charged berberine could induce the aggregation of citrate-capped AgNps, resulting in color change from yellow to green, and even to blue depending on the concentration of berberine. The mechanism of color change and the effect of experiment condition were studied with UV-Vis absorption and light scattering spectrometry. Under the optimum condition, we can detect the berberine hydrochloride from 0.05μM to 0.4μM visually based on the color changes of the solution. It was identified that this colorimetric analytical method without use of expensive machines is very convenient, economy and speedy.
     2. We synthesized larger Ag-Nps, which have strong scattering properties considering that Ag-Nps have strong localized surface plasmon resonance scattering signals. A novel, label-free visual immunoassay method, based on the PRS signals of the Ag-NP electrostatic adsorbed on glass slides, on which antibody is bound, has been established to distinguish the immunoreactions on glass slides with a common LED torch. We discussed the mechanism of this method and investigated the effect of experimental conditions with the scattering signals of Ag- NPs measured on a common spectrofluorometer. Under optimal conditions, antibody over the range between 10 and 160 ng/mL with LOD of 5.6 ng/mL could be detected quantitatively with spectrofluorometer. If a white light-emitting diode (LED) torch is employed to illuminate the glass slides, we can make visual detection of the antibody by the naked eye, owing to the strong localized surface plasmon resonance signals scattered from the Ag-Nps.
     3. We propose a localized surface plasmon resonance scattering immunoassay with common glass slides as a solid substrate by introducing Ag-Nps as scattering labels. The light scatting signals of silver nanoparticles could be measured with a common spectrofluorometer for clinical purposes. The quantitative study using human IgG as an antigen showed that the present immunoassay could have comparable high sensitivity with the new reported chemiluminescence immunoassays. On the other hand, the dark-field light scattering microscopic images showed that single silver nanoparticles can be clearly seen on the basis of its strong scattering light, indicating that silver nanoparticles as a light scattering probe may become a novel model in bioassay. Moreover, the scattering light from the AgNPs has different colors depending on the sizes and shapes, which has potential application in multiplexed assay using nanoparticles with different scattering colors. The localized surface plasmon resonance scattering features of a single AgNP, on the other hand, deserve further investigation and perhaps have potential applications in analytical chemistry. In addition, the visual immunoassay system could be constructed and easily observed by naked eyes with a common LED touch, supplying a new way for visual detection of immunoreactions on the basis of the light scattering signals.
     4. The further investigation is on the localized surface plasmon resonance scattering features of Ag-Nps etched by iodine. We found that iodine ions can be adsorbed on the Ag-Nps surface in the presence of iodine ions in colloidal Ag-Nps suspension, and induce the localized surface plasmon resonance absorption and scattering quenching of Ag-NPs. However, if both iodine ions and copper ions were presented, iodine ions can be oxidized to iodine which can etch Ag-Nps causing the disappearance of localized surface plasmon resonance scattering. The features of Ag-Nps immobilized on glass slides before and after the interaction of iodine were further investigated with scanning electron microscopy and dark-field light scattering microscope. It was found that, the size of Ag-Nps gets enlarged and the surface of Ag-Nps gets roughness after the etching of iodine. The light scattered from the Ag-Nps after etching changed from blue light to white light. An analytical method for iodine thus can be established using a common spectrofluorometer based on the light scattering change of Ag-Nps etched by iodine. The strong scattering light induced from the etching of Ag-Nps by iodine will have potential application in biochemical analysis.
     In conclusion, localized surface plasmon resonance absorption and scattering features of Ag-Nps with different sizes were investigated in this thesis. The interactions between Ag-NPs and drugs/biomolecule were studied using light scattering spectral and microscopy methods. A series novel analytical methods based on the localized surface plasmon resonance scattering of Ag-Nps were established to detect drugs and biomolecules, and it is obviously that light scattering method on silver nanoparticles shows high promise in analytical chemistry.
引文
[1] Eustis, S.; El-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: Noble metalsurface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev.2006,35,209-217.
    
    [2] Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers,J. A.; Nuzzo, R. G. Nanostructured Plasmonic Sensors. Chem. Rev. 2008, 108,494-521.
    [3] Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C; Zhao, J.; Van Duyne, R. P.Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442-452.
    [4] Hicks, E. M.; Zhang, X.; Zou, S.; Lyandres, O.; Spears, K. G.; Schatz, G. C.; Van Duyne, R. P. Plasmonic Properties of Film over Nanowell Surfaces Fabricated by Nanosphere Lithography. J. Phys. Chem. 5 2005,109 22351-22358.
    [5] Henze, J.; Lee, M. H.; Odom, T. W. Multiscale patterning of plasmonic metamaterials. Nat. Nanotech. 2007, 2, 549-554.
    [6] Willets, K. A.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
    [7] Kim, F.; Song, J. H.; Yang, P. Photochemical Synthesis of Gold Nanorods. J. Am.Chem. Soc. 2002,124, 14316-14317.
    [8] Murphy, C. J.; Jana, N. R. Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Adv. Mater. 2002,14, 80-82.
    [9] Evanoff, D. D.; Chumanov, G. Size-Controlled Synthesis of Nanoparticles. 2.Measurement of Extinction, Scattering, and Absorption Cross Sections. J. Phys.Chem. B 2004,108, 13957-13962.
    [10] Yguerabide, J.; Yguerabide, E. E. Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications. II. Experimental Characterization. Anal. Biochem. 1998,262, 157-176.
    
    [11] Yguerabide, J.; Yguerabide, E. E. Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications. I. Theory. Anal. Biochem. 1998, 262, 137-156.
    
    [12] S(?)nnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat.Biotechnol. 2005, 23, 741-745.
    [13] Reinhard, B. M.; Sheikholeslami, S.; Mastroianni, A.; Alivisatos, A. P.; Liphardt,J. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc. Natl Acad. Sci. USA 2007, 104 2667-2672.
    [14] Jain, P. K.; Huang, W.; El-Sayed, M. A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 2007, 7, 2080-2088.
    [15] Reinhard, B. M.; Siu, M.; Agarwal, H.; Alivisatos, A. P.; Liphardt, J. Calibration of Dynamic Molecular Rulers Based on Plasmon Coupling between Gold Nanoparticles. Nano Lett. 2005, 5, 2246-2252.
    [16] Chowdhury, M. H.; Ray, K.; Geddes, C. D.; Lakowicz, J. R. Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE). Chem. Phys.Lett. 2008, 452, 162-167.
    [17] Funston, A. M.; Novo, C.; Davis, T. J.; Mulvaney, P. Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries. Nano Lett. 2009, 9,1651-1658.
    [18] Kim, S.; Shuford, K. L.; Bok, H.-M.; Kim, S. K.; Park, S. Intraparticle Surface Plasmon Coupling in Quasi-One-Dimensional Nanostructures. Nano Lett. 2008.
    [19] Lu, Y.; Yin, Y.; Li, Z. Y.; Xia, Y. Synthesis and Self-Assembly of Au@SiO_2 Core-Shell Colloids. Nano Lett. 2002, 2, 785-788.
    [20] Sanders, A. W.; Routenberg, D. A.; Wiley, B. J.; Xia, Y.; Dufresne, E. R.; Reed,M. A. Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires. Nano Lett. 2006, 6, 1822-1826.
    [21] Sih, B. C.; Wolf, M. O. Dielectric Medium Effects on Collective Surface Plasmon Coupling Interactions in Oligothiophene-Linked Gold Nanoparticles. J. Phys.Chem. B 2006,110, 22298-22301
    [22] Pralnod, P.; Thomas, K. G. Plasmon Coupling in Dimers of Au Nanorods. Adv.Mater. 2008, 20, 4300-4305.
    [23] Sebba, D. S.; LaBean, T. H.; Lazarides, A. A. Plasmon coupling in binary metal core-satellite assemblies. Applied Physics B 2008, 93, 69-78.
    [24] Yang, T.; Crozier, K. B. Surface plasmon coupling in periodic metallic nanoparticle structures: a semi-analytical model. Opt. Express 2008, 16,13070-13079.
    [25] Curto, A. G.; de Abajo, F. J. G. Near-field optical phase antennas for long-range plasmon coupling. Nano Lett. 2008, 8, 2479-2484.
    [26] Nien, S. Y.; Chiu, N. F.; Ho, Y. H.; Lee, J. H.; Lin, C. W.; Wu, K. C.; Lee, C. K.;Lin, J. R.; Wei, M. K.; Chiu, T. L. Directional photoluminescence enhancement of organic emitters via surface plasmon coupling. Appl. Phys. Lett. 2009, 94.
    [27] Tabor, C.; Murali, R.; Mahmoud, M.; El-Sayed, M. A. On the Use of Plasmonic Nanoparticle Pairs As a Plasmon Ruler: The Dependence of the Near-Field Dipole Plasmon Coupling on Nanoparticle Size and Shape. J. Phys. Chem. A 2009, 113,1946-1953.
    [28] Li, X. H.; Tamada, K.; Baba, A.; Hara, M. pH-Controlled Two Dimensional Gold Nanoparticle Aggregates for Systematic Study of Local Surface Plasmon Coupling. J. Nanosci. Nanotech. 2009, 9, 408-416.
    [29] Whitney, A. V.; Elam, J. W.; Zou, S.; Zinovev, A. V.; Stair, P. C.; Schatz, G. C.;Van Duyne, R. P. Localized Surface Plasmon Resonance Nanosensor: A High-Resolution Distance-Dependence Study Using Atomic Layer Deposition. J.Phys. Chem. B 2005, 109, 20522-20528.
    [30] Endo, T.; Kerman, K.; Nagatani, N.; Takamura, Y.; Tamiya, E. Label-Free Detection of Peptide Nucleic Acid-DNA Hybridization Using Localized Surface Plasmon Resonance Based Optical Biosensor. Anal. Chem. 2005, 77, 6976-6984.
    
    [31] Kyo, M.; Usui-Aoki, K.; Koga, H. Label-Free Detection of Proteins in Crude Cell Lysate with Antibody Arrays by a Surface Plasmon Resonance Imaging Technique.Anal. Chem. 2005, 77, 7115-7121.
    
    [32] Berger, C. E. H.; Beumer, T. A. M.; Kooyman, R. P. H.; Greve, J. Surface Plasmon Resonance Multisensing.Anal. Chem. 1998, 70,703-706.
    
    [33] Lee, H. J.; Nedelkov, D.; Corn, R. M. Surface Plasmon Resonance Imaging Measurements of Antibody Arrays for the Multiplexed Detection of Low Molecular Weight Protein Biomarkers.Anal. Chem. 2006, 78, 6504-6510.
    
    [34] Kim, D. K.; Kerman, K.; Saito, M.; Sathuluri, R. R.; Endo, T.; Yamamura, S.;Kwon, Y. S.; Tamiya, E. Label-Free DNA Biosensor Based on Localized Surface Plasmon Resonance Coupled with Interferometry. Anal. Chem. 2007, 79,1855-1864.
    
    [35] Savchenko, A.; Kashuba, E.; Kashuba, V.; Snopok, B. Imaging Technique for the Screening of Protein-Protein Interactions Using Scattered Light under Surface Plasmon Resonance Conditions.Anal. Chem. 2007, 79, 1349-1355
    
    [36] Phillips, K. S.; Han, J. H.; Cheng, Q. Development of a "Membrane Cloaking"Method for Amperometric Enzyme Immunoassay and Surface Plasmon Resonance Analysis of Proteins in Serum Samples. Anal. Chem. 2006, 79 899-907.
    
    [37] Mayer, K. M.; Lee, S.; Liao, H.; Rostro, B. C.; Fuentes, A.; Scully, P. T.; Nehl, C.L.; Hafner, J. H. A Label-Free Immunoassay Based Upon Localized Surface Plasmon Resonance of Gold Nanorods. ACS Nano 2008, 2, 687-692.
    
    [38] Haes, A. J.; Van Duyne, R. P. A unified view of propagating and localized surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2004, 379, 920-930.
    
    [39] Endo, T.; Kerman, K.; Nagatani, N.; Takamura, Y.; Tamiya, E. Label-Free Detection of Peptide Nucleic Acid-DNA Hybridization Using Localized Surface Plasmon Resonance Based Optical Biosensor. Anal. Chem. 2005, 77, 6976-6984.
    
    [40] Yu, F.; Ahl, S.; Caminade, A. M.; Majoral, J. P.; Knoll, W.; Erlebacher, J. Simultaneous Excitation of Propagating and Localized Surface Plasmon Resonance in Nanoporous Gold Membranes. Anal. Chem. 2006, 78, 7346-7350.
    
    [41] Dahlin, A.; Z(?)ch, M.; Rindzevicius, T.; K(?)ll, M.; Sutherland, D. S.; H(?)(?)k, F.Localized Surface Plasmon Resonance Sensing of Lipid-Membrane-Mediated Biorecognition Events. J. Am. Chem. Soc. 2005, 127, 5043-5048.
    
    [42] Haes, A. J.; Van Duyne, R. P. A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. J. Am. Chem. Soc. 2002, 124,10596-10604.
    
    [43] Haes, A. J.; Zou, S.; Zhao, J.; Schatz, G. C.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy near Molecular Resonances. J. Am. Chem. Soc.2006, 128, 10905-10914.
    [44] Malinsky, M. D.; Kelly, K. L.; Schatz, G. C.; Van Duyne, R. P. Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers. J. Am. Chem. Soc. 2001,123, 1471-1482.
    [45] Wei, Y.; Ding, M.-Y. Analysis of carbohydrates in drinks by high-performance liquid chromatography with a dynamically modified amino column and evaporative light scattering detection. J. Chromatogr. A 2000, 904, 113-117.
    [46] Fraunhofer, W.; Winter, G.; Coester, C. Asymmetrical flow field-flow fractionation and multiangle light scattering for analysis of gelatin nanoparticle drug carrier systems. Anal. Chem. 2004, 76, 1909-1920.
    [47] Risley, D. S.; Strege, M. A. Chiral separations of polar compounds by hydrophilic interaction chromatography with evaporative light scattering detection. Anal.Chem. 2000, 72, 1736-1739.
    [48] Pasternack, R. F.; Bustamante, C.; Collings, P. J.; Giannetto, 1. A.; Gibbs, E. J.Porphyrin Assemblies on DNA as Studied by a Resonance Light-Scattering Technique.J. Am. Chem. Soc. 1993, 115, 5393-5399.
    [49] Huang, C. Z.; Li, K. A.; Tong, S. Y. Determination of Nucleic Acids by a Resonance Light-Scattering Technique with α,β,γ,δ-Tetrakis [4-(trimethylammoniumyl) phenyl] porphine. Anal. Chem. 1996, 68, 2259-2263.
    [50] Huang, C. Z.; Li, K. A.; Tong, S. Y. Determination of Nanograms of Nucleic Acids by Their Enhancement Effect on the Resonance Light Scattering of the Cobalt(II)/ 4-[(5-Chloro-2-pyridyl)azo]-1,3-diaminobenzene Complex. Anal.Chem. 1997,59,514-520.
    [51] Huang, C. Z.; Li, Y. F.; Liu, X. D. Determination of nucleic acids at nanogram levels with safranine T by a resonance light-scattering technique. Anal. Chim.Acta 1998, 375, 89-97.
    [52] Huang, C. Z.; Li, Y. F.; Mao, J. G.; Tan, D. G. Determination of protein concentration by enhancement of the preresonance light-scattering of α,β,γ,δ-tetrakis(5-sulfothienyl)porphine.Analyst 1998,123, 1401-1406.
    [53] Huang, C. Z.; Li, Y. F.; Zhang, D. J.; Ao, X. P. Spectrophotometric study on the supramolecular interactions of nile blue sulphate with nucleic acids. Talanta 1999,49 495-503.
    [54] Zhu, J.; Zhu, X. Resonance light scattering properties of Eu3+ in gold colloid.Spectrochim. Acta Part A 2005, 61, 3002-3005.
    [55] Chen, Z.; Liu, J.; Han, Y.; Zhu, L. A novel histidine assay using tetraphenylporphyrin manganese (III) chloride as a molecular recognition probe by resonance light scattering technique. Anal Chim. Acta 2006, 570, 109-115.
    [56] Chen, Z.; Liu, J.; Liang, Y.; Ren, F. Use of sodium lauroyl sarcosinate in a high-sensitivity protein assay by resonance light scattering technique. J. Biomol.Screen. 2006, 11, 400-406.
    [57] Chen, Z.; Zhang, T.; Han, Y.; Zhu, L. Resonance light scattering spectroscopy study of interaction between norfloxacin and calf thymus DNA and its analytical application. Spectrochim. Acta A 2006, 65, 919-924.
    [58] Dai, X. X.; Li, Y. F.; He, W.; Long, Y. F.; Huang, C. Z. A dual-wavelength resonance light scattering ratiometry of biopolymer by its electrostatic interaction with surfactant. Talanta 2006, 70, 578-583
    [59] Dong, L.; Chen, X.; Hu, Z. Total internal reflected resonance light scattering determination of protein in human blood serum at water/tetrachloromethane interface with Arsenazo-TB and Cetyltrimethylammonium bromide Talanta 2006, 71, 555-560
    [60] Fang, F.; Zheng, H.; Li, L.; Wu, Y.; Chen, J.; Zhuo, S.; Zhu, C. Determination of nucleic acids with a near infrared cyanine dye using resonance light scattering technique. Spectrochim. Acta A 2006, 64, 698-702.
    [61] Feng, S.; Pan, Z.; Fan, J. Determination of proteins at nanogram levels with Bordeaux red based on the enhancement of resonance light scattering.Spectrochim. Acta A 2006, 64, 574-579.
    [62] Feng, S.; Wang, J.; Fan, J. Determination of a cationic surfactant with naphthalene black 12B by the resonance light scattering technique. Ann. Chim. 2006, 96,293-300.
    [63] Guo, H. P.; Huang, C. Z.; Ling, J. Resonance Light Scattering Imaging Determination of Heparin. Chin. Chem. Lett. 2006,17, 53-56.
    [64] Huang, C. Z.; Pang, X. B.; Li, Y. F.; Long, Y. J. A resonance light scattering ratiometry applied for binding study of organic small molecules with biopolymer.Talanta 2006, 69, 180-186.
    [65] Huang, J.; Chen, F.; He, Z. A Resonance Light Scattering Method for Determination of DNA Using Ru(bpy)_2PIP(V)~(2+). Microchim. Acta 2006, 157,181-187.
    [66] Jia, Z.; Yang, J.; Wu, X.; Sun, C.; Liu, S.; Wang, F.; Zhao, Z. The sensitive determination of nucleic acids using resonance light scattering quenching method.Spectrochim. Acta A 2006, 64, 555-559.
    [67] Li, Z. P.; Duan, X. R.; Liu, C. H.; Du, B. A. Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles. Anal. Biochem. 2006, 357, 18-25.
    [68] Liu, X. D.; Huang, C. Z.; Guo, H. P.; Huang, Y. M. Resonance Light Scattering Imaging Detection of Single Suprahelical Species of DNA Induced by α,β,γ,δ-Tetrakis[4-(trimethylaminoniurn)phenyl]porphine. Chin. J. Chem. 2006,24, 89-94
    [69] Liu, Z. D.; Huang, C. Z.; Li, Y. F.; Long, Y. F. Enhanced plasmon resonance light scattering signals of colloidal gold resulted from its interactions with organic small molecules using captopril as an example. Anal. Chim. Acta 2006, 577,244-249.
    [70] McPhie, P. Resonance light scattering profiles must be corrected for instrument performance. Anal. Biochem. 2006, 348, 157-159.
    [71] Pan, H.; Tao, X.; Mao, C.; Zhu, J.-J.; Liang, F. Aminopolycarboxyl modified Ag_2S nanoparticles: Synthesis, characterization and resonance light scattering sensing for bovine serum albumin Talanta 2006, 71 276-281.
    [72] Wu, L. P.; Li, Y. F.; Huang, C. Z.; Zhang, Q. Visual Detection of Sudan Dyes Based on the Plasmon Resonance Light Scattering Signals of Silver Nanoparticles.Anal. Chem. 2006, 78, 5570-5577.
    [73] Wu, Q.; Li, N.; Yang, L.; Tang, R.; Bian, R.; Feng, T. Determination of Nucleic Acids at Nanogram Levels Using the Resonance Light Scattering Technique with 3,30-Dichlorobenzidine. Microchim. Acta 2006,157 189-192
    [74] Wu, X.; Sun, S.; Guo, C.; Yang, J.; Sun, C.; Zhou, C.; Wu, T. Resonance light scattering technique for the determination of proteins with Congo red and Triton X-100. Luminescence 2006, 21, 56-61.
    [75] Wu, X.; Yang, J. H.; Sun, S.; Guo, C.; Ran, D.; Zheng, J. Determination of nucleic acids based on the quenching effect on resonance light scattering of the Y(III)-1, 6- bi(1-phenyl-3- methyl-5- pyrazolone-4-) hexane- dione system.Luminescence 2006, 21, 129-134.
    [76] Zhao, H. W.; Huang, C. Z.; Li, Y. F. Immunoassay by detecting enhanced resonance light scattering signals of immunocomplex using a common spectrofluorometer. Talanta 2006, 70, 609-614
    [77] Han, Z.; Qi, L.; Shen, G.; Liu, W.; Chen, Y. Determination of Chromium(VI) by Surface Plasmon Field-Enhanced Resonance Light Scattering. Anal. Chem. 2007,79, 5862-5586.
    [78] Ling, J.; Huang, C. Z.; Li, Y. F.; Long, Y. F.; Liao, Q. G. Recent Developments of the Resonance Light Scattering Technique: Technical Evolution, New Probes and Applications. Appl. Sectrosc. Rev. 2007, 42, 177- 201.
    [79] Long, Y. F.; Huang, C. Z.; Li, Y. F. Hybridization Detection of DNA by Measuring Organic Small Molecule Amplified Resonance Light Scattering Signals. J. Phys. Chem. B 2007, 111, 4535-4538.
    [80] Lu, W.; Band, B. S. F.; Yu, Y.; Li, Q. G.; Shang, J. C.; Wang, C.; Fang, Y.; Tian,R.; Zhou, L. P.; Sun, L. L.; Tang, Y.; Jing, S. H.; Huang, W.; Zhang, J. P.Resonance light scattering and derived technique in analytical chemistry: past,present, and future. Microchim. Acta 2007, 158, 29-58.
    [81] Yu, C. J.; Su, C. L.; Tseng, W. L. Separation of Acidic and Basic Proteins by Nanoparticle-Filled Capillary Electrophoresis. Anal. Chem. 2006, 78, 8004-8010.
    [82] Yokokawa, R.; Takeuchi, S.; Kon, T.; Nishiura, M.; Sutoh, K.; Fujita, H.Unidirectional Transport of Kinesin-Coated Beads on Microtubules Oriented in a Microfluidic Device. Nano Lett. 2004, 4, 2265-2270.
    [83] Wu, H. P.; Su, C. L.; Chang, H. C.; Tseng, W. L. Sample-First Preparation: A Method for Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Analysis of Cyclic Oligosaccharides. Anal. Chem. 2007, 79,6215-6221.
    [84] Wang, X.; Zhang, Z.; Hartland, G. V. Electronic Dephasing in Bimetallic Gold-Silver Nanoparticles Examined by Single Particle Spectroscopy. J. Phys.Chem. B 2005,109, 20324-20330.
    [85] Buonsanti, R.; Grillo, V.; Carlino, E.; Giannini, C.; Curri, M. L.; Innocenti, C.;Sangregorio, C.; Achterhold, K.; Parak, F. G.; Agostiano, A.; Cozzoli, P. D. Seeded Growth of Asymmetric Binary Nanocrystals Made of a Semiconductor TiO_2 Rodlike Section and a Magnetic Fe_2O_3 Spherical Domain. J. Am. Chem. Soc.2006, 128, 16953-16970.
    [86] Pasternack, R. F.; Collings, P. J. Resonance Light Scattering: A New Technique for Studying Chromophore Aggregation. Science 1995, 269, 935-939.
    [87] Li, N. B.; Luo, H. Q.; Liu, S. P. Resonance Rayleigh scattering study of the inclusion complexation of chloramphenicol with p-cyclodextrin. Talanta 2005, 66,495-500.
    [88] Liu, S. P.; Yang, Z.; Liu, Z. F.; Liu, J. T.; Shi, Y. Resonance Rayleigh scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application. Anal. Chim. Acta 2006, 572,, 283-289.
    [89] Luo, H. Q.; Li, N. B.; Liu, S. P. Resonance Rayleigh scattering study of interaction of hyaluronic acid with ethyl violet dye and its analytical application.Biosens. Bioelectron. 2006, 21, 1186-1194.
    [90] Wei, X. Q.; Liu, Z. F.; Liu, S. P. Resonance Rayleigh scattering spectra of tetracycline antibiotic-Cu(II)-titan yellow systems and their applications in analytical chemistry Anal. Bioanal. Chem. 2006, 385, 1039-1044.
    [91] Huang, C. Z.; Li, Y. F.; Feng, P. Determination of proteins with α,β,γ,δ-tetrakis(4-sulfophenyl)porphine by measuring the enhanced resonance light scattering at the air/liquid interface. Anal. Chim. Acta 2001, 443, 73-80.
    [92] Yguerabide, J.; Yguerabide, E. E. Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications. J.Cell. Biochem. 2001, 84, 71-81.
    [93] Bao, P.; Frutos, A. G.; Greef, C.; Lahiri, J.; Muller, U.; Peterson, T. C.; Warden,L.; Xie, X. High-Sensitivity Detection of DNA Hybridization on Microarrays Using Resonance Light Scattering. Anal. Chem. 2002, 74, 1792-1797.
    [94] Feng, P.; Huang, C. Z.; Li, Y. F. Direct quantification of human serum albumin in human blood serum without separation of y-globulin by the total internal reflected resonance light scattering of thorium-sodium dodecylbenzene sulfonate at water/tetrachloromethane interface. Anal. Biochem. 2002, 308, 83-89.
    [95] Yang, C. X.; Li, Y. F.; Huang, C. Z. Determination of cationic surfactants in water samples by their enhanced resonance light scattering with azoviolet. Anal. Bioanal.Chem. 2002, 374, 868-872.
    [96] Chen, Y.; Yang, J.; Wu, X.; Cao, W.; Zhuang, H. Resonance light scattering of catechol violet-cetyltrimethylammonium bromide-nucleic acid system and its analytical application. Chin. J. Anal. Chem. 2003, 31 1352-1355.
    [97] Huang, C. Z.; Li, Y. F. Resonance light scattering technique used for biochemical and pharmaceutical analysis. Anal. Chim. Acta 2003, 500, 105-117.
    [98] Huang, C. Z.; Liu, Y.; Wang, Y. H.; Guo, H. P. Resonance light scattering imaging detection of proteins with α,β,γ,δ-tetrakis (p-sulfophenyl) porphyrin.Anal. Biochem. 2003, 321 236-243.
    [99] Huang, C. Z.; Yang, C. X.; Li, Y. F. Determination of proteins with ponceau G by compensating for the molecular absorption decreased resonance light scattering signals.Anal. Lett. 2003, 36, 1557-1571.
    [100] Liu, R. T.; Yang, J. H.; Sun, C. X.; al., e. Study of the interaction of nucleic acids with acridine orange-CTMAB and determination of nucleic acids at nanogram levels based on the enhancement of resonance light scattering. Chem. Phys. Lett.2003,375, 108-115.
    [101] Long, Y.-F.; Chen, X.-M.; Wu, Q.-L.; Yang, W.-J. Determination of Deoxyribonucleic Acid with Alkali Blue 6B by Resonance Light scattering Method. Spectrosc. Spect. Anal. 2003, 23, 458-460.
    [102]Lu, W.; Huang, C. Z.; Li, Y. F. Novel assay of thiamine based on its enhancement of total internal reflected resonance light scattering signals of sodium dodecylbenzene sulfonate at the water/tetrachloromethane interface. Anal. Chim.Acta 2003,475, 151-161.
    [103] Pang, X. B.; Huang, C. Z.; Li, Y. F.; Lu, W. Assay of nucleic acids at the water/tetrachloromethane interface with cetyltrimethylammonium bromide by total internal reflected resonance light scattering. Bull. Chem. Soc. Jpn 2003, 76,1941-1946.
    [104] Wang, L.; Li, Y. X.; Zhu, C. Q.; al., e. Determination of proteins based on their resonance light scattering enhancement effect on manganese tetrasulfonatophthalocyanine. Microchim. Acta 2003,143, 275-279.
    [105] Wang, L.; Wang, L.; Chen, H.; Li, L.; Dong, L.; Xia, T.; Dong, F.; Xu, Z. Direct quantification of γ-globulin in human blood serum by resonance light scattering techniques without separation of human serum albumin Anal. Chim. Acta 2003,493, 179-184
    [106] Fang, B.; Gao, Y.; Li, M.; Wang, G.; Li, Y. Application of functionalized Ag nanoparticles for the determination of proteins at nanogram levels using the resonance light scattering method. Microchim. Acta 2004,147, 81-86.
    [107] Feng, N. C.; He, S. P.; Zhang, J.; Liu, J. P. Resonance light scattering study on interaction of solochrome cyanine R with protein and light scattering determination of trace protein. Spectrosc. Spect. Anal. 2004, 24, 194-196.
    [108] Asian, K.; Lakowicz, J. R.; Geddes, C. D. Nanogold Plasmon Resonance-Based Glucose Sensing. 2. Wavelength-Ratiometric Resonance Light Scattering. Anal.Chem. 2005, 77, 2007-2014.
    [109] Chen, X.; Cai, C.; Zeng, J.; Liao, Y.; Luo, H. Study on bromocresol green-cetyltrimethylammonium-deoxyribonucleic acids system by resonance light scattering spectrum methods. Spectrochim. Acta A 2005, 61, 1783-1788.
    [110] Chen, Z.; Ding, W.; Ren, F.; Liu, J.; Yizeng A simple and sensitive assay of nucleic acids based on the enhanced resonance light scattering of zwitterionics Anal. Chim. Acta 2005, 550, 204-209
    [111] Feng, S.; Liu, X.; Fan, J. Resonance light scattering spectra of cetylpyridinium bromide and deoxyribonucleic acid system and its application to deoxyribonucleic acid assay. Chin. J. Anal. Chem. 2005, 33, 377-380.
    [112]Feng, S.; Pan, Z.; Fan, J. Determination of trace proteins with pyronine Y and SDS by resonance light scattering. Anal. Bioanal. Chem. 2005, 383, 255-260.
    [113]Huang, C. Z.; Feng, P.; Li, Y. F.; Tan, K. J. Pharmacokinetic detection of penicillin excreted in urine using a totally internally reflected resonance light scattering technique with cetyltrimethylammonium bromide. Anal. Bioanal. Chem.2005, 382, 85-90.
    [114] Huang, C. Z.; Feng, P.; Li, Y. F.; Tan, K. J.; Wang, H. Y. Adsorption of penicillin-berberine ion associates at a water/tetrachloromethane interface and determination of penicillin based on total internal-reflected resonance light scattering measurements. Anal. Chim. Acta 2005, 538, 337-343.
    [115]Huang, C. Z.; Pang, X. B.; Li, Y. F. Determination of Heparin Using Azure B by Flow Injection Analysis-Resonance Light Scattering Coupled Technique. Anal.Lett. 2005, 38, 349-362
    [116] Li, Z.-P.; Li, Y.-K.; Wang, Y.-C. Study of the interaction of hexa-amine cobalt (III) ion with DNA by a resonance light scattering technique and its analytical application. Luminescence 2005, 20, 282-286.
    [117]Liu, Y.; Yang, J.; Liu, S.; Wu, X.; Su, B.; Wu, T. Resonance light scattering technique for the determination of protein with rutin and cetylpyridine bromide system. Spectrochim. Acta A 2005, 61, 641-646.
    [118] Long, Y. J.; Li, Y. F.; Huang, C. Z. A wide dynamic range detection of biopolymer medicines with resonance light scattering and absorption ratiometry.Anal. Chim. Acta 2005, 552, 175-181.
    [119]Tan, K. J.; Li, Y. F.; Huang, C. Z. Flow injection resonance light scattering detection of proteins of nanogram. Luminescence 2005, 20, 176-180.
    [120] Wu, X.; Sun, S.; Yang, J.; Wang, M.; Liu, L.; Guo, C. Study on the interaction between nucleic acid and Eu~(3+)-oxolinic acid and the determination of nucleic acid using the resonance light scattering technique. Spectrochim. Acta A 2005, 62,896-901.
    [121] Feng, P.; Shu, W. Q.; Huang, C. Z.; Li, Y. F. Total Internal Reflected Resonance Light Scattering Determination of Chlortetracycline in Body Fluid with the Complex Cation of Chlortetracycline-Europium-Trioctyl Phosphine Oxide at the Water/Tetrachloromethane Interface. Anal. Chem. 2001, 73, 4307-4312.
    [122] Pang, X. B.; Huang, C. Z. A selective and sensitive assay of berberine using total internal reflected resonance light scattering technique with fluorescein at the water/1,2-dichloroethane interface. J. Pharm. Biomed. Anal. 2004, 35, 185-191.
    [123]Vidal, E.; Palomeque, M. E.; Lista, A. G.; Fernandez Band, B. S. Flow injection analysis: Rayleigh light scattering technique for total protein determination Anal.Bioanal. Chem. 2003, 376, 38.
    [124] Wang, Y. H.; Guo, H. P.; Tan, K. J.; Huang, C. Z. Backscattering light detection of nucleic acids with tetraphenylporphyrin-Al(III)-nucleic acids at liquid/liquid interface. Anal. Chim. Acta 2004, 521, 109-115.
    [125] Huang, C. Z.; Wang, Y. H.; Guo, H. P.; Li, Y. F. A backscattering light detection assembly for sensitive determination of analyte concentrated at the liquid/liquid interface using the interaction of quercetin with proteins as the model system.Analyst 2005, 130, 200-205.
    [126] Zhao, H. W.; Huang, C. Z.; Li, Y. F. A novel optical immunosensing system based on measuring surface enhanced light scattering signals of solid supports.Anal. Chim. Acta 2006, 564, 166-172.
    [127] Ling, J.; Li, Y. F.; Huang, C. Z. A label-free visual immunoassay on solid-support with silver nanoparticles as plasmon resonance scattering indicator. Anal.Biochem. 2008, 383, 168-173.
    [128] Ling, J.; Li, Y. F.; Huang, C. Z. Visual Sandwich Immunoassay System on the Basis of Plasmon Resonance Scattering Signals of Silver Nanoparticles. Anal.Chem. 2009,81, 1707-1714.
    [129] Ling, J.; Huang, C. Z.; Li, Y. F. Directly light scattering imaging of the aggregations of biopolymer bound chromium(III) hydrolytic oligomers in aqueous phase and liquid/liquid interface. Anal. Chim. Acta 2006, 567, 143-151.
    [130] Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M..A. Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced,Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker. Nano Lett. 2007, 7, 1591-1597.
    [131] Lee, K.-S.; El-Sayed, M. A. Gold and Silver Nanoparticles in Sensing and Imaging:Sensitivity of Plasmon Response to Size, Shape, and Metal Composition,J. Phys. Chem. B 2006, 110, 19220-19225.
    [132] Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J.Am. Chem. Soc. 2006, 128, 2115-2120.
    [133] Liu, G. L.; Long, Y.-T.; Choi, Y.; Kang, T.; Lee, L. P. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat.Meth. 2007, 4, 1015-1017.
    [134]Taton, T. A.; Lu, G.; Mirkin, C. A. Two-Color Labeling of Oligonucleotide Arrays via Size-Selective Scattering of Nanoparticle Probes. J. Am. Chem. Soc.2001,723,5164-5165.
    [135]Saviranta, P.; Okon, R.; Brinker, A.; Warashina, M.; Eppinger, J.; Geierstanger, B.H. Evaluating sandwich immunoassays in microarray format in terms of the ambient analyte regime. Clin. Chem. 2004, 50, 1907-1920.
    [136] Reynolds, R. A.; Mirkin, C. A.; Letsinger, R. L. Homogeneous,Nanoparticle-Based Quantitative Colorimetric Detection of Oligonucleotides. J.Am. Chem. Soc. 2000, 122, 3795-3796.
    [137]Storhoff, J. J.; Lucas, A. D.; Garimella, V.; Bao, Y. P.; M(?)ller, U. R.Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat. Biotechnol. 2004, 22,883-887.
    [138]Du, B.-A.; Li, Z.-P.; Liu, C.-H. One-Step Homogeneous Detection of DNA Hybridization with Gold Nanoparticle Probes by Using a Linear Light-Scattering Technique. Angew. Chem. Int. Ed. 2006, 45, 8190-8193.
    [139] Jiang, Z.; Sun, S.; Liang, A.; Huang, W.; Qin, A. Gold-Labeled Nanoparticle-Based Immunoresonance Scattering Spectral Assay for Trace Apolipoprotein AI and Apolipoprotein B. Clin. Chem. 2006, 52, 1389-1394.
    [140] Thanh, N. T. K.; Rosenzweig, Z. Development of an Aggregation-Based Immunoassay for Anti-Protein A Using Gold Nanoparticles. Anal. Chem. 2002,74, 1624-1628.
    [141] Jiang, Z. L.; Sun, S. J.; Liang, A. H.; Liu, C. J. A new immune resonance scattering spectral assay for trace fibrinogen with gold nanoparticle label. Anal.Chim. Acta 2006, 571, 200-205.
    [142] Jiang, Z. L.; Chen, Y. Y.; Liang, A. H.; Tao, H. L.; Tang, N. L.; Zhong, F. X.Silver nanoparticle labeled immunoresonance scattering spectral assay for trace fibrinogen. Sci. China Ser. B 2007, 50, 345-350.
    [143]Du, B.; Li, Z.; Cheng, Y. Homogeneous immunoassay based on aggregation of antibody-functionalized gold nanoparticles coupled with light scattering detection.Talanta 2008, 75, 959-964.
    [144] Zou, Q. C; Yan, Q. J.; Song, G. W.; Zhang, S. L.; Wu, L. M. Detection of DNA using cationic polyhedral oligomeric silsesquioxane nanoparticles as the probe by resonance light scattering technique. Biosens. Bioelection. 2007, 22, 1461-1465.
    [145]Li, Y.; Chen, J.; Zhuo, S.; Wu, Y.; Zhu, C.; Wang, L. Application of L-cysteine-capped ZnS nanoparticles in the determination of nucleic acids using the resonance light scattering method. Microchim. Acta 2004, 146, 13-19.
    [146] Cheng, Y. Q.; Li, Z. P.; Su, Y. Q.; Fan, Y. S. Ferric nanoparticle-based resonance light scattering determination of DNA at nanogram levels. Talanta 2007, 71,1757-1761.
    [147]Li, J.; He, X. W.; Wu, Y. L.; Li, W. Y.; Zhang, Y. K. Determination of lysozyme at the nanogram level by a resonance light-scattering technique with functionalized CdTe nanoparticles. Anal. Sci. 2007, 23, 331-335.
    [148] Wang, L.-Y.; Wang, L.; Dong, L.; Hu, Y.-L.; Xia, T.-T.; Chen, H.-Q.; Li, L.; Zhu,C.-Q. Determination of γ-globulin at nanogram levels by its enhancement effect on the resonance light scattering of functionalized HgS nanoparticles. Talanta 2004, 62, 237-240
    [149] Wang, L.; Chen, H.; Li, L.; Xia, T.; Dong, L.; Wang, L. Quantitative determination of proteins at nanogram levels by the resonance light-scattering technique with macromolecules nanoparticles of PS-AA Spectrochim. Acta A 2004, 60, 747-750.
    [150] Chen, H.; Xu, F.; Hong, S.; Wang, L. Quantitative determination of proteins at nanogram levels by the resonance light-scattering technique with composite nanoparticles of CdS/PAA. Spectrochim. Acta A 2006, 65, 428-432.
    [l51]Zhao, G.-C.; Zhang, P.; Wei, X.-W.; Yang, Z.-S. Determination of proteins with fullerol by a resonance light scattering technique Anal. Biochem. 2004, 334,297-302.
    [152] Pan, H.; Tao, X.; Mao, C.; Zhu, J.-J.; Liang, F. Aminopolycarboxyl modified Ag_2S nanoparticles: Synthesis, characterization and resonance light scattering sensing for bovine serum albumin Talanta 2007, 71 276-281.
    [153] Ling, J.; Huang, C. Z.; Li, Y. F.; Zhang, L.; Chen, L. Q.; Zhen, S. J.Light-scattering signals from nanoparticles in biochemical assay, pharmaceutical analysis and biological imaging. TRAC-Trend. Anal. Chem. 2009, 28, 447-453.
    [154] Li, Z. P.; Duan, X. R.; Liu, C. H.; Du, B. A. Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles. Anal. Biochem. 2006, 351, 18-25.
    [155] Liu, X.; Yuan, H.; Pang, D.; Cai, R. Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application. Spectrochim. Acta A 2004, 60, 385-389.
    [156] Duan, X. R.; Li, Z. P.; Cui, P. J.; Su, Y. Q. Study on self-assembly of gold nanoparticles directed by glutathione with resonance light scattering technique and its analytical applications. J. Nanosci. Nanotech. 2006, 6, 3842-3848.
    [157]Liao, Q. G.; Huang, C. Z.; Li, Y. F. A light scattering and fluorescence emission coupled ratiometry using the interaction of functional CdS quantum dots with aminoglycoside antibiotics as a model system. Talanta 2006, 71, 567-572.
    [158]Lu, Q. M.; Liu, Z. F.; Liu, S. P. Resonance Rayleigh scattering method for the determination of some anthracycline anticancer drugs with gold nanoparticle as probe. Acta Chim. Sinica 2007, 65, 821-828.
    [159] Liu, S. P.; He, Y. Q.; Liu, Z. F.; Kong, L.; Lu, Q. M. Resonance Rayleigh scattering spectral method for the determination of raloxifene using gold nanoparticle as a probe. Anal. Chim. Acta 2007, 598, 304-311.
    [160] Liu, S. P.; Yang, Z.; Liu, Z. F.; Liu, J. T.; Shi, Y. Resonance Rayleigh scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application. Anal. Chim. Acta 2006, 572, 283-289.
    [161] Ling, J.; Sang, Y.; Huang, C. Z. Visual colorimetric detection of berberine hydrochloride with silver nanoparticles. J. Pharm. Biomed. Anal. 2008, 47,860-864.
    [162] Asian, K.; Lakowicz, J. R.; Geddes, C. D. Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr. Opin. Chem.Biol. 2005, 9, 538-544
    [163]Schultz, S.; Smith, D. R.; Mock, J. J.; Schultz, D. A. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad.Sci. USA 2000, 97, 996-1001.
    [164] Lee, K. J.; Nallathamby, P. D.; Browning, L. M.; Osgood, C. J.; Xu, X.-H. N. In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos. ACS Nano 2007,1, 133-143.
    [165]E1-Sayed, I. H.; Huang, X.; El-Sayed, M. A. Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer. Nano Lett.2005, 5, 829-834.
    [166] Mock, J. J.; Smith, D. R.; Schultz, S. Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles. Nano Lett. 2003, 3,485-491.
    [167]McFarland, A. D.; Van Duyne, R. P. Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Lett. 2003, 3, 1057-1062.
    [168]Raschke, G.; Kowarik, S.; Franzl, T.; Solnnichsen, C.; Klar, T. A.; Feldmann, J.Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering.Nano Lett. 2003, 3, 935-938.
    [169]Nusz, G. J.; Marinakos, S. M.; Curry, A. C.; Dahlin, A.; Hook, F.; Wax, A.;Chilkoti, A. Label-Free Plasmonic Detection of Biomolecular Binding by a Single Gold Nanorod. Anal. Chem. 2008, 80, 984-989.
    [170] Choi, Y.; Kang, T.; Lee, L. P. Plasmon Resonance Energy Transfer (PRET)-based Molecular Imaging of Cytochrome c in Living Cells. Nano Lett. 2009, 9, 85-90.
    [171]Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical Detection of Chemical and Biological Species. Chem. Rev. 2008,108, 462-493.
    [172]Adamczyk, M.; Mattingly, P. G.; Shreder, K.; Yu, Z. Surface Plasmon Resonance (SPR) as a Tool for Antibody Conjugate Analysis. Bioconjugate Chem. 1999, 10,1032-1037.
    [173] Davis, J. J.; Tkac, J.; Laurenson, S.; Ferrigno, P. K. Peptide Aptamers in Label-Free Protein Detection: 1. Characterization of the Immobilized Scaffold.Anal. Chem. 2007, 79, 1089-1096.
    [174]Nath, N.; Chilkoti, A. Label-Free Biosensing by Surface Plasmon Resonance of Nanoparticles on Glass: Optimization of Nanoparticle Size. Anal. Chem. 2004, 76,5370-5378.
    [175]Lyon, L. A.; Musick, M. D.; Natan, M. J. Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing. Anal. Chem. 1998, 70, 5177-5183.
    [176]He, L.; Musick, M. D.; Nicewarner, S. R.; Salinas, F. G.; Stephen J. Benkovic;Natan, M. J.; Keating, C. D. Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization. J. Am. Chem. Soc. 2000, 122,9071-9077.
    [177]Pyo, H.-B.; Shin, Y.-B.; Kim, M.-G.; Yoon, H. C. Multichannel Surface Plasmon Resonance Imaging and Analysis of Micropatterned Self-Assembled Monolayers and Protein Affinity Interactions. Langmuir 2005, 21, 166-171.
    [178] Lee, H. J.; Li, Y.; Wark, A. W.; Corn, R. M. Enzymatically Amplified Surface Plasmon Resonance Imaging Detection of DNA by Exonuclease III Digestion of DNA Microarrays.Anal. Chem. 2005, 77, 5096-5100.
    [179] Fang, S.; Lee, H. J.; Wark, A. W.; Kim, H. M.; Corn, R. M. Determination of Ribonuclease H Surface Enzyme Kinetics by Surface Plasmon Resonance Imaging and Surface Plasmon Fluorescence Spectroscopy. Anal. Chem. 2005, 77,6528-6534.
    [180]Su, X.; Wu, Y.-J.; Robelek, R.; Knoll, W. Surface Plasmon Resonance Spectroscopy and Quartz Crystal Microbalance Study of Streptavidin Film Structure Effects on Biotinylated DNA Assembly and Target DNA Hybridization.Langmuir 2005, 21, 348-353.
    [181]Doron-Mor, I.; Cohen, H.; Barkay, Z.; Shanzer, A.; Vaskevich, A.; Rubinstein, I,Sensitivity of Transmission Surface Plasmon Resonance (T-SPR) Spectroscopy:Self-Assembled Multilayers on Evaporated Gold Island Films. Chem. Eur. J.2005, 11, 5555-5562.
    [182]Ni, W.; Chen, H.; Kou, X.; Yeung, M. H.; Wang, J. Optical Fiber-Excited Surface Plasmon Resonance Spectroscopy of Single and Ensemble Gold Nanorods. J.Phys. Chem. C 2008,112, 8105-8109.
    [183]Dieringer, J. A.; McFarland, A. D.; Shah, N. C.; Stuart, D. A.; Whitney, A. V.;Yonzon, C. R.; Young, M. A.; Zhang, X.; Van Duyne, R. P. Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss. 2006,132, 9-26.
    [184]Pergolese, B.; Muniz-Miranda, M.; Bigotto, A. Surface Enhanced Raman Scattering Investigation of the Halide Anion Effect on the Adsorption of 1,2,3-Triazole on Silver and Gold Colloidal Nanoparticles. J. Phys. Chem. B 2005,109,9665-9671.
    [185] Zhang, J.; Li, X.; Sun, X.; Li, Y. Surface Enhanced Raman Scattering Effects of Silver Colloids with Different Shapes. J. Phys. Chem. B 2005,109, 12544-12548.
    [186]Sarkar, J.; Chowdhury, J.; Ghosh, M.; De, R.; Talapatra, G. B. Experimental and Theoretical Surface Enhanced Raman Scattering Study of 2-Amino-4-methylbenzothiazole Adsorbed on Colloidal Silver Particles. J. Phys.Chem. B 2005,109, 22536-22544.
    [187]Szmacinski, H.; Ray, K.; Lakowicz, J. R. Metal-enhanced fluorescence of tryptophan residues in proteins: Application toward label-free bioassays. Anal.Biochem. 2009, 385, 358-364.
    [188]Chowdhury, M. H.; Ray, K.; Gray, S. K.; Pond, J.; Lakowicz, J. R. Aluminum Nanoparticles as Substrates for Metal-Enhanced Fluorescence in the Ultraviolet for the Label-Free Detection of Biomolecules. Anal. Chem. 2009, 81, 1397-1403.
    [189] Lakowicz, J. R. Radiative Decay Engineering: Biophysical and Biomedical Applications. Anal. Biochem. 2001, 298, 1-24.
    [190]Lakowicz, J. R. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 2005, 337, 171-194.
    [191]Matveeva, E.; Gryczynski, Z.; Malicka, J.; Gryczynski, I.; Lakowicz, J. R.Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces. Anal. Biochem. 2004, 334, 303-311.
    [192] Malicka, J.; Gryczynski, I.; Lakowicz, J. R. DNA hybridization assays using metal-enhanced fluorescence. Biochem. Biophys. Res. Comm. 2003, 306, 213-218.
    [193] Asian, K.; Wu, M.; Lakowicz, J. R.; Geddes, C. D. Fluorescent Core-Shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms. J. Am. Chem. Soc. 2007,129, 1524-1525.
    [194] Ray, K.; Badugu, R.; Lakowicz, J. R. Metal-Enhanced Fluorescence from CdTe Nanocrystals: A Single-Molecule Fluorescence Study. J. Am. Chem. Soc. 2006,128, 8998-8999.
    [195] Asian, K.; Lakowicz, J. R.; Szmacinski, H.; Geddes, C. D. Enhanced Ratiometric pH Sensing Using SNAFL-2 on Silver Island Films: Metal-enhanced Fluorescence Sensing. J. Fluoresc. 2005,15, 37—40.
    [196] Chen, Y.; Munechika, K.; Ginger, D. S. Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles. Nano Lett. 2007, 7, 690-696.
    [197]Haes, A. J.; Hall, W. P.; Chang, L.; Klein, W. L.; Van Duyne, R. P. A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Assay for Alzheimer's Disease. Nano Lett. 2004, 4, 1029-1034.
    [198] Sherry, L. J.; Chang, S. H.; Schatz, G. C.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Lett. 2005, 5,2034-2038.
    [199] Sherry, L. J.; Jin, R.; Mirkin, C. A.; Schatz, G. C.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms. Nano Lett. 2006, 6, 2060-2065.
    [200] Langhammer, C.; Schwind, M.; Kasemo, B.; Zoric; x; Igor Localized Surface Plasmon Resonances in Aluminum Nanodisks. Nano Lett. 2008, 8, 1461-1471.
    [201]Nikoobakht, B.; El-Sayed, M. A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater. 2003, 15,1957-1962.
    [202] Seo, D.; Yoo, C. I.; Jung, J.; Song, H. Ag-Au-Ag Heterometallic Nanorods Formed through Directed Anisotropic Growth. J. Am. Chem. Soc. 2008, 130,2940-2941.
    [203] Huang, W.-L.; Chen, C.-H.; Huang, M. H. Investigation of the Growth Process of Gold Nanoplates Formed by Thermal Aqueous Solution Approach and the Synthesis of Ultra-Small Gold Nanoplates. J. Phys. Chem. C 2007, 111,2533-2538.
    [204] Enustun, B. V.; Turkevich, J. Coagulation of Colloidal Gold. J. Am. Chem. Soc.1963,55,3317-3328.
    [205]Millstone, J. E.; Park, S.; Shuford, K. L.; Qin, L.; Schatz, G. C.; Mirkin, C. A.Observation of a Quadrupole Plasmon Mode for a Colloidal Solution of Gold Nanoprisms. J. Am. Chem. Soc. 2005,127, 5312-5313.
    [206] Schulz-Dobrick, M.; Sarathy, K. V.; Jansen, M. Surfactant-Free Synthesis and Functionalization of Gold Nanoparticles. J. Am. Chem. Soc. 2005, 127,12816-12817.
    [207] Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles Science 2002, 298, 2176-2179.
    [208]Nehl, C. L.; Grady, N. K.; Goodrich, G. P.; Tarn, F.; Halas, N. J.; Hafner, J. H.Scattering Spectra of Single Gold Nanoshells. Nano Lett. 2004, 4, 2355-2359.
    [209] Jiang, Z. j.; Liu, C. y. Seed-Mediated Growth Technique for the Preparation of a Silver Nanoshell on a Silica Sphere. J. Phys. Chem. 5 2003, 107, 12411-12415.
    [210] Sun, Y.; Wiley, B.; Li, Z. Y.; Xia, Y. Synthesis and Optical Properties of Nanorattles and Multiple-Walled Nanoshells/Nanotubes Made of Metal Alloys. J.Am. Chem. Soc. 2004,126, 9399-9406.
    [211]Hirsch, L. R.; Jackson, J. B.; Lee, A.; Halas, N. J.; West, J. L. A Whole Blood Immunoassay Using Gold Nanoshells. Anal. Chem. 2003, 75, 2377-2381.
    [212]Bardhan, R.; Grady, N. K.; Cole, J. R.; Joshi, A.; Halas, N. J. Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods. ACS Nano 2009,3, 744-752.
    
    [213]Zeng, X. J.; Zeng, X. H. Biomed Chromatogr. 1999,13, 442-444.
    [214]Sakai, T. Spectrophotometric determination of trace amounts of quaternary ammonium salts in drugs by ion-pair extraction with bromophenol blue and quinine. Analyst 1983,108, 608-614.
    [215] Liu, Y.; Huang, C. Z.; Li, Y. F. Fluorescence Assay Based on Preconcentration by a Self-Ordered Ring Using Berberine as a Model Analyte. Anal. Chem. 2002, 74,5564-5568.
    [216]Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer Verlag:Berlin, Heidelberg, 1995.
    [217] Jin, R.; Cao, Y. C.; Hao, E.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A.Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 2003, 425, 478-490.
    [218] Gonzalez, A. L.; Noguez, C.; Ortiz, G. P.; Rodrfguez-Gattorno, G. Optical Absorbance of Colloidal Suspensions of Silver Polyhedral Nanoparticles. J. Phys.Chem. B 2005,109, 17512-17517.
    [219]Siejak, P.; Fra(?)ckowiak, D. Spectral Properties of Fluorescein Molecules in Water with the Addition of a Colloidal Suspension of Silver. J. Phys. Chem. B 2005,109,14382-14386.
    [220] Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163-166
    [221] Albrecht, M. G.; Creighton, J. A. Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc. 1977, 99, 5215-5217.
    [222] Liu, S. H.; Zhang, Z. H.; Han, M. Y. Gram-Scale Synthesis and Biofunctionalization of Silica-Coated Silver Nanoparticles for Fast Colorimetric DNA Detection. Anal. Chem. 2005, 77, 2595-2600.
    [223]Mandal, S.; Gole, A.; Lala, N.; Gonnade, R.; Ganvir, V.; Sastry, M. Studies on the Reversible Aggregation of Cysteine-Capped Colloidal Silver Particles Interconnected via Hydrogen Boods. Langmuir 2001,17, 6262-6268.
    [224] Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A.Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science 1997, 277,1078-1081.
    [225] Li, H.; Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad.Sci. USA 2004,101, 14036-14039.
    [226]Cobbe, S.; Connolly, S.; Ryan, D.; Nagle, L.; Eritja, R.; Fitzmaurice, D.DNA-Controlled Assembly of Protein-Modified Gold Nanocrystals. J. Phys.Chem. B 2003, 107, 470-477.
    [227] Otsuka, H.; Akiyama, Y.; Nagasaki, Y.; Kataoka, K. Quantitative and Reversible Lectin-Induced Association of Gold Nanoparticles Modified with a-Lactosyl-ω-mercapto-poly (ethyleneglycol). J. Am. Chem. Soc. 2001, 123, 8226-8230.
    [228] Huang, C.-C.; Huang, Y.-F.; Cao, Z.; Tan, W.; Chang, H.-T. Aptamer-Modified Gold Nanoparticles for Colorimetric Determination of Platelet-Derived Growth Factors and Their Receptors. Anal. Chem. 2005, 77, 5735-5741.
    [229] Asian, K.; Luhrs, C. C; P(?)rez-Luna, V. H. Controlled and Reversible Aggregation of Biotinylated Gold Nanoparticles with Streptavidin. J. Phys. Chem. B 2004, 108,15631-15639.
    [230]Lee, S.; P(?)rez-Luna, V. H. Dextran-Gold Nanoparticle Hybrid Material for Biomolecule Immobilization and Detection. Anal. Chem. 2005, 77, 7204-7211.
    [231]Lin, S.-Y.; Liu, S.-W.; Lin, C.-M.; Chen, C.-h. Recognition of Potassium Ion in Water by 15-Crown-5 Functionalized Gold Nanoparticles. Anal. Chem. 2002, 74,330-335.
    [232]Obare, S. O.; Hollowell, R. E.; Murphy, C. J. Sensing Strategy for Lithium Ion Based on Gold Nanoparticles. Langmuir 2002,18, 10407-10410.
    [233] Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L.One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes. J. Am. Chem. Soc. 1998, 120,1959-1964.
    [234]Nath, N.; Chilkoti, A. A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface. Anal. Chem. 2002, 74,504-509.
    [235] Liu, J.; Lu, Y. A Colorimetric Lead Biosensor Using DNAzytne-Directed Assembly of Gold Nanoparticles. J. Am. Chem. Soc. 2003, 125, 6642-6643.
    [236] Liu, J.; Lu, Y. Accelerated Color Change of Gold Nanoparticles Assembled by DNAzymes for Simple and Fast Colorimetric Pb~(2+) Detection. J. Am. Chem. Soc.2004, 126, 12298-12305.
    [237]Creighton, J. A.; Blatchford, C. G.; Albrecht, M. G. J. Chem. Soc, Faraday Trans.1979, 75, 790-798.
    [238]Henglein, A.; Giersig, M. Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate. J. Phys. Chem. B 1999, 103, 9533-9539.
    [239]Kometani, N.; Tsubonishi, M.; Fujita, T.; Asami, K.; Yonezawa, Y. Preparation and Optical Absorption Spectra of Dye-Coated Au, Ag, and Au/Ag Colloidal Nanoparticles in Aqueous Solutions and in Alternate Assembl. Langmuir 2001,17, 578-580.
    [240] Lee, P. C; Meisel, D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. J. Phys. Chem. 1982, 86, 3391-3395.
    [241]Clerico, A.; Ry, S. D.; Giannessi, D. Measurement of Cardiac Natriuretic Hormones (Atrial Natriuretic Peptide, Brain Natriuretic Peptide, and Related Peptides) in Clinical Practice: The Need for a New Generation of Immunoassay Methods. Clin. Chem. 2000, 46, 1529-1534.
    [242]Fenger, M.; Wiik, A.; Heier-Madsen, M.; Lykkegaard, J. J.; Rozenfeld, T.;Hansen, M. S.; Samsoe, B. D.; Jacobsen, S. Detection of Antinuclear Antibodies by Solid-Phase Immunoassays and Immunofluorescence Analysis. Clin. Chem.2004,50,2141-2147.
    [243]Vaisfinen, V.; Eriksson, S.; Ivaska, K. K.; Lilja, H.; Nurmi, M.; Pettersson, K.Development of Sensitive Immunoassays for Free and Total Human Glandular Kallikrein 2. Clin. Chem. 2004, 50, 1607-1617.
    [244] Sherry, J. P.; Clement, R. E. Environmental Chemistry: The Immunoassay Option.Crit. Rev. Anal. Chem. 1992, 23, 217-300.
    [245] Peruski, A. H.; Peruski, L. F. Immunological Methods for Detection and Identification of Infectious Disease and Biological Warfare Agents. Clin. Diagn.Lab. Immunol. 2003, 10, 506-513.
    [246] Schelhaas, M.; N(?)gele, E.; Kuder, N.; Bader, B.; Kuhlmann, J.; Wittinghofer, A.;Waldmann, H. Chemoenzymatic Synthesis of Biotinylated Ras Peptides and Their Use in Membrane Binding Studies of Lipidated Model Proteins by Surface Plasmon Resonance. Chem. Eur.J 1999, 5, 1239-1252.
    [247] Liu, X.; Sun, Y.; Song, D.-Q.; Li, X.-W.; Zhang, Q.-L.; Tian, Y.; Liu, Z.-Y.;Zhang, H.-Q. Study on Interaction of Ginsenosides with Bovine or Human Serum Albumin Using Wavelength Modulation Surface Plasmon Resonance Biosensor.Chin. J. Chem. 2006, 24, 660 - 664.
    [248] Stembera, K.; Vogel, S.; Buchynskyy, A.; Ayala, J. A.; Welzel, P. A Surface Plasmon Resonance Analysis of the Interaction between the Antibiotic Moenomycin A and Penicillin-Binding Protein 1b. ChemBioChem 2002, 3, 559 -565.
    [249] Kaganer, E.; Pogreb, R.; Davidov, D.; Willner, I. Surface Plasmon Resonance Characterization of Photoswitchable Antigen-Antibody Interactions. Langmuir 1999, 15, 3920-3923.
    [250]Kanda, V.; Kariuki, J. K.; Harrison, D. J.; McDermott, M. T. Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging.Anal. Chem. 2004, 76, 7257-7262.
    [251]Endo, T.; Kerman, K.; Nagatani, N.; Hiepa, H. M.; Kim, D. K.; Yonezawa, Y.;Nakano, K..; Tamiya, E. Multiple Label-Free Detection of Antigen-Antibody Reaction Using Localized Surface Plasmon Resonance-Based Core-Shell Structured Nanoparticle Layer Nanochip. Anal. Chem. 2006, 78, 6465-6475.
    [252] Kerman, K.; Nagatani, N.; Chikae, M.; Yuhi, T.; Takamura, Y.; Tamiya, E.Label-Free Electrochemical Immunoassay for the Detection of Human Chorionic Gonadotropin Hormone. Anal. Chem. 2006, 78, 5612-5616.
    [253]Endo,T.;Okuyam,A.;Matsubara,Y.;Nishi,K.;Kobayashi,M.;Yamamura,S.;Morita,Y.;Takamur,Y.;Mizukami,H.;Tamiya,E.Fluorescence-based assay with enzyme amplification on a micro-flow immunosensor chip for monitoring coplanar polychlorinated biphenyls.Anal.Chim.Acta 2005,531,7-13.
    [254]Zhang,H.;Jin,W.Single-cell analysis by intracellular immuno-reaction and capillary electrophoresis with laser-induced fluorescence detection.J.Chromatogr.A 2006,1104,346-351.
    [255]Bikoue,A.;Janossy,G.;Barnett,D.Stabilised cellular immuno-fluorescence assay:CD45 expression as a calibration standard for human leukocytes.J.Immunol.Methods 2002,266,19-32
    [256]Grogan,C.;Raiterib,R.;O'Connora,G.M.;Glynna,T.J.;Cunninghama,V.;Kanec,M.;Charltonc,M.;Leechd,D.Characterisation of an antibody coated microcantilever as a potential immuno-based biosensor.Biosens.Bioelection.2002,17,201-207.
    [257]Kelly,K.L.;Coronado,E.;Zhao,L.L.;Schatz,G.C.The Optical Properties of Metal Nanoparticles:The Influence of Size,Shape,and Dielectric Environment.J.Phys.Chem.B 2003,107,668-677.
    [258]Lakowicz,J.R.;Malicka,J.;Matveeva,E.;Gryczynski,I.;Gryczynski,Z.Plasmonic Technology:Novel Approach to Ultrasensitive Immunoassays.Clin.Chem.2005,51,1914-1922.
    [259]Ao,L.;Gao,F.;Pan,B.;He,R.;Cui,D.Fluoroimmunoassay for Antigen Based on Fluorescence Quenching Signal of Gold Nanoparticles.Anal.Chem.2006,78,1104-1106.
    [260]Yu,F.;Yao,D.;Knoll,W.Surface Plasmon Field-Enhanced Fluorescence Spectroscopy Studies of the Interaction between an Antibody and Its Surface-Coupled Antigen.Anal.Chem.2003,75,2610-2617.
    [261]Jarvis,R.M.;Goodacre,R.Discrimination of Bacteria Using Surface-Enhanced Raman Spectroscopy.Anal.Chem.2004,76,40-47.
    [262]Ruhn,P.F.;Garver,S.;Hage,D.S.Development of dihydrazide-activated silica supports for high-performance affinity chromatography.J.Chromatogr.A 1994,669,9-19.
    [263]刘跃;凌剑;李原芳;黄承志 表面固载的蛋白质对银纳米粒子的吸附及蛋白质固载的可视化检测.中国科学(B辑)2009,39,82-86.
    [264]Scolaro,L.M.;Romeo,A.;Pasternack,R.F.Tuning Porphyrin/DNA Supramolecular Assemblies by Competitive Binding.J.Am.Chem.Soc.2004,126,7178-7179.
    [265]Mazzaglia,A.;Angelini,N.;Darcy,R.;Donohue,R.;Lombardo,D.;Micali,N.;Sciortino,M.T.;Villari,V.;Scolaro,L.M.Novel heterotopic colloids of anionic porphyrins entangled in cationic amphiphilic cyclodextrins:Spectroscopic investigation and intracellular delivery.Chem.-Eur.J.2003,9,5762-5769
    [266]He,Y.Q.;Liu,S.P.;Kong,L.;Liu,Z.F.A study on the sizes and concentrations of gold nanoparticles by spectra of absorption,resonance Rayleigh scattering and resonance non-linear scattering.Spectrochim.Acta A 2005,61,2861-2866.
    [267]Zhu,J.;Wang,Y.;Huang,L.;Lu,Y.Resonance light scattering characters of core-shell structure of Au-Ag nanoparticles Phys.Lett.A 2004,323,455-459.
    [268]蒋治良;冯忠伟;李廷盛;李芳;钟福新;谢济运;义祥辉 金纳米粒子的共振散射光谱.中国科学(B辑)2001,31,183-188.
    [269]Chen,F.;Huang,J.;Ai,X.;He,Z.Determination of DNA by Rayleigh light scattering enhancement of molecular light switches.Analyst 2003,128,1462-1466.
    [270]Wang,Z.;Lee,J.;Cossins,A.R.;Brust,M.Microarray-Based Detection of Protein Binding and Functionality by Gold Nanoparticle Probes.Anal Chem.2005,77,5770-5774.
    [271]Roll,D.;Malicka,J.;Gryczynski,I.;Gryczynski,Z.;Lakowicz,J.R.Metallic Colloid Wavelength-Ratiometric Scattering Sensors.Anal Chem.2003,75,3440-3445.
    [272]Aslan,K.;Holley,P.;Davies,L.;Lakowicz,J.R.;Geddes,C.D.Angular-Ratiometric Plasmon-Resonance Based Light Scattering for Bioaffinity Sensing.J.Am.Chem.Soc.2005,127,12115-12121.
    [273]Wang,L.-Y.;Wang,L.;Dong,L.;Hu,Y.-L.;Xia,T.-T.;Chen,H.-Q.;Li,L.;Zhu,C.-Q.Determination of γ-globulin at nanogram levels by its enhancement effect on the resonance light scattering of functionalized HgS nanoparticles.Talanta 2004,62,237-240
    [274]Zhang,L.;Huang,C.Z.;Li,Y.F.;Xiao,S.J.;Xie,J.P.Label-Free Detection of Sequence-Specific DNA with Multiwalled Carbon Nanotubes and Their Light Scattering Signals.J.Phys.Chem.B 2008,112,7120-7122.
    [275]Hu,P.;Huang,C.Z.;Li,Y.F.;Ling,J.;Liu,Y.L.;Fei,L.R.;Xie,J.P.Magnetic Particle-Based Sandwich Sensor with DNA-Modified Carbon Nanotubes as Recognition Elements for Detection of DNA Hybridization.Anal Chem.2008,80,1819-1823.
    [276]Souza,G.R.;Miller,J.H.Oligonucleotide Detection Using Angle-Dependent Light Scattering and Fractal Dimension Analysis of Gold-DNA Aggregates.J.Am.Chem.Soc.2001,123,6734-6735.
    [277]Liu,X.;Dai,Q.;Austin,L.;Coutts,J.;Knowles,G.;Zou,J.;Chen,H.;Huo,Q.A One-Step Homogeneous Immunoassay for Cancer Biomarker Detection Using Gold Nanoparticle Probes Coupled with Dynamic Light Scattering.J.Am.Chem.Soc.2008,130,2780-2782.
    [278]Xu,X.H.N.;Chen,J.;Jeffers,R.B.;Kyriacou,S.Direct Measurement of Sizes and Dynamics of Single Living Membrane Transporters Using Nanooptics.Nano Lett.2002,2,175-182.
    [279]Curry,A.C.;Crow,M.;Wax,A.Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles.J.Biomed.Opt.2008,13,014022.
    [280]Huang,Y.-F.;Lin,Y.-W.;Lin,Z.-H.;Chang,H.-T.Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering.J.Nanopart.Res.2008,11,775-783.
    [281]Ni,J.;Lipert,R.J.;Dawson,G.B.;Porter,M.D.Immunoassay Readout Method Using Extrinsic Raman Labels Adsorbed on Immunogold Colloids.Anal.Chem.1999,71,4903-4908.
    [282]Ji,X.;Song,X.;Li,J.;Bai,Y.;Yang,W.;Peng,X.Size Control of Gold Nanocrystais in Citrate Reduction:The Third Role of Citrate.J.Am.Chem.Soc.2007,129,13939-13948.
    [283]Link,S.;El-Sayed,M.A.Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods.J.Phys.Chem.B 1999,103,8410-8426.
    [284]Jain,P.K.;Lee,K.S.;El-Sayed,I.H.;El-Sayed,M.A.Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size,Shape,and Composition:Applications in Biological Imaging and Biomedicine.J.Phys.Chem.B 2006,110,7238-7248.
    [285]Mie,G.Beitr(?)ge zur Optik tr(u|¨)ber Medien,speziell kolloidaler Metall(o|¨)sungen.Ann.Phys.1908,25,377.
    [286]Draine,B.T.;Flatau,P.J.Discrete-dipole approximation for scattering calculations.J.Opt.Soc.Am.A 1994,11,1491-1499.
    [287]杨志林;胡建强;李秀燕;周海光;田中群 银纳米棒光学性质的离散偶极近似计算.化学物理学报2004,17,253-258.
    [288]Fan,A.;Lau,C.;Lu,J.Magnetic Bead-Based Chemiluminescent Metal Immunoassay with a Colloidal Gold Label.Anal.Chem.2005,77,3238-3242.
    [289]Gilfedder,B.S.;Althoff,F.;Petri,M.;Biester,H.A thermo extraction-UV/Nis spectrophotometric method for total iodine quantification in soils and sediments.Anal.Bioanal.Chem.2007,389,2323-2329.
    [290]Bhagat,P.R.;Pandey,A.K.;Acharya,R.;Natarajan,V.;Rajurkar,N.S.;Reddy,A.V.R.Molecular iodine selective membrane for iodate determination in salt samples:chemical amplification and preconcentration.Anal.Bioanal.Chem.2008,391,1081-1089.
    [291]Bhagat,P.R.;Pandey,A.K.;Acharya,R.;Nair,A.G.C.;Rajurkar,N.S.;Reddy,A.V.R.Molecular iodine preconcentration and determination in aqueous samples using poly(vinylpyrrolidone) containing membranes.Talanta 2008,74,1313-1320.
    [292]Cai,Y.G.Chemical template directed iodine patterns on the octadecyltrichlorosilane surface.Langmuir 2008,24,337-343.
    [293]Hulkko,E.;Kiijunen,T.;Kiviniemi,T.;Pettersson,M.From Monomer to Bulk:Appearance of the Structural Motif of Solid Iodine in Small Clusters.J.Am.Chem.Soc.2009,131,1050-1056.
    [294]Hayakawa,C.;Urita,K.;Ohba,T.;Kanoh,H.;Kaneko,K.Physico-Chemical Properties of Iodine-Adsorbed Single-Walled Carbon Nanotubes.Langmuir 2009,25,1795-1799.
    [295]Hou,X.L.;Hansen,V.;Aldahan,A.;Possnert,G.;Lind,O.C.;Lujaniene,G.A review on speciation of iodine-129 in the environmental and biological samples.Anal.Chim.Acta 2009,632,181-196.
    [296]Cheng,W.;Dong,S.;Wang,E.Iodine-Induced Gold-Nanoparticle Fusion Fragmentation/Aggregation and Iodine-Linked Nanostructured Assemblies on a Glass Substrate.Angew.Chem.Int.Ed.2003,42,449-452.
    [297]Li,M.-D.;Cui,Y.;Gao,M.-X.;Luo,J.;Ren,B.;Tian,Z.-Q.Clean Substrates Prepared by Chemical Adsorption of Iodide Followed by Electrochemical Oxidation for Surface-Enhanced Raman Spectroscopic Study of Cell Membrane.Anal.Chem.2008,80,5118-5125.
    [298]Wang,J.;Li,Y.F.;Huang,C.Z.Identification of Iodine-Induced Morphological Transformation of Gold Nanorods.J.Phys.Chem.C 2008,112,11691-11695.
    [299]王健;吴昊;黄承志 碘对金纳米棒的融合作用及其在四环素类抗菌素分析测定中的应用.中国科学(B辑)2008,38,929-937
    [300]Cho,E.C.;Xie,J.;Wurm,P.A.;Xia,Y.Understanding the Role of Surface Charges in Cellular Adsorption versus Internalization by Selectively Removing Gold Nanoparticles on the Cell Surface with a I_2/KI Etchant.Nano Lett.2009,9,1080-1084.
    [301]Wiley,B.J.;Chen,Y.;McLellan,J.;Xiong,Y.;Li,Z.Y.;Ginger,D.;Xia,Y.Synthesis and Optical Properties of Silver Nanobars and Nanorice.Nano Lett.2007.
    [302]Sastry,M.;Lala,N.;Patil,V.;Chavan,S.P.;Chittiboyina,A.G.Optical Absorption Study of the Biotin-Avidin Interaction on Colloidal Silver and Gold Particles.Langmuir 1998,14,4138-4142.
    [303]Huang,T.;Nallathamby,P.D.;Gillet,D.;Xu,X.-H.N.Design and Synthesis of Single-Nanoparticle Optical Biosensors for Imaging and Characterization of Single Receptor Molecules on Single Living Cells.Anal.Chem.2007,79,7708-7718.
    [304]Frederix,F.;Friedt,J.-M.;Choi,K.-H.;Laureyn,W.;Campitelli,A.;Mondelaers,D.;Maes,G.;Borghs,G.Biosensing Based on Light Absorption of Nanoscaled Gold and Silver Particles.Anal.Chem.2003,75,6894-6900.
    [305]Lin,Y.-S.;Tsai,P.-J.;Weng,M.-F.;Chen,Y.-C.Affinity Capture Using Vancomycin-Bound Magnetic Nanoparticles for the MALDI-MS Analysis of Bacteria.Anal Chem.2005,77,1753-1760.
    [306]Ho,K.-C.;Tsai,P.-J.;Lin,Y.-S.;Chen,Y.-C.Using Biofunctionalized Nanoparticles To Probe Pathogenic Bacteria.Anal Chem.2004,76,7162-7168.
    [307]Liong,M.;Lu,J.;Kovochich,M.;Xia,T.;Ruehm,S.G.;Nel,A.E.;Tamanoi,F.;Zink,J.I.Multifunctional Inorganic Nanoparticles for Imaging,Targeting,and Drug Delivery.ACS Nano 2008,2,889-896.
    [308]Nam,J.-M.;Thaxton,C.S.;Mirkin,C.A.Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins.Science 2003,301,1884-1886.
    [309]Georganopoulou,D.G.;Chang,L.;Nam,J.-M.;Thaxton,C.S.;Mufson,E.J.;Klein,W.L.;Mirkin,C.A.Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc. Natl. Acad. Sci.USA 2005, 102, 2273-2276.
    [310]Lu, J.; Laua, C; Kai, M. Magnetic bead-based label-free chemiluminescence detection of telomeres. Chem. Commun. 2003, 2888-2889.
    [311]Kouassi, G. K.; Irudayaraj, J. Magnetic and Gold-Coated Magnetic Nanoparticles as a DNA Sensor. Anal. Chem. 2006, 78, 3234-3241.
    [312]Tang, D.; Yuan, R.; Chai, Y. Magnetic Control of an Electrochemical Microfluidic Device with an Arrayed Immunosensor for Simultaneous Multiple Immunoassays. Clin. Chem. 2007, 53, 1323-1329.
    [313]Centi, S.; Tombelli, S.; Minunni, M.; Mascini, M. Aptamer-Based Detection of Plasma Proteins by an Electrochemical Assay Coupled to Magnetic Beads. Anal.Chem. 2007.
    [314]Konerack(?), M.; Kop(?)ansk(?), P.; Antalfk, M.; Timko, M.; Ramchand, C. N.; Lobo,D.; Mehta, R. V.; Upadhyay, R. V. Immobilization of proteins and enzymes to fine magnetic particles. J. Magn. Magn. Mater. 1999, 201, 427-430.
    [315]Thompson, D. G.; Enright, A.; Faulds, K.; Smith, W. E.; Graham, D.Ultrasensitive DNA Detection Using Oligonucleotide-Silver Nanoparticle Conjugates. Anal. Chem. 2008, 80, 2805-2810.
    [316] Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse Magnetic Single-Crystal Ferrite Microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782-2785.
    [317]Ehlert, O.; Thomann, R.; Darbandi, M.; Nann, T. A Four-Color Colloidal Multiplexing Nanoparticle System. ACS Nano 2008, 2, 120-124.
    [318]Previte, M. J. R.; Pelet, S.; Kim, K. H.; Buehler, C.; So, P. T. C. Spectrally Resolved Fluorescence Correlation Spectroscopy Based on Global Analysis. Anal.Chem. 2008, 80, 3277-3284.
    [319]Takahashi, S.; Murakami, K.; Anazawa, T.; Kambara, H. Multiple Sheath-Flow Gel Capillary-Array Electrophoresis for Multicolor Fluorescent DNA Detection.Anal. Chem. 1994, 66, 1021-1026.
    [320] Ho, Y.-P.; Kung, M. C.; Yang, S.; Wang, T.-H. Multiplexed Hybridization Detection with Multicolor Colocalization of Quantum Dot Nanoprobes. Nano Lett.2005,5, 1693-1697.
    [321] Jiang, T.; Liu, R.; Huang, X.; Feng, H.; Teo, W.; Xing, a. B. Colorimetric screening of bacterial enzyme activity and inhibition based on the aggregation of gold nanoparticles. Chem. Commun. 2009, 1972-1974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700