用户名: 密码: 验证码:
宽带阵列天线及无线终端设备天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空分组网技术、宽带自适应波束成形技术、跳扩频技术和卫星通信技术等在军事保密移动通信系统中的广泛应用,迫切要求其所配备天线宽带化、小型化和智能化。新型宽带阵列天线及无线终端设备天线研究是一项具有重大理论意义和工程实用价值的课题。本文密切结合“十一五”国防预研项目子专题“宽带高速网络电台波束成型阵列天线研制”、高校合作项目“UHF双频圆极化天线研制”、企业协作项目“三合一天线研制”等,系统研究了100-400MHz水平全向宽带高增益天线、225-800MHz宽带自适应波束成形阵列天线、七种不同用途的无线通信系统天线以及一种新型多功能组合复用天线。作者的主要工作和创造性成果可概括为:
     1.提出并研究新型的复合结构的笼型中馈全向天线。采用矩量法对天线各项参数对性能的影响做了详细的分析。1)利用结构不对称性,改善天线的全向辐射特性。特别是解决了通常全向天线在工作频段高端出现裂瓣或凹陷的问题。2)引入螺旋短截线,在不破坏天线全向辐射特性的同时,减小天线的尺寸。短截线的引入还可以为该天线作为阵列单元布阵时提供馈线走线的方便,而且可以起到避雷的作用。
     2.提出并研究并馈两元高增益笼型振子天线阵。首先,利用矩量法结合基于PSO优化算法的阻抗匹配技术,根据实际天线单元的输入阻抗,设计了一副100-400MHz宽带功分匹配网络;其次,通过短截线复用,在不破坏天线辐射特性的情况下组成两元高增益并馈阵列。
     3.提出并研究225-800MHz宽带自适应波束成形阵列天线。首先,采用粒子群优化算法结合MOM的方法优化了圆形阵列。根据空分组网的要求,以半波功率覆盖60°扇区及压制旁瓣为适应度函数,在225-450MHz及450MHz-800MHz的频带内合理选择圆阵半径,优化出宽带内的波束成形算法。其次,系统地研究了宽带阵列天线的馈电网络。利用PSO优化算法结合阻抗匹配技术,设计出225- 450MHz和450- 800MHz两种集总元件的宽带功分网络。研究并设计出一套225- 450- 800MHz的双工器,将两个不同频段的子阵组合起来。最后,根据高速网络电台高速实时跳频通信的要求,研究了一种快速的计算天线阵列单元激励馈电的幅度和相位的新方法。该算法利用三次样条插值(CSI),对已优化的工作频带内的采样频点进行插值计算,快速地计算出整个频带内的幅度和相位权值,从而适应系统快速实时处理的要求。
     4.提出并研究两种卫星通信移动终端的小型化天线。结合卫星通信天线的设计要求,针对不同要求分别设计出一幅高隔离度的收发双工的双频双圆极化微带天线和一幅具有高度小型化的曲折线十字交叉阵子天线。
     5.提出并研究三种集成于手机内部的多媒体多频段手机天线,系统地研究了移动终端小型化天线的设计。利用曲折线技术和组合复用技术减小天线的尺寸,通过结构复用和引入遏流槽改善双端口天线系统端口间隔离度的。
     6.提出并研究一种具有定向辐射能力的环状波束的室内分布双频天线。结合移动通信室内分布WLAN的通信要求,针对大型体育馆和会议场所设计一幅具有定向辐射能力的室内分布双频天线。研究了双频双枝节微带线馈电网络的解析分析方法。
     7.提出并研究一种具有UWB特性的USB闪盘天线。首先,提出了一种采用复用屏蔽盒结构来构造天线的思想,利用射频模块和基带处理模块的屏蔽盒做为天线的主要辐射体,等效于减小了天线的空间占用需求。其次,通过采用短截线技术进一步实现天线的小型化。
     8.提出并研究一种集北斗定位导航通信、X频段远距离通信、VHF短距离通信于一体的多功能组合复用天线。首先设计出一套多层双频双圆极化微带天线用于北斗卫星通信;然后利用共形技术,在天线支架上面安装一套六棱柱面微带天线阵列;最后利用结构复用技术将天线支架本身作为VHF搜救天线的辐射体,通过阻抗匹配技术改善其辐射特性。测试和实际通话效果表明该天线性能可靠。
Space division multiple access techniques, broadband adaptive antenna array techniques, frequency-hopping and spread-spectrum techniques, and satellite communication techniques become more prevalent in the modern military secure communication systems, which makes the design and manufacture of broadband omnidirectional miniature antennas and broadband adaptive antennas to be an urgent and important issue. Being associated with three research projects, this dissertation makes deeply insight into the fast and accurate analysis, optimal design and manufacture of a 100-400MHz broadband omnidirectional miniature antenna, a 225-800MHz broadband circular array antenna, seven wireless terminal antennas and a submarine antenna. The author’s major contributions are as follows:
     1. The design and realization of a composite structure cage antenna are presented. Two novel techniques are used for the broadband omnidirectional miniature cage antenna. First, the antenna has a composite structure of cage and asymmetric biconical structure. The impedance bandwidth and radiation pattern bandwidth are enhanced, and the tilting and ripping of radiation patterns are eliminated. Second, a helical shorting wire is used to reduce the antenna height effectively. The helical shorting wire leads to more convenience for routing the feeding wires of array antennas and plays a function of lightning protection.
     2. A novel wide-band two-element center-fed cage array antenna is investigated. By using the PSO-based impedance matching optimization technology, according to the measured impedance of the antenna, a broadband matching and dividing network is designed. A 100-400MHz matching and dividing network is manufactured and used as the feeding network of the two-element array antenna. The impedance of the array element is improved, and equal amplitudes and same phases are achieved in the broad frequency band. Second, by reusing the feeding coaxial-cable shield as the shorting line of the array element, the problem of routing the feeding wires is solved effectively.
     3. A 225-800MHz broadband adaptive antenna array is studied. First, particle swarm optimization (PSO) is investigated for the optimal design of the broadband adaptive array antenna beam forming procedure. The 60-degree half power beam width (HPBW), low side lobe level, as well as small front to back ratio, are established as a versatile objective function and optimized simultaneously. Proper radiuses of 225-450MHz and 450MHz-800MHz four-layer circular array antennas are selected for decreasing the effect of the mutual. Second, the feeding networks of the array antenna are presented and studied. The feeding network includes a diplexer (225- 450- 800MHz) and two power dividers (225- 450MHz and 450- 800MHz) using lumped components. The power dividers are designed using the PSO-based impedance matching optimization technology mentioned previously. Third, according to the requirements of wide-band frequency-hopping and spread-spectrum techniques, the cubic spline interpolation (CSI) method is utilized to efficiently obtain the complex excitations at arbitrary frequency points within the working frequency band. An eight-layer circular array antenna working in 225-800MHz is designed successfully.
     4. Two novel antennas are investigated for small satellite communication. One of them is a multilayer microstrip antenna which can realize right circularly polarized radiation and left circularly polarized radiation simultaneously at receiving frequency band and transmitting frequency band by using the Lange-coupler as an orthogonal feeding network, respectively. The patch coupled feeding and additional lumped filtering network techniques achieve a high port-to-port isolation. Another one is a tapered meander line turnstile dipole antenna. The designed antenna has a size reduction rate of 96% compared with a traditional turnstile dipole antenna, and the impedance is improved by using the matching network optimized by PSO.
     5. Three mobile phone antennas are investigated for multiband application. A planar meander sleeve monopole antenna is studied for DVB-H/GSM mobile handsets. Another two antenna using combined PIFAs are studied for GSM/DCS and WLAN mobile handsets. By using the meander and reused structure, the antenna size is miniaturized. The reused structure and notching slot improve the port-to-port isolation effectively.
     6. A Dual-band Toroidal Beam Antenna for WLAN Communications is presented. The antenna mainly consists of six dual-band inverted-L radiating elements and is fed by a two-section six-way microstrip power divider. The effects of the length of two strips, the height of the antenna and the size of ground are analyzed. The two-section microstrip power divider is investigated by analytical method.
     7. A novel design of ultra-wideband (UWB) antenna for wireless USB (WUSB) flash disk is presented. The baseband module shielding box and the RF module shielding box, two necessary parts for a WUSB flash disk, are subtly used as the radiators, which means that no other radiators are needed for the antenna. A shorting tube is used as the signal wire channel to connect the baseband and the RF modules, which also is a shorting wire of the antenna.
     8. A multi-band combined three-in-one antenna for submarine communication is proposed. The three-in-one antenna includes a Beidou dual-band circularly-polarized antenna, an X-band horizontally-polarized omni-directional antenna and a VHF perpendicularly-polarized omni-directional antenna.
引文
[1]魏文元,宫德明,陈必森.天线原理.北京:国防工业出版社, 1985.
    [2]周超栋,王元坤,周良明.线天线理论与工程.西安:西安电子科技大学出版社, 1988.
    [3]林昌禄.天线工程手册.北京:电子工业出版社, 2002.
    [4]王元坤,李玉权.线天线的宽频带技术.西安:西安电子科技大学出版社, 1995.
    [5] K. Fujimoto, A. Henderson, K. Hirasawa, and J. R. James. Small Antennas. Research Studies Press , Ltd. John Wiley & Sons. 1987.
    [6] A. M. Thomas. Modern Antenna Design. 2nd Edition, John Wiley & Sons Inc., Hoboken, New Jersey, 2005.
    [7] A. B. Constantine. Antenna Theory: Analysis and Design. 3rd Edition, John Wiley & Sons Inc., 2005.
    [8] R. C. Johnson and H. Jasik. Antenna Engineering Handbook. 4th Edition, New York: McGraw-Hill Professional, 2007.
    [9] G. Tsoulos. Wireless personal communications for 21st century: European technological advances in adaptive antennas. IEEE Communications magazine, 1997, Vol. 35(9), 102-109.
    [10] F. Adachi, M. Sawahashi, and H. Suda. Wideband DS-CDMA for next generation mobile communications system. IEEE Communications magazine, 1998, Vol. 36(9), 56-59.
    [11] F. Shueh and W. S. E. Chen. Code assignment for IMT-2000 on forward radio link. Vehicular technology conference, IEEE, 2001, 906-910.
    [12] A. U. Bhobe and P. L. Perini. An overview of smart antenna technology for wireless communication. Aerospace Conference 2001, IEEE Proceedings, 2001, Vol. 2, 875-883.
    [13] A. Alexiou and M.Haardt. Smart antenna technologies for future wireless systems: trends and challenges. IEEE Communications Magazine, 2004, Vol. 42 (9), 90-97.
    [14] B. G. Frank. Smart Antennas for Wireless Communications with Matlab. New York: McGraw-Hill, 2005.
    [15] K. Nishimori and K. Cho. A novel SDMA configuration using smart antenna adopting vertical pattern and polarization control. Vehicular Technology Conference, 2003, Vol. 2, 871-875.
    [16] K. Cho, K. Takatori, and Y. Komiya. Novel smart antennas for applying SDMA to cellular mobile communication systems. Antennas and Propagation Society International Symposium 2002, IEEE, 2002, Vol. 4, 652-655.
    [17] Z. H. Feng and Z. J. Zhang. Smart antenna and spatial division multiple access. International Conference on Microwave and Millimeter Wave Technology Proceedings, 1998, 53-58.
    [18] K. N. Chee, S. Khatun, B. M. Ali, S. S. Jamuar, and M. Ismail. Space division duplex (SDD) system using smart antenna. IEEE International Workshop on Small Antennas and Novel Metamaterials, 2005, 483-488.
    [19]崔炎,吕善伟.空分多址技术在GSM系统中的应用分析.北京航空航天大学学报. 2003, Vol. 29(2), 169-172.
    [20] A. Emilio, B. Luigi, A. Giandomenico, and D. M. Giuseppe. A Compact High Gain Antenna for Small Satellite Applications. IEEE Trans. on Antennas and Propagation, Vol. 55(2), 277-282.
    [21] C. G. Kakoyiannis and P. Constantinou. A compact microstrip antenna with tapered peripheral slits for CubeSat RF Payloads at 436MHz: Miniaturization techniques, design & numerical results, International Workshop on Satellite and Space Communications, 2008, 255-259.
    [22] A. Emillo, B. Luigi, A. Giandomenico, and D. M. Gluseppe. A high gain antenna for small satellite missions. IEEE antennas and propagation society international symposium, 2004, 1587-1590.
    [23] Y. S. Ye, Q.M. Li. A new type of X-band data transmission antenna used on CBERS-1 satellite. Proceedings of 2003 6th International Symposium on Antennas, Propagation and EM Theory, 2003. 1-6.
    [24] S. Gao, M. Brenchley, M. Unwin, C. I. Underwood, K. Clark, K. Maynard, L. Boland, and M. N. Sweeting. Antennas for small satellites. Antennas and Propagation Conference, 2008, 66-69.
    [25] R. J. Rusch and C. H. Chen. Antennas for the next generation of mobile satellite services. 10th International Conference on Antennas and Propagation, 1997, Vol.1, 255-260.
    [26] K.I. Thimothy and T.S. Hie. Conical-beam Antenna to Compensate Free Space Loss at X-band in LEO satellite Systems. Proceedings of the 2003 Joint Conference of the Fourth International Conference on Information,Communications and Signal Processing-Pacific Rim Conference on Multimedia (ICICS-PCM2003), 2003, 1124-1127.
    [27] M. Hosseini, M. Hakkak, and P. Rezaei. Design of a Dual-Band Quadrifilar Helix Antenna. Antennas and Wireless Propagation Letters, Vol. 4(1), 39-42.
    [28] P. Rezaei. Design of Quadrifilar Helical Antenna for Use on Small Satellites. Antennas and Propagation Society International Symposium of IEEE, 2004, Vol. 3, 2895-2898.
    [29]陈义平.现代小卫星的射频天线新技术.现代电子技术, 2007, Vol. 30(11), 35-38.
    [30]王家勇,刘光壮,梁旭文,杨根庆. LEO短数据通信小卫星天线系统设计.无线通信技术, 2004, Vol. 13(1), 29-32.
    [31] K. Fujimoto and J. R. James. Mobile Antenna Systems Handbook. Boston: Artech House, 1994.
    [32] H. A. Wheeler. Fundamental Limitations of Small Antennas. Proceedings of the IRE, 1947, Vol. 35(12), 1479-1484.
    [33] R. C. Hansen. Fundamental Limitations in Antennas. Proceedings of the IEEE, 1981, Vol. 69(2), 170-182.
    [34] A. Diallo, C. Luxey, T. P. Le, R. Staraj, and G. Kossiavas. Efficient two-port antenna-system for GSM/DCS/UMTS multi-mode mobile phones. Electronics Letters, 2007, Vol. 43(7), 369-370.
    [35] T. Kokkinos, E. Liakou, and A. P. Feresidis. Decoupling antenna elements of PIFA arrays on handheld devices. Electronics Letters, 2008, Vol. 44(25), 1442-1444.
    [36] K. L. Wong, J. H. Chou, C. L. Tang, and S. H. Yeh. Integrated internal GSM/DCS and WLAN antennas with optimized isolation for a PDA phone. Microwave and Optical Technology Letters, 2005, Vol. 46(4), 323-326.
    [37] C. M. Su and K. L. Wong. Isolation between internal UMTS and WLAN antennas for a dual-mode wireless device. Microwave and Optical Technology Letters, 2006, Vol. 48(10), 2001-2008.
    [38] M. W. Atwood, G. N. Marcoux, and W. P. Craig. Demonstration of two-way Extremely High Frequency (EHF) satellite communication (SATCOM) using submarine-survivable phased arrays. Military Communications Conference, 2008, 1-7.
    [39] C. Fessenden and D. Cheng. Development of a Trailing-Wire E-Field SubmarineAntenna for Extremely Low Frequency (ELF) Reception. IEEE Trans. on Communications, 1974, Vol. 22(4), 428-437.
    [40] F. Plonski and C. M. Gyenes. Efficient HF Submarine Antennas. Antennas and Propagation Society International Symposium of IEEE, 2008, 1-4.
    [41] H. Wheeler. Fundamental limitations of a small VLF antenna for submarines. IRE Trans. on Antennas and Propagation, 1958, Vol. 6(1), 123-125.
    [42] P. Brown. GPS applications in sonobuoys. IEE Colloquium on Heading Sensors for Sonar and Marine Applications, 1994, 9/1-9/5.
    [43] P. M. Cutzach. Numerical solution of Maxwell equations in a two-layered medium. International Conference on Mathematical Methods in Electromagnetic Theory, 1998, Vol. 2, 528-530.
    [44] D. F. Rivera. Submarine towed communication antennas: past, present and future. Antennas and Propagation Society International Symposium of IEEE, 2001, Vol. 2, 426-429.
    [45] M. Ishida and Y. Okamoto. Ocean microwave communication system. Oceans, 1973, Vol. 5, 400-404.
    [46]罗建新,冯扬.潜艇通信天线技术现状及发展趋势.舰船科学技术, 2008, Vol. 30, 19-22.
    [47]浦海兵.潜艇通信天线的结构设计研究.舰船科学技术, 2008, Vol. 30, 62-65.
    [48]方传顺.潜艇通信天线.北京:海潮出版社, 2005.
    [49] R.K. Moore, The Theory of Radio Communication Between Submerged Submarines, Ph.D. thesis, Cornell University, Ithaca, New York, 1951.
    [50]陈虹,冷文军.美俄潜艇技术发展述评.舰船科学技术, 2008, Vol. 30 (2), 38-44.
    [51] P. Sass, C. Mitre, and F. Jim. Technology for the Objective Force. Defense Advanced Research Projects Agency (DARPA) to FCS Communications. 2004.
    [52] C. Le and P. Stuckey. FCS Low Band Radio Development. Proceedings of IEEE MILCOM, 2001.
    [53] L. Chris. The UltraComm Radio Technologies. Proc of IEEE Sarnoff Symposium, 2001.
    [54] Raytheon Company. UltraComm Advanced Digital Receiver (ADR) Test Report, 2000.
    [55] A. Higgins, G. Lehtola, R. Meyer, and K. Peterson. A Quasi-optical AdaptiveAntenna Communications System for 37 GHz. Proceedings of IEEE MILCOM, 2001.
    [56] Future Combat Systems Communications System Study Team (SST)“Issues”Report, Version 1.0, March 2001.
    [57]陈如明. 3G演进轨迹透视及中国发展策略考虑(上).电信科学, 2002, Vol. 118(2), 3-6.
    [58]陈如明. 3G演进轨迹透视及中国发展策略考虑(下).电信科学, 2002, Vol. 118(3), 3-7.
    [59]黄玉学.智能天线技术.无线电通信技术, 2006, Vol. 32(4), 27-29.
    [60] V. D. Thanh and N. L. Hung. New adaptive beamforming algorithms for smart antenna in DS-CDMA mobile communication systems. 3rd International Conference on Computational Electromagnetics and Its Applications, 2004, 165-168.
    [61] S. S. Jeon, Y. X.Wang, and Y. X Qian. A novel planar array smart antenna system with hybrid analog-digital beamforming. IEEE MTT-S Digest, 2001, 121-124.
    [62]沈建锋,王宗欣.智能天线中新的波束形成方法.电子学报, 2004, Vol. 32(3), 373-376.
    [63] W. N. Todd, E. S. Jeffrey, and S. C. James. Performance Characterization of FPGA Techniques for Calibration and Beamforming in Smart Antenna Applications. IEEE Trans. on Microwave Theory and Techniques, 2002, Vol. 50(12), 3043-3051.
    [64] X. Hao, K. Vytas, and L. John. Smart antenna calibration for beamforming. IEEE Antennas and Propagation Society International Symposium, 1998, Vol. 3, 1458-1461.
    [65] H. G. Park, J. H. Jung, and S. O. Hyun. Model based antenna array calibration for smart antenna systems. Electronics Letters, 2002, Vol. 38(15), 71-72.
    [66] K. R. Dandekar, H. Ling, and G. H. Xu. Smart antenna array calibration procedure including amplitude and phase mismatch and mutual coupling effects. IEEE International Conference on Personal Wireless Communications, 2000, 293-297.
    [67] K. Hitoshi, and S. Kunio. A study of a method of compensation for mutual coupling between multi-mode antennas and single-mode antennas. IEEE Antennas and Propagation Society International Symposium, 2003, Vol. 3, 713-716.
    [68] D. Salman, and E. Marek Bialkowski. Effect of mutual coupling on theinterference rejection capabilities of linear and circular arrays in CDMA systems. IEEE Trans. on Antennas and Propagation, 2004, Vol. 52(4), 1130-1134.
    [69]李世鹤. TD-SCDMA第三代移动通信系统标准.版本1.0.北京:人民邮电出版社, 2003, 158-161.
    [70]彭木根,王文博. TD-SCDMA移动通信系统.版本2.0.北京:机械工业出版社, 2007, 215-337.
    [71] R. F. Harrington. Field Computation by Moment Methods. Malabar, FL: Krieger, 1968.
    [72]刘其中,宫德明.天线德计算机辅助设计.版本1.0.西安:西安电子科技大学出版社, 1998, 1-25.
    [73] G. J. Burke and A. J. Poggio. Numerical Electromagnetic Code (NEC2)-Method of Moments, PartⅡ: Program description-theory. Lawrence Livermore Laboratory, 1981.
    [74]金建铭.电磁场有限元方法.版本1.0.西安:西安电子科技大学出版社, 2004, 1-16.
    [75] K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media. IEEE Trans. on Antennas and Propagation, 1966, Vol. 14(3), 302-307.
    [76]葛德彪,闫玉波.电磁波时域有限差分法.版本1.0.西安:西安电子科技大学出版社, 2002, 1-89.
    [77] D. H. Werner. A method of moments approach for the efficient and accurate modeling of moderately thick cylindrical wire antennas. IEEE Trans. on Antennas and Propagation, 1998, Vol. 46(3), 373-381.
    [78] B. Engquist and A. Majda. Absorbing boundary conditions for the numerical simulation of waves. Applied Mathematical Sciences, 1977, Vol. 74(5), 1765-1766.
    [79] T. G. Moore, J. G. Blashak, A. Taflove, et al. Theory and application of radiation boundary operators. IEEE Trans. on Antennas and Propagation, 1988, Vol. 36(12), 1791-1812.
    [80] G. Mur. Absorbing boundary conditions for the finite-difference approximation of the time-domain delectromagnetic field equations. IEEE Trans. on Electromagnetic Capability, 1981, Vol. 23(4), 377-382.
    [81] S. D. Gedney. An Anisotropic PML Absorbing Media for the FDTD Simulation ofFields in Lossy and Dispersive Media. Electromagnetics, 1996, Vol. 16(4), 399-415.
    [82] M. F. Pasik, G. Aguirre, and A. C. Cangellaris. Application of the PML absorbing boundary condition to the analysis of patch antennas. Electromagnetics, 1996, Vol. 16(4), 435-4449.
    [83] X. Zhang and K. K. Mei. Time-domain finite difference approach to the calculation of the frequency dependent characteristics of microstrip discontinuities. IEEE Trans. on MTT, 1988, Vol. 36(12), 1775-1787.
    [84] J. Kennedy and R. C. Eberhart. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, 1995, Vol. 4, 1942-1948.
    [85] K. R. Mahmoud, M. I. El-Adawy, R. Bansal, S. H. Zainud-Deen, and S. M. M. Ibrahem. Analysis of uniform circular arrays for adaptive beamforming applications using particle swarm optimization algorithm. International Journal of RF and Microwave Computer-Aided Engineering, 2008, Vol. 18(1), 42-52.
    [86] T. B. Chen, Y. B. Chen, Y. C. Jiao, and F. S. Zhang. Synthesis of Antenna Array Using Particle Swarm Optimization. Microwave Conference Proceedings, 2005.
    [87]陈胜兵,焦永昌.蜂窝移动通信基站天线技术研究发展.西安电子科技大学学报(自然科学版) , 2003, Vol. 30 (6), 792-797.
    [88]焦永昌,杨科,陈胜兵,张福顺.粒子群优化算法用于阵列天线方向图综合设计.电波科学学报, 2006, Vol. 21(1), 16-25.
    [89] J. B. Peter and A. B. Constantine. Minimum Sidelobe Levels for Linear Arrays. IEEE Trans. on Antennas and Propagation, 2007, Vol. 55(12), 3442-3449.
    [90] R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization: an overview. Swarm Intelligence, 2007, Vol. 1(1), 33-57.
    [91] J. Robinson and Y. Rahmat-Samii. Particle swarm optimization in electromagnetic. IEEE Trans. on Antennas and Propagation, 2004, Vol. 52(2), 397-407.
    [92] K. E. Parsopoulos and N. VrahatisM. Recent approaches to global optimization problems through particle swarm optimization. Natural Computing, 2002, Vol. 1 (2-3), 235-306.
    [93] J. Sun, B. Feng, and W. Xu. Particle swarm optimization with particles having quantum behavior. Proc. Conf. Evolutionary Computation, 2004, Vol. 1, 325-331.
    [94] K. E. Parsopoulos and M. N. Vrahatis. Particle Swarm Optimization Method in Multiobjective Problems. Proceedings ACM Symposium on Applied Computing,2002, 603-607.
    [95] F. S. Levin. An Introduction to Quantum Theory. New York: Cambridge University Press, 2002.
    [96] P. A. Lindsay. Quantum Mechanics for Electrical Engineers. New York: McGraw-Hill, 1967.
    [97]康行健.天线原理与设计.版本1.0.北京:国防工业出版社, 1993, 84-143.
    [98] U. Grenander and G. Szego. Toeplitz forms and their applications. Second Edition. Chelsea, New York, 1984.
    [99] J. J. Thierry and B. B. Ben. Improved theoretical and experimental models for the coaxial collinear antenna. IEEE Trans on Antennas and Propagation, 1989, Vol. 37(3), 289-296.
    [100] J. J. Thierry and B. B. Ben. The coaxial collinear current distribution from the cylindrical antenna equation. IEEE Trans on Antennas and Propagation, 1987, Vol. 35(3), 328-331.
    [101] J. F. Kiang. Analysis of linear coaxial antennas. IEEE Trans. on Antennas and Propagation, 1998, Vol. 46(5), 636-642.
    [102] A. Sakitani and S. Egashira. Analysis of coaxial collinear antenna: recurrence formula of voltages and admittances at connections. IEEE Trans. on Antennas and Propagation, 1991, Vol. 39(1), 15-21.
    [103]于晓乐,倪大宁,吴蕴轩,张福顺.一种新型全向高增益印刷天线的设计.雷达科学与技术, 2006, Vol. 4(4), 233-235.
    [104]高峰,王旭东,单润红等.一种新型圆形智能天线阵的分析与设计.电波科学学报, 2004, Vol. 19(2), 200-203.
    [105]邮电部电信总局.短波天线维护手册.北京:人民邮电出版社,1991.
    [106]周斌,刘其中,徐志,等.笼形中馈天线的设计与优化.西安电子科技大学学报, 2006, Vol. 33(6), 975-979.
    [107]李建峰,孙保华,刘其中,周海进.一种新型复合结构笼型中馈天线.西安电子科技大学学报, 2008, Vol. 35(5), 889-893.
    [108] L. LaubK, P. Li, K. M. Luk. A Monopolar Patch Antenna With Very Wide Impedance Bandwidth. IEEE Trans. on Antennas and Propagation, 2005,Vol. 53(3), 1004-1010.
    [109]清华大学.微带电路,北京:人民邮电出版社, 1976.
    [110]孙保华,周良明,肖辉.天线宽带匹配网络的设计与计算方法.西安电子科技大学学报, 1999, Vol. 26(6), 793-797.
    [111]褚庆昕.微波网络讲义.西安电子科技大学内部教材,第16讲.
    [112]梁昌洪,官伯然.简明微波.西安电子科技大学内部教材.
    [113]孙保华. VHF/UHF全向宽带小型化天线的研究.西安电子科技大学博士论文, 2001.
    [114] L. Wu, Z. G Sun, Yilmaz. A Dual-Frequency Wilkinson Power Divider. IEEE Trans. on Microwave Theory and Techniques, 2006, Vol. 54(1), 278-284.
    [115]赵兰,廖斌.宽带Wilkinson功分器的研制.材料导报, 2007, Vol. 21(11 A), 195-197.
    [116]程敏锋,刘学观.微带型Wilkinson功分器设计与实现.现代电子设计, 2006, Vol. 20, 25-26.
    [117] J. S. Li, Y. Z. Zou, and S.L. He. A Novel Power Divider Utilizing Composite Right/Left-Handed Transmission Line. Microwave and Optical Technology Letters, 2006, Vol. 48(9), 1776-1779.
    [118] Y. Chang, T. Sekine, and T. Nakamura. A Two-Way Power Divider Using Coupled Lines and Capacitances. Electronics and Communications in Japan, part 1, 1997, Vol. 80(6), 17-22.
    [119] J. L. Li, S. W. Qu, and Q. Xue. Capacitively Loaded Wilkinson Power Divider With Size Reduction And Harmonic Suppression. Microwave and Optical Technology Letters, 2007, Vol. 49(11), 2737-2739.
    [120] A. S. S. Mohra. Compact dual band Wilkinson power divider. Microwave and Optical Technology Letters, 2007, Vol. 50(6), 1678-1682.
    [121]凌啼,邹勇卓,林志立,胡骏.基于左手传输线的威尔金森功分器设计.微波学报, 2007, Vol. 23(5), 26-28.
    [122] H. R. Ahn and I. Wolff. General design equations, small-sized impedance transformers, and their application to small-sized three-port 3-dB power dividers. IEEE Trans. on Microwave Theory and Techniques, 2001, Vol. 49(7), 1277-1288.
    [123]刘涓,吕善伟.一种实现宽频带功分器的新方法.电子学报, 2004, Vol. 32(9), 1527-1529.
    [124] Wikipedia. http://en.wikipedia.org/wiki/USB.
    [125] G. R. Aiello and G. D. Rogerson. Ultra-wideband wireless systems. IEEE Microwave Magazines, 2003, Vol. 4, 36-47.
    [126] B. W. Koo, M. S. Baek, and H. K. Song. Multiple antenna transmission techniquefor UWB system. Progress in Electromagnetics Research Letters, 2008, Vol. 2, 177-185.
    [127] X. C. Yin, C. Ruan, C. Y. Ding, and J. H. Chu. A planar U type monopole antenna for UWB applications. Progress in Electromagnetics Research Letters, 2008, Vol. 2, 1-10.
    [128] C. H. Chen, C. H. Liu, C. C. Chiu, and T. M. Hu. Ultrawide band channel calculation by SBR/IMAG techniques for indoor communication. Journal of Electromagnetic Waves and Applications, 2006, Vol. 20(1), 41-51.
    [129] S. Gao and A. Sambell. A simple broadband printed antenna. Progress in Electromagnetics Research, 2006, Vol. 60, 119-130.
    [130] H. J. Zhou, Q. Z. Liu, J. F. Li, and J. L. Guo. A swallow-tailed wideband planar monopole antenna with semi-elliptical base. Journal of Electromagnetic Waves and Applications, 2007, Vol. 21(9), 1257-1264.
    [131] Y. J. Liu, Y. R. Zhang, and W. Cao. A novel approach to the refraction propagation characteristics of UWB signal waveforms. Journal of Electromagnetic Waves and Applications, 2007, Vol. 21(14), 1939-1950.
    [132] X. C. Yin, C. L. Ruan, C. Y. Ding, and J. H. Chu. A planar U type monopole antenna for UWB applications. Progress in Electromagnetics Research Letters, 2008, Vol. 2, 1-10.
    [133] K. L. Wong and C. H. Kuo. Internal GSM/DCS/PCS antenna for USB dongle application. Microwave and Optical Technology Letters, 2006, Vol. 48(12), 2408-2412.
    [134] S. W. Su, J. H. Chou, and K. L. Wong. Internal Ultrawideband Monopole Antenna for Wireless USB Dongle Applications. IEEE Trans. on Antennas and Propagation, 2007, Vol. 55(4), 1180-1183.
    [135] Z. N. Chen and T. S. P. See. Small UWB Antennas for Wireless USB Dongle Attached to Laptop Computer. International Workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications, 2007, 181-184.
    [136] T. S. P. See and Z. N. Chen. A Small UWB Antenna for Wireless USB. IEEE International Conference on Ultra-Wideband, 2007, 198-203.
    [137] C. C. Lin, S. W. Kuo, and H. R. Chuang. A 2.4-GHz Printed Meander Line Antenna for USB WLAN with Notebook-PC Housing. IEEE Microwave and Wireless Components Letters, 2005, Vol. 15(9), 546-548.
    [138] B. G. Evans and K. Baughan. Visions of 4G. Electronics & Communications Engineering Journal, 2000, Vol. 12(6), 293-303.
    [139] F. Shueh and W. S. E. Chen. Code assignment for IMT–2000 on forward radio link. Vehicular technology conference of IEEE, 2001, 906-910.
    [140] C. Michael. Smart antenna. IEEE antenna and propagation magazine, 2000, Vol. 42(3), 129-136.
    [141] J. H. Winters. Smart antennas for wireless system. IEEE Personal communications magazine, 1998, Vol. 5(1), 23-27.
    [142] J. Liberti and S. T. Rappaport. Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications. Prentice Hall, 1999, 1-29.
    [143] E. Z. Ahmed. Potentials of smart antennas in CDMA systems and uplink improvements. IEEE Trans. on Antennas and Propagation, 2001, Vol. 43(3), 172-177.
    [144] C. H. Hsu, W. J. Shyr, C. F. Wu, and P. H. Chou. Models and Algorithms for Optimization Downlink Spatial Division Multiple Access (SDMA) Optimization of Smart Antennas by Phase-Amplitude Perturbations Based on Mimetic Algorithms. 2nd International Conference on ICICIC, 2007, 69-69.
    [145] X. Huang. Smart Antennas for Intelligent Transportation Systems. 6th International Conference on ITS Telecommunications Proceedings, 2006, 426-429.
    [146] J. M. Samhan, R. M. Shubair, and M. A. Al-Qutayri. Design and Implementation of an Adaptive Smart Antenna System. Innovations in Information Technology, 2006, 1-4.
    [147] M. Peng and W. B. Wang. Evaluating of Capacities in TD-SCDMA Systems When Employing Smart Antenna and Multi-User Detection Techniques. WCNC, 2008, 2911- 2915.
    [148] C. M. Li, H. J. Li, and P. J. Wang. Beamforming Degradation of a W-CDMA Smart Antenna under FDD and MAI Channel Estimation Errors. IEEE Antennas and Wireless Propagation Letters, 2007, Vol. 6, 137-140.
    [149] M. Z. Shakir and T. S. Durrani. Narrowband Beamforming Algorithm for Smart Antennas. IBCAST, 2007, 49-54.
    [150] M. Benedetti, R. Azaro, and A. Massa. Memory Enhanced PSO-Based Optimization Approach for Smart Antennas Control in Complex Interference Scenarios. IEEE Trans. on Antennas and Propagation, 2008, Vol. 56(7),1939-1947.
    [151] Y. Okamoto and A. Hirose. Wideband adaptive antenna using selective feeding and stagger tuning. Electronics Letters. 2008, Vol. 44(19), 1116– 1117.
    [152] V. V. Zaharov. Smart antenna beamforming algorithm for mobile communications with high speed moving sources. IEEE Radio and Wireless Symposium, 2008, 279– 282.
    [153]褚庆昕.微波网络讲义.西安电子科技大学内部教材,第11-15讲.
    [154]梁昌洪.计算微波.西安电子科技大学内部教材.
    [155] G. Macchiarella and S. Tamiazzo. Novel Approach to the Synthesis of Microwave Diplexers. IEEE Trans. on Microwave Theory and Techniques, 2006, Vol. 54(12), 4281-4290.
    [156] M. Fritz and W. Wiesbeck. A diplexer based on transmission lines, implemented in LTCC. IEEE Trans. on Advanced Packaging, 2006, Vol. 29(3), 427-432.
    [157] H. H. Lee and J. Y. Park. Fully embedded LC diplexer passive circuit into an organic package substrate. Microwave and Optical Technology Letters, 2007, Vol. 49(12), 2960-2963.
    [158] L. H. Hsieh and K. Chang. New microstrip diplexers using open-loop ring resonators with two transmission zeros. Microwave and Optical Technology Letters, 2005, Vol. 44(5), 3960-398.
    [159]曹海林,陈世勇,杨士中.一种微带开路环双工器的设计.重庆邮电学院学报(科学自然版), 2006, Vol. 18(1), 26-29.
    [160]张纪明.移动通信中微带双工器的设计与仿真.西安电子科技大学硕士论文, 2006.
    [161] J. F. Li, B. H. Sun, and Q. Z. Liu. PSO-based optimization of broadband antenna array for space-division communication system. 8th International Symposium on Antennas, Propagation and EM Theory, 2008, 309-312.
    [162] J. F. Li, B. H. Sun, and Q. Z. Liu. PSO-based fast optimization algorithm for broadband antenna array by using the cubic spline interpolation. PIERL Vol. 4, 2008. 173-181,
    [163]李建峰,孙保华,张军,刘其中.采用兰格耦合器馈电的双频双极化微带天线.电子学报. , 2009, Vol. 37(11).
    [164]张光义.相控阵雷达系统.北京:国防工业出版社,1994
    [165] S. Ying, J. H. Qiu, and Y. S. Yuan. Research on dual polarization widebandantenna. International Conference on Microwave and Millimeter Wave Technology, 2008, Vol. 4, 1851-1853.
    [166] J. Huang, Z. A. Hussein, and A. Petros. A VHF microstrip antenna with wide-bandwidth and dual-polarization for sea ice thickness measurement. IEEE Trans. on Antennas and Propagation, 2007, Vol. 55(10), 2718-2722.
    [167]张勇虎,周力,欧钢.一种双频双圆极化层叠结构微带天线的设计.微波学报, 2006, Vol. 22(增刊), 25-28.
    [168] K. L. Wong. Compact and Broadband Microstrip Antennas. New York: John Wiley & Sons Inc., 2002, 87-159.
    [169] A. Adrian and D. H. Schaubert. Dual aperture-coupled microstrip antenna for dual or circular polarization. Electronic Letters, 1987, Vol. 23(23), 1226-1228.
    [170]梁仙灵,钟顺时,汪伟.高隔离度双极化微带天线直线阵的设计.电子学报, 2005, Vol. 33(3), 731-734.
    [171] I. S. Luis, V. R. José-Luis, and R. I. Eva. High Isolation Proximity Coupled Multilayer Patch Antenna for Dual-Frequency Operation. IEEE Trans. on Antennas and Propagation, 2008, Vol. 56(4), 1180-1183.
    [172] D. M. Pozar. Microwave Engineering, Third Edition. John Wiley & Sons Inc., 2005.
    [173] J. Lange. Interdigitated stripline quadrature hybrid. IEEE Trans. on Microwave Theory and Techniques, 1969, Vol. 17 (12), 1150-1151.
    [174] J. F. Li, B. H. Sun, H. J. Zhou, Q. Z. Liu. Miniaturized circularly-polarized antenna using tapered meander-line. Progress in Electromagnetics Research-PIER, 2008, Vol.78, 321-328.
    [175] DVB-H implemented Guidelines: ETSI: TR 102 337 V1.1.1, European Telecommunications Standards Institute, 2005
    [176] W. Y. Li, K. L. Wong, and J. S. Row. Broadband planar shorted monopole antenna for DTV signal reception in a portable media player. Microwave and Optical Technology Letters, 2007, Vol. 49(3), 558-561.
    [177] K. L. Wong, Y. W. Chi, B. Chen, and S. Yang. Internal DTV antenna for folded-type mobile phone. Microwave and Optical Technology Letters, 2006, Vol. 48(6), 1015-1019.
    [178] M. Komulainen, M. Berg, H. Jantunen, and E. Salonen. Compact varactor-tuned meander line monopole antenna for DVB-H signal reception. Electronics Letters,2007, Vol. 43(24), 1424-1426.
    [179] D. H.Chio, H. S. Yun, and S. O. Park. Internal antenna with modified monopole type for DVB-H applications. Electronics Letters, 2006, Vol. 42(25), 1436-1438.
    [180] M. Ali, and S. S. Stuchly,“A meander-line bow-tie antenna,”Antennas and Propagation Society International Symposium, Digest , 1996, Vol. 3, 1566-1569.
    [181] T. G. Spence and D. H. Werner. A novel miniature broadband/multiband antenna based on end-loaded planar open-sleeve dipole. IEEE Trans. Antennas and Propagation, 2006, Vol. 54(12), 3614-3620.
    [182] T. Williams, M. Rahman, and M. A. Stuchly. Dual-band meander antenna for wireless telephones. Microwave and Optical Technology Letters, 2000, Vol. 24(2), 81-85.
    [183] B. H. Sun, Q. Z. Liu, and H. Q. Xie. Compact monopole antenna for GSM/DCS operation of mobile handsets. Electronics Letters, 2003, Vol. 39(22), 1562-1563.
    [184] B. H. Sun, J. F. Li, T. Zhou, and Q. Z. Liu. Planar meander sleeve monopole antenna for DVB-H/GSM mobile handsets. Electronics Letters, 2008, Vol. 44(8), 508-509.
    [185] J. F. Li, B. H. Sun, and Q. Z. Liu. Shielding box antenna for application in WUWB Flash Disk. Journal of Electromagnetic Waves and Applications-JEMWA. Submitted.
    [186] http://www.ieee802.org/11/
    [187] J. C. Bregains, G. Franceschetti, A. G. Roederer, and F. Ares. New toroidal beam antennas for WLAN communications. IEEE Trans. on Antennas and Propagation, 2007, Vol. 55(2), 389-398.
    [188] G. L. Xin and J. P. Xu. Wideband miniature G-shaped antenna for dual-band WLAN applications. Electronic Letters, 2007, Vol. 43(24).
    [189] H. M. Hsiao, J. H. Lu, J. W. Wu. Novel dual-broadband of semicircular slot antenna for wireless communication. Microwave and Optical Technology Letters, 2007, Vol. 49(9), 2165-2169
    [190] Y. L. Kuo and K. L.Wong. Uni-Planar Dual-Band Monopole Antenna for 2.4/5 GHz WLAN Operation in the Laptop Computer. IEEE Trans. on Antennas and Propagation, 2007, Vol. 55(12), 3739-3741.
    [191] K. Chang. Encyclopedia of RF and Microwave Engineering. New Jersey: John Wiley & Sons Inc., 2005, 3869-3891.
    [192] J. F. Li, B. H. Sun, and Q. Z. Liu. Dual-band Toroidal Beam Antenna for WLAN Communications. Electronics Letters, 2009.Vol.45(10), 486-487.
    [193] Z. N. Chen. Antennas for Portable Devices. New Jersey: John Wiley & Sons Inc., 2005, 3869-3891.
    [194] R.C., Hansen. Dipole Array Scan Performance over a Wide-Band. IEEE Trans. on Antennas and Propagation, 1999, Vol. 47, No. 5, 956-957.
    [195] J.D., Taylor. Ultra-Wideband Radar Technology, Boca Raton, FL: CRC Press, 2001.
    [196] A. J., Fenn. Adaptive Antennas and Phased Arrays for Radar and Communications. Artech House, 2008.
    [197] K., Sekine, H. Iwasaki. USB Memory Size Antenna for 2.4 GHz Wireless LAN and UWB. Microwave Conference, 2008. EuMC 2008. 38th European, , 2008, 1173-1176.
    [198] J.F., Li, B.H., Sun, S.L., Zuo, Q.Z., Liu. Design of combined PIFAs with high port-to-port isolation for GSM/DCS and WLAN mobile phones. Electronics Letters , 2009, Vol.45, No.11, pp.532-533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700