用户名: 密码: 验证码:
抗菌肽高效表达策略及活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用基因工程手段生产抗菌肽的过程中,由于抗菌肽对宿主细胞会产生毒性使得蛋白表达受到影响,而改变融合头是使抗菌肽高效表达策略之一。本实验利用实验室已经成功构建并保存的工程菌,分析其诱导后OD600的变化以及不同融合头对G13毒性的影响。实验对pET28a-G13进行突变,以改变G13的N端融合头净正电荷数。设计突变引物,以质粒pET28a-G13为模板,PCR扩增序列,构建突变体pET28a'-G13,并进行诱导。对共表达工程菌在不同的抗生素比例下进行诱导,Tricine-SDS-PAGE电泳检测,比较分析抗生素比例对蛋白表达的影响,同时比较抗生素比例不同质粒的拷贝数的变化。试验发现融合头对G13毒性抑制效果与其净负电荷数及其氨基酸分布有关。
     此外,针对本实验室已经摸索出的重组G13结构域的表达的方法进行改良,通过改变溶解蛋白的变性剂,以及改变其浓度等方法,希望能够减少尿素对重组肽的修饰。而且,在对纯化得到的G13进行了初步的检测之后,对于G13的活性研究进行了扩展,进一步研究G13结构域的溶血活性作用并对结果进行统计分析。
     另外本实验对抗菌肽vgf-1的表达和活性进行了初步研究。通过对NCBI蛋白质数据库的检索查询找到了一个从眼镜蛇蛇毒中提取的具有抗结核杆菌效用的小肽Vgf-1。根据Vgf-1氨基酸序列和大肠杆菌的密码子偏好性,得出Vgf-1的基因序列。设计采用重叠PCR的方法得到基因序列。分三步扩增Vgf-1的基因片段(A,B,C),这三个片段经过胶回收后分别均与表达载体pBAD/TOPO连接,转化感受态细胞E.coli TOP 10,经过测序鉴定,分别命名为pBAD-Vgf-1-A,B,C。用阿拉伯糖诱导4h,经超声破碎处理后,SDS-PAGE电泳检测,融合蛋白的位置正确,且可以看出大多数目的蛋白以包涵体的形式存在。用Bradford方法测菌体总蛋白量,用Bandscan软件分析融合蛋白的表达量分别约占总体蛋白量的58.3%、48.7%和45.5%,因此推算出推算每升工程菌发酵液产生的包涵体约为178mg、142mg和124mg。对所得到的融合蛋白pBAD-Vgf-1-B,C进行肠激酶切割体系的优化,得出最佳的肠激酶切割体系。利用最佳体系对融合蛋白进行切割,经过活性检测发现,目的肽没有抑菌活性。实验尝试利用各种比例的GSH/GSSG复性体系对包涵体进行复性,浓缩后进行肠激酶切割,结果发现复性未能帮助得到有活性的蛋白。后采用先对融合蛋白进行切割,再进行复性的实验方案,试验结果表明仍为获得有活性的蛋白。
The toxicity of recombinant antimicrobial peptides upon the host cell affects the level of protein expression in genetic engineering. One of the strategies to achieve high expression is changing the fusion partners.
     In this study, we analyze the OD600 of the engineering bacteria and the effects of different fusion partners on the inhibition of the toxicity of G13. We mutated the gene sequence of the fusion partners of pET28a-G13, the charge of the fusion partners of the mutant was changed in the N-terminal of G13. We designed the mutation primers. A PCR reaction was conducted with the primers and pET28a-G13 as template. The mutated recombinant named pET28a'-G13 and induced by IPTG. The double transformed cells are inoculated to different ratios of antibiotic, to examine the target protein protein expression level and the copy numbers of the plasmids. It was found that the inhibition effect of the fusion partners was greatly affected the net negative charge and the relative location of the acidic amino acid residues.
     In addition, we tried to improve the method of the purification of G13 domain, to decrease the protein modification of urea through changing the denaturants and their concentrations. Moreover, we obtained purified G13 domain, tested its activity, further to study the hemolytic of it and do the conduct probability analysis.
     Furthermore, we studied on the expression and activity of antimicrobial peptide vgf-1. We found an antimicrobial peptide (vgf-1) through the protein database of NCBI, that come from cobra venom and has effect on Mycobacterium tuberculosis. According to the protein sequence of vgf-1 and the codon preference of E. coli, we obtained the gene sequences of it. The gene sequence of Vgf-1 was obtained by overlapping PCR, which was amplified by three steps. The cleansed PCR product of three fragments were attach to the expression vector pBAD/TOPO, and transformed into E.coli TOP 10. After sequencing, we named them pBAD-Vgf-1-A, B, C. They were induced by arabinose, treated by ultrasonic treatment, the result of SDS-PAGE electrophoresis detection shows that fusion proteins were in correct position, and the target protein exists in the form of inclusion bodies. The total cell protein measured by Bradford, we analyze the the expression of fusion protein were about the overall protein content of 58.3%,48.7% and 45.5% with Bandscan software. So the projected per liter of fermentation broth produced works about inclusion as 178mg,142mg and 124mg.The enterokinase cutting system of fusion protein pBAD-Vgf-1-B, C was optimization. We used the best system to cut on the fusion protein, after activity detected the purpose of peptide has no antibacterial activity. We used various proportions of GSH/GSSG refolding system of the inclusion body, after concentrated and cutting, the protein has no activity. The other method was tried, after cutting the fusion protein, we treated the protein by the GSH/GSSG refolding system, the result showed that they has no activity.
引文
[1]梁永利.天然抗菌肽的来源及分类[J].安徽农业科学,2006,34(18):4728~4734.
    [2]张瑜,赵玉军,马凤龙.抗菌肽的研究进展,2007,11.
    [3]卢其能,罗晓明,江辉等.抗菌肽的研究进展[J].江西科学,2007,25(4):428~431.
    [4]王永才,廖仲磊.抗菌肽的研究概况及应用前景[J].广东农业科学,2006,4:64~66.
    [5]Hoffinann J A.Innate immunity in high insects [J].Curr Opin Immunol,1996, 8(1):8~13.
    [6]张继南,陈红霞.抗菌肽及其应用研究进展[J].生物技术通讯,2006,17(4):669~672.
    [7]舒黛廉,任敏,王珏等.抗菌肽研究现状及其在畜牧业中的应用前景[J].中国畜牧兽医,2007,34(6):100~104.
    [8]苏蕾,马玉贞,张广洲.新型抗生素的研究进展及研发趋势探讨[J].齐鲁药事,2007,26(8):482~483.
    [9]刘琳,马廷方,祝永强等.抗菌肽的结构特征及其活性的关系[J].药物生物技术,2008,15(1):64~67.
    [10]庞英明,段金廒,届贤铭等.昆虫抗菌肽结构与功能关系及其在分子设计中的应用[J].生命科学,2001,13:2~9.
    [11]Zhang L,Benz R,Hancock REW.Influence of proline residues on the antibacterial and aynergistic activities of alphahelical peptides[J].Biochemistry, 1999,38:8102.
    [12]崔春亮.抗菌肽的研究现状及应用[J].科技信息,2007,35:17.
    [13]Bikker FJ,Kaman-van Zanten WE,et al. Evaluation of the antibacterial spectrum of drosocin analogues[J].Chem Biol Drug Des,2006,68(3):148~153.
    [14]Markossian KA,Zamyatnin AA.Kurganov BI. Antibacterial proline-rich oligopeptides and their target proteins [J].Biochemistry,2004,69(10):1082~1091.
    [15]Morikawa N,Hagiwara K, Nakajima T.Brevinin-1 and-2, unique antimicrobial pepetides from the skin of the frog, Rana brevipoda porsa[J]. Biochem Biophys Res Commun,1992,189 (1):184~190.
    [16]Matsuyama K, Natori S.Mode of action of sapecin,a novel antibacterial protein of Sarcophaga peregrina (flesh fly) [J].Biochem,1990,108(1):128~132.
    [17]Wakabayashi H,Teraguchi S,Tamura Y.Increased Staphylococcus-killing activity of an antimicrobial peptide,lactoferricin B,with minocycline and monoacylglycerl[J]. Biosci Biotechnol Biochem,2002,66(10):2161~2167.
    [18]尹娜,李鸿钧,彭梅等.抗菌肽Cecropin D在毕赤酵母中的表达、纯化及活性鉴定[J].中国生物制品学杂志,2008,21(3):185~189.
    [19]岳昌武,莫宁萍,刘坤祥等.抗菌肽的结构特点、作用机理及其应用前景[J].安徽农业科学,2008,26(5):1736~1739.
    [20]赵喜红,何小维,罗志刚.抗菌肽的生物活性、作用机制及应用研究进展[J].中国酿造,2007,4:1~5.
    [21]韦岩.抗菌肽的研究进展和临床应用[J].菏泽医学专科学校学报,2007,19(1):76~78.
    [22]韩艳,韩文瑜,雷连成等.海洋生物鲎抗菌肽研究进展[J].中国水产,2007,8:81~82.
    [23]代建国,余斌,谢海伟等.鲎源抗菌肽的制备及药用价值研究进展[J].中国新药杂志,2007,16(15):1163~1167.
    [24]SUETAKE T,AIZAWA T,KOGANESAWA N. Production and characterization of recombinant tachycitin, the Cys-rich chitinbinding protein[J].Protein Eng,2002, 15(9):763~769.
    [25]IWANAGA S,KAWABATA S,MUTA T.New types of clotting factors and defense molecules found in horseshoe crab hemolymph:their structure and fuctions[J]. Biochem,1998,123(1):1~15.
    [26]李洪淼,抗菌肽的研究进展及应用前景[J].饲料博览,2007.1:15~17.
    [27]宋宏霞,曾名勇,刘尊英等,抗菌肽的生物活性及其作用机理[J].食品工业科技,2006,27(9):185~197.
    [28]Steinberg DA, Hurust MA, Fujii CA,et al.Protegrin-1:a broad-spectrum,rapidly microbicidal peptide with in vivo activity[J].Antimicrob Agents Chemother, 1997,41(8):1738~1742.
    [29]Rahnamaeian H, Langen G, Imani J,et al. Insect peptide metchnikowin confers on barely a selective capacity for resistance to fungal ascomycetes pathogens[J].Exp Bot,2009,60(14):4105~4114.
    [30]李春荣,张霞.抗菌肽在果树抗病育种上的应用[J].安徽农业科学,2007,35(9):2647~2648.
    [31]董天堂,田子罡,王建华.α-螺旋型抗菌肽结构参数与功能活性的关系[J].中国生物工程杂志,2007,27(9):116~119.
    [32]刘红玉,崔洪斌.中国林蛙抗菌肽对胃癌细胞生长的抑制作用[J].中国公共卫生,2007,23(8):913~914.
    [33]Van Mourik A,Steeghs L,Van Laar J,et al.Altered linkage of hydroxyacyl chains in lipid a of campylobacter jejuni reduces TLR4 activation and antimicrobial resistance[J].Biol Chem,2010,5,1~16.
    [34]Abbassi F,Lequin O,Piesse C.Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide [J]..Biol Chem,2010,3,1~27.
    [35]Seidel A,Ye Y, de Armas,LR,et al.Cyclic and acyclic defensins inhibit human immunodeficiency virus type-1 replication by different mechanisms [J].Plos One,2010,5(3):1~9.
    [36]Soscia SJ,Kirby JE,Washicosky KJ,et al.The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide [J].Plos One,2010,3(5):1~10.
    [37]Rieq S,Meier B,Fahnrich E,et al. Differential activity of innate defense antimicrobial peptides against Nocardia species[J].BMC Microbiol,2010,2,:1~8.
    [38]Nava GM,Escorcial M,Castaneda,et al.Molecular Diversity of the Antimicrobial Domain of Beta-Defensin 3 and Homologous Peptides [J]. Comp Funct Genomics, 2009,2:1-8.
    [39]Taguchi S,Mita K,Ichinohe K, et al.Targeted Engineering of the Antibacterial Peptide Apidaecin, Based on an In Vivo Monitoring Assay System[J].Appl Environ Microbiol,2009,75(5):1460~1464.
    [40]Resende JM, Moraes CM, Munhoz VH, et al. Membrane structure and conformational changes of the antibiotic heterodimeric peptide distinctin by solid-state NMR spectroscopy[J].Proc,Natl Acad Sci USA.2009,106(39):16639~ 16644.
    [41]Capparelli R,Romane A,Lannaccone M, et al.Synergistic Antibacterial and Anti-Inflammatory Activity of Temporin A and Modified Temporin B In Vivo[J].Plos One,2009,4(9):1~11.
    [42]Kim H, Lee BJ, Lee MH, et al. Mechanisms of selective antimicrobial activity of Gaegurin 4[J].Korean Physiol Pharmacol,2009,13(1):39~47.
    [43]Ueno S, Kusaka K, Tamada Y, et al. An enhancer peptide for membrane-disrupting antimicrobial pepetides.[J].BMC Microbiol,2010,5:1~7.
    [44]韩彤彤,肖向红,徐艳春.动物抗茵肽抗病毒性质及其机制[J].经济动物学报,10(3):176~179.
    [45]林承德,彭鸿娟,王衍涛.抗菌肽的应用及存在的问题[J].热带医学杂志,2007,7(1):86~90.
    [46]王学理,王兴龙,刘锴等.抗菌肽的作用机制与应用前景[J].动物医学进展,2006,27(9):42~45.
    [47]魏泉德,抗菌肽的原核表达及应用前景,2006.33(4):206~210.
    [48]Yarus S, Rosen JM, Cole AM, et al. Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice[J].Pro Natl Acad Sci USA,1996,93: 14118~14121.
    [49]李映新,雷丹青,周先丽.广西五步蛇毒小肽的分离纯化及抗肿瘤作用[J].中国临床药理学与治疗学,2007,2.
    [50]雷丹青,周先丽,李映新.尖吻蝮蛇毒小分子多肽的分离及抗血小板聚集作用[J].中国药理学通报,2006,9.
    [51]余蓉,李秀玲,曾蓉.抗菌肽肿瘤作用研究进展[J].生物技术通讯,2002,6.
    [52]J.P. Xie, J. Yue, Y.L. Xiong et al In vitro activities of small peptides from snake venom against clinicalisolates of drug-resistant Mycobacterium tuberculosis. [J].International Journal of Antimicrobial Agents,2003,22:172~174.
    [53]杨金环.颗粒裂解肽G13结构域的克隆及在大肠杆菌中的表达[D].安徽:安徽大学生命科学学院,2008.
    [54]杨金环,查向东,方红等.颗粒裂解肽G13结构域的表达及其对大肠杆菌活力的影响[J].中国生物制品学杂志,2008,21(6):467~470.
    [55]刘小强.颗粒裂解肽G13结构域在大肠杆菌中高效表达[D].安徽:安徽大学生命科学学院,2009.
    [56]刘小强,查向东,肖亚中等.颗粒裂解肽G13结构域在大肠杆菌中的高效融合表达[J].生物工程学报,2009,25(2):235~241.
    [57]方红,查向东,杨金环等.颗粒裂解肽G13结构域的重组表达及蛋白质结构预测[J].生物学杂志,2009,3:75~77.
    [58]方红,论文,颗粒裂解肽G13结构域的克隆表达和蛋白质结构比对[D].安徽:安徽大学生命科学学院,2009.
    [59]Katusumi Matsuzaki. Control of cell selectivity of of antimicrobial peptides[J]. Biochimica et biophysica Acta,2009,1788:1687~1692.
    [60]Jae H.lee, Il Minn, Chan B. Acidic peptide-mediated expression of the antimicrobial peptide Buforin Ⅱ as Tandem repeats in escherichia coli [J].Protein expression and purification,1998,12:53~60.
    [61]]Janice J.Endsley, Alfredo G.Torres, Christine M.Gonzales, et al.Comparative Antimicrobial Activity of Granulysin against Bacterial Biothreat Agents[J].The Open Microbiology,2009,3:92~96.
    [62]郑春福,吴少庭,陈雅棠等.恶性疟原虫FCC-1/HN株裂殖子表面抗原2(MSA-2)基因在卡介苗BCG中的表达[J].寄生虫与医学昆虫学报,2002,9(4):193~197.
    [63]匡铁吉,宋萍,王利平等.分支杆菌简化琼脂培养基的研究[J].微生物学报,1995,35(4):298~302.
    [64]党昶永,康宏,刘应华等.卡提素浮膜培养生产工艺的研究[J].药物生物技术,2007,14(16):436~438.
    [65]曹佐武.小分子肽的Tricine-SDS-PAGE分离方法[J].生物学通报,2003,38(3):55~56.
    [66]王胜,杨安芳.我国结核病的现状及预防措施[J].中国民族民间医药,65~66.
    [67]徐芳,姚泉洪,熊爱生等.重叠延伸PCR技术及其在基因工程上的应用[J].分子植物育种,2006,4(5):747~750.
    [68]杨宇,吴元华,郑雅楠.利用重叠延伸PCR技术进行DNA的人工合成[J].安徽农业科学,2006,34(9):1810~1811.
    [69]魏薇,李凡,陈海如.利用重叠延伸PCR技术扩增片段DNA[J].云南大学学报(自然科学版),2008,30(S1):86~88.
    [70]王雪,宋长征.蛋白质复性的条件及影响因素[J].国外医学分子生物学分册,2003,25(6):358~360.
    [71]史晋辉.蛋白质复性[J].生命的化学,2000,20(6):283~285.
    [72]王颖,董晓燕,孙彦.蛋白值复性技术研究进展[J].生物工程进展,2002,22(2):61~65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700