用户名: 密码: 验证码:
掺杂对钨铜合金组织性能和电弧特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钨铜合金具有良好的耐电弧烧蚀性、抗熔焊性和高强度等优点,被广泛地用作各种高压断路器中的触头材料。随着高压输变电网络负荷日益增加、控制系统不断发展,对钨铜电触头材料的要求也更加苛刻。本文旨在通过掺杂的方法来提高钨铜合金的综合性能,并深入探讨不同掺杂物对合金电弧特性的影响。
     研究中采用熔渗法制备了分别添加硼、铌和铈的钨铜合金,通过电子扫描、X射线衍射、高速摄影和电弧烧蚀等手段分别研究了各种掺杂物对钨铜合金显微组织、物理性能和电弧特性的影响。结果表明:
     1.钨铜合金中B的掺杂量在0~0.9(wt%)范围时,相对密度和硬度呈先升后降的趋势,均在掺杂量为0.3%时达到极值。当B的掺杂量不超过0.7%时,电导率呈略微下降趋势,当掺杂量为0.9%时,电导率值下降至很低。组织中的铜相较商用样品变的十分细小,随着掺杂量的增多,孔隙和团聚现象有所增加。
     2.钨铜合金中Nb的掺杂量在0~4.0(wt%)范围时,相对密度和硬度均呈上升趋势,但当掺杂量大于2.0%时,上升趋势减缓。电导率呈下降趋势,但变化不大。组织中的铜相变的细小均匀,随着掺杂量的越多,偏聚现象增加的并不明显。
     3.钨铜合金中Ce的掺杂量在0~2.5(wt%)范围时,相对密度变化不大,无明显上升或下降趋势;硬度值随着掺杂量的增加略有上升;电导率在掺杂量为1.5%时达到最大值。组织中铜相大小无明显变化,分布更为均匀。
     4.通过综合比较,掺杂0.3%的硼、2.0%的铌、1.5%的铈的WCu合金综合性能最佳。其中硼对合金的影响方式主要为弥散强化;铌对合金的影响方式主要为固溶强化和增大了钨与铜之间的润湿性;铈对合金的影响方式主要为铈的细化晶粒作用及净化效果。
     5.通过高速摄影实验,发现掺杂硼、铌、铈的钨铜合金与商用钨铜电触头材料的电击穿过程均有起弧阶段、电弧稳定燃烧阶段和灭弧阶段。只是掺杂不同元素的合金三个阶段的持续时间和等离子云的体积、温度不同。形弧时间从长到短依次为WCu-Nb,WCu-B,WCu-Ce,商用WCu合金;电弧稳定燃烧时间从长到短依次为商用WCu合金,WCu-Ce,WCu-B,WCu-Nb。掺杂后的合金电弧寿命长,截流值小;等离子云体积大,颜色浅,在试样表面燃烧区域大,电弧分散,燃弧能量分散;电弧燃烧稳定,无放射状光芒。
     6.含有掺杂物的钨铜合金较传统的钨铜电触头材料,其抗电弧烧蚀性能均有明显改善,按商用WCu合金,WCu-Nb,WCu-Ce,WCu-B顺序逐渐提高,其中最明显的为WCu-B,从烧蚀损失量来看,抗烧蚀性能提高了近30%。
W-Cu alloys have been widely used as contact material in various high voltage interrupters due to its advantages of high strength, excellent resistance to arc erosion and to welding. The requirement of W-Cu electrical contact materials is rigorous because the development on network load and control system of high voltage transmission and power transfer. In this paper, the comprehensive properties were improved by doping element into W-Cu alloys, and the influence of doping element on arc characteristic were discussed deeply.
     By means of powder metallurgy-infiltration, a series of W-Cu alloys added respectively with boron, niobium and cerium were prepared in this paper. The effects of different doping elements with different content on microstructures and properties including the physical properties and the arc characteristic property of W-Cu alloys were investigated respectively by SEM, XRD, high speed photography and arc erosion experiment. The results showed:
     1. In the range of 0~0.9(wt%) B doping, the relative density and hardness of alloys showed increased first and decreased afterwards. While the weight fraction of B reached 0.3%, W-Cu alloy achieved the best on relative density and hardness. The electric conductivity decreased slightly when the doping contents were less than 0.7%. But the electric conductivity numerical was poor when the doping content was 0.9%. The size of the copper phases was smaller than commercial WCu alloy. The holes and agglomeration were increased as the doping content.
     2. For WCu alloys with 0~4.0(wt%) Nb doping, the relative density and hardness of alloys showed increase with increasing percentage of Nb. The increscent trend was slow down when the addition was more than 2.0%. The electric conductivity decreased slightly. The size of the copper phases was small and the agglomeration was unconspicuous.
     3. In the range of 0~2.5(wt%) Ce doping, the relative density changed slightly. The hardness of alloys showed increased slowly with increasing percentage of Ce. When the weight fraction reached 1.5, the electric conductivity achieved the best. The copper phase was well distributed and the size was not change.
     4. The comprehensive properties of WCu alloys with doping 0.3%B,2.0%Nb,1.5%Ce achieved the best by comparing. The mainly influence mode of B on alloys was dispersion strengthening. The mainly influence mode of Nb on alloys was solution strengthening. And Nb increased the wettability between W and Cu. The alloys were influenced by grain refinement and purification of Ce.
     5. The high speed photography experiment showed that the evolution of arc discharge can be divided into three stages:arc formation, steady burning of arc and attenuation. The duration of the three stages and the volume, temperature of the plasma cloud were different from each other. The WCu alloys with doping elements had the characters such as longer time for arc formation, shorter time for arc stable burning, larger volume and lighter color of plasmas plumes. The arc was dispersed and stable, and the burning area on the sample surface was bigger.
     6. The anti-welding ability of the W-Cu alloys with doping elements was greatly improved. The increased order was commercial WCu alloy, WCu-Nb, WCu-Ce, WCu-B. The best one was WCu-B, which up to 30% approximately.
引文
[1]周张健,葛昌纯.熔渗-焊接法制备W/Cu功能梯度材料的研究[J].金属学报,2000,36(6):655-658.
    [2]Li Li, Y.S.Wong, J.Y.H.Fuh, Li Lu. Effect of TiC in copper-tungsten eleetrodes on EDM performance [J]. Journal of Materials Processing Technology,2001,113:563-567.
    [3]吕大铭.十五年来国内外钨材的发展概况[J].中国钨业,1997,3:5-10.
    [4]陈文革,丁秉均.W-Cu触头材料的电寿命研究[J].电工材料,2003(3):21-24.
    [5]Li Z B, Zhang G S. The study of criterion for dynamic welding of electric contact [J]. Proc. of the 16th ICEC,1992:413-416.
    [6]王其平.电器电弧理论[M].北京:机械工业出版社,1991.
    [7]Kharin S N. Dynamics of the transition of the metallic phase into gaseous phase in opening electrical contacts [J].Proc. of the 17th ICEC,1994:817-824.
    [8]李辛庚,傅敏.真空电触头材料技术开发现状及展望[J].中国电力,2001,34(8):39-42.
    [9]Merlw编.DODUCO电触头数据集[M].上海:上海科技出版社,1983:1-6.
    [10]T.Raghu, R.Sundaresan, P.Ramakrishnan, T.R.RamaMohan. Synthesis of nanocrystalline copper tungsten alloys by mechanical alloying [J]. Materials Science and Engineering,2001, A304-306: 435-441.
    [11]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1981.
    [12]蔡一湘,刘伯武.钨铜复合材料致密化问题和方法[J].粉末冶金技术,1999,17(2):138-144.
    [13]郭庚辰.液相烧结粉末冶金材料[M].北京:化学工业出版社,2003:100-106.
    [14]J.L.Johnson, R.M.German, Theoretical modeling of densification during activated solid-state sintering [J]. Metal Mater Trans A,1996,27:441-446.
    [15]姜国圣,王志法,刘正春.高钨钨-铜复合材料的研究现状[J].粉末冶金材料科学与工程,1999,4(1):30-33.
    [16]范景莲,严德剑,黄伯云,刘军,汪澄龙.国内外钨铜复合材料的研究现状[J].粉末冶金工业,2003,13(2):9-14.
    [17]Eui-Sik Yoon, Jai-Sung Lee, Sung-Tag Oh, Byoung-Kee Kim. Microstructure and sintering behaviour of W-Cu nanocomposite powder produced by thermo-chemical process [J]. International Journal of Refractory Metals&Hard Materials,2002,20:201-206.
    [18]杨明川,宋贞祯,卢柯.W-20%Cu纳米复合粉的制备[J].金属学报,2004,40(6):639-642.
    [19]Jin-Chun Kim, Sung-Soo Ryu, Young-Do Kim, In-Hyung Moon. Densification behavior of mechanically alloyed W-Cu composite powders by the double rearrangement process [J]. Scripta Materialia,1998,39(6):669-676.
    [20]Dac-Gun Kim, Sung-Tag Oh, Hyeongtag Joen, Chang-Hee Lee, Young-Do Kim. Hydrogen-reduction behavior and microstructural characteristics of WO3-CUO powder mixtures with various milling time [J]. Journal of Alloys and Compounds,2003,354:239-242.
    [21]牟科强.氧化物共还原制取W-Cu和Mo-Cu复合材料的研究[J].粉末冶金工业,2004,14(5):13-16.
    [22]范景莲,刘军,严德剑,黄伯云.细晶钨铜复合材料制备工艺的研究[J].粉末冶金技术,2004,22(2):83-86.
    [23]Yang B, Cerman R M. Powder injection molding and infiltration sintering of superfine W-Cu [J]. The International Journal of Powder Metallurgy,1997,33(4):55-63.
    [24]Kim J C, Ryu S S, Lee H, Moon I H. Metal Injection Molding Nanostructured W-Cu Composite Powder [J]. The international Journal of Powder metallurgy,1999,35(4):47-55.
    [25]陈文革,丁秉均.钨铜基复合材料的研究及进展[J].粉末冶金工业,2001,11(3):45-50.
    [26]Lafferty J M. Vacuum arcs theory and application [M]. New York:Wiley,1980.
    [27]Knight R, Smith R W, Apelian D. Application of plasma arc melting technology to processing of reactive metals [J]. International Materials Reviews,1991,36 (6):221-252.
    [28]Kelly H, Marquez A, Minotti F, Fontan C F. The plasma state in the surroundings of a multi-cathode-spot vacuum arc [J].Appl Phys,1998,31:1737-1741.
    [29]曾乐.现代焊接技术手册[M].上海:上海科学技术出版社,1993:5-60.
    [30]中华人民共和国国家标准,GB4191-84.惰性气体保护电弧焊接和等离子焊接、切割用钨铈电极[S].北京:中国标准出版社,1984:
    [31]金佑民,樊友三.低温等离子体物理基础[M].北京:清华大学出版社,1993:10-30.
    [32]International Standard ISO 6848-1984(E). Tungsten electrodes for inert gas shielded arc welding and for plasma cutting and welding-codification [S].
    [33]聂祚仁,陈颖,周美玲,张久兴,左铁镛.复合稀土氧化物在钨电极中的分布规律和作用机理[J].金属学报,1999,35(9):981-984.
    [34]聂祚仁.稀土Mo/W热电子发射材料性能与结构研究[D].长沙:中南工业大学,1997.
    [35]Ushio M, Sadek A A, Matsuda F. Comparison of temperature and work function measurements obtained with different GTA electrodes [J]. Plasma Chemistiry and Plasma Processing,1991,11(1): 81-101.
    [36]Wieckert C. A multicomponent theory of the catholic plasma jet in vacuum arcs [J]. Contributions to Plasma Physics,1987,27:309-330.
    [37]赵剑峰,黄因慧等.激光烧结快速制备自由形状纳米块体材料的试验研究[J].材料科学与工程学报,2003,21(3):339-341.
    [38]訾炳涛,王辉,周洲,曾克里,于光月.块体纳米材料的结构性能及应用[J].研究与应用,2003,5:3-10.
    [39]毕见强,孙康宁,高伟,王素梅,刘睿.块体纳米材料的制备及其应用[J].新材料与装备, 2003,4:35-40.
    [40]Oak Ridge National Laboratory, Nanotechno overview [J]. Advanced Materials & Processes. 2000(5):48-51.
    [41]Siemroth P, Schultrich B, Schulke T. Fundamental processes in vacuum arc deposition [J]. Surf Coat Technol,1995, (74-75):92-96.
    [42]Vyskocil J, Musil J. Arc evaporation of hard coatings process and film properties [J]. Surf Coat Technol,1990, (43-44):299-311.
    [43]Juttner B. Cathode spots of electric arcs [J]. J Phys D:Appl Phys,2001,34:103-123.
    [44]Dyke W P, Trolan J K, Martin E E, et al. The field emission initiated vacuum arc[J]. Phys Rev,1953, 91(5):1043-1057.
    [45]Fursey G N. Field emission and vacuum breakdown [J]. IEEE Trans on Electri Insulation,1985, EI-20(4):659-670.
    [46]Litvinov E A. Theory of explosive electron emission [J]. IEEE Trans on Electri Insulation,1985, EI-20(4):683-689.
    [47]Boxman R L. Early history of vacuum arc deposition [J]. IEEE Trans Plasma Sci,2001,29(5): 759-761.
    [48]吕大铭.我国的钨铜、钨银材料的应用与发展[J].中国钨业,1999,14(5-6):182-185.
    [49]范志康,梁淑华.立式烧结熔渗整体CuW/CrCu自力型触头的型式试验结果[J].电工合金,1999(2):27-29.
    [50]凌云汉,周张键,李江涛,杨大正,葛昌纯.超高压梯度烧结法制备W/Cu功能梯度材料[J].中国有色金属学报,2001,8(4):45-48.
    [51]杨志远译.CuW系烧结合金材料的制备方法[J].电工合金,1992(1),36-38.
    [52]Srikanth Raghunathan, David L, Bourell. Synthesis and evaluation of advanced nanocrystalline Tungsten-Based materials [J]. P/M Science and Technology Briefs,1999,1(1):9-14.
    [53]Takahashi M, Itoh Y, Miyazaki M, et al. [C]. Proceedings of the 13th Inter Planed Seminar, edited by Brillstein Hand Eck R, Metalwork Planed Reutte,1993:17.
    [54]Jech D E, Sepulveda J L, Frazier J P, Swerden R H. Functionally graded metal substrate for use in housing a microelectronic component has a functional insert and a surrounding body in the x-y plane that is made from two metal compositions [P]. USPatent:US6114048-A,5Sept,2000.
    [55]Kuwabara M. Manufacture of inclination function material-involves baking compact formed from two ceramic-metal powder mixtures such that ceramic and metal from respective mixture diffuse to ceramic and metal side composition respectively [P]. USPatent:US6248290-B1,19Jun,2001.
    [56]朱文玄,吴一平,徐正达等.微波烧结技术及进展[J].材料科学与工程,1998,16(2):61-64.
    [57]Gedevanishvili S, Agrawal D, RoyR. Microwave combustion synthesis and sintering of inter-metallic and alloys [J]. J Mater Sci Lett,1996,18:665-668.
    [58]RoyR, Agrawal D, Chen g J, et al. Full sintering of powder metal bodies in microwave field [J]. Nature,1999,399 (17):668-670.
    [59]Yafeng Su, Wenge Chen, Fazhan Wang, et al. Cathode spot on the surface of nanostructured W alloy [J]. Materials Letters,2005, (59)8:1046-1049.
    [60]G.G.Lee. Synthesis of high density ultrafine tungsten-copper by mechano-thermochemical process [J]. Metal Powder Report,2002,57(6):54.
    [61]I.H. Moon, J.H. Kim, M.J. Suk, K.M. Lee, J.K. Lee. Observation of W particle growth in a W powder compact during sintering in a non-reducing atmosphere [J]. International Journal of Refractory Metals&Hard Materials,1992,11(5):309-315.
    [62]R.M.German, K.H.Hens. Identification of the effects of key powder characteristics on powder injection molding [J].Metal Powder Report,1992,47(10):55-61.
    [63]李建基.高压开关设备实用技术[M].北京:中国电力出版社,2005:37-128.
    [64]范志康,肖鹏,梁淑华,罗启文.钨粉粒径对熔渗法制备的CuW触头材料硬度的影响[J].电工材料,2001(3):5-7.
    [65]谭显祥等.高速摄影技术第一版[M].北京:原子能出版社,1990.
    [66]戴洪恩,袁艳.介绍一种瞬态非接触的测试技术——高速摄影技术[J].测试技术学报,1996(3):539-544.
    [67]谭显祥.光学高速摄影测试技术第一版[M].北京:原子能出版社,1988.
    [68]殷树言.气体保护焊工艺基础[M].北京:机械工业出版社,2007:39-41.
    [69]彭清艳.CuWCr复合材料击穿特性的研究[D].西安:西安理工大学,2005.
    [70]本溪钢铁公司第一炼钢厂.硼钢[M].北京:冶金工业出版社,1977:
    [71]Kang S, Brecher C. Cracking Mechanisms in Ag-SnO2 Contact Materials and Their Role in the erosion Process [J]. IEEE Trans on CHMT.1989,12(1):32-38.
    [72]宋桂明,周玉,雷廷权,王玉金,郭英奎.ZrCr/W复合材料的组织结构和高温强度[J].中国有色金属学报,1999,9(1):49-54.
    [73]黄培云.粉末冶金原理(第二版)[M].北京:冶金工业出版社,1997.
    [74]李大圣,范志康.电场和元素Cr对Cu/W润湿性的影响[J].稀有金属材料与工程,2007,36(6):1008-1011.
    [75]许并社.材料界面的物理与化学[M].北京:化学工业出版社,2006:119,20.
    [76]裘立奋.现代难溶金属和稀散金属分析[M].北京:化学工业出版社,2007:88.
    [77]幸良佐.钽铌冶金[M].北京:冶金工业出版社,1982:46.
    [78]彭志辉.稀有金属材料加工工艺学[M].长沙:中南大学出版社,2003.
    [79]胡福增,陈国荣,杜永娟.材料表界面[M].上海:华东理工大学出版社,2001:69-70.
    [80]黄锡文.电触头材料的导电性探讨[J].电工合金,1998(3):26-32.
    [81]徐光宪.稀土[M].北京:冶金工业出版社,2002.
    [82]郑子樵,李红英.稀土功能材料[M].北京:化学工业出版社,2003.
    [83]张文禄.钨电极材料对电弧性能的影响[J].稀有金属与硬质合金,1997,128:60-62.
    [84]杜挺.稀土元素在金属材料中的一些物理化学作用[J].金属学报,1997,33(1):74-75.
    [85]张连勇.稀土元素La、Ce在纯铜中的作用机理及对其性能的影响[D].阜新:辽宁工程技术大学,2002.
    [86]王可健.电触头材料的分断电弧侵蚀研究[D].西安:西安交通大学,1987.
    [87]Sadek A A, Ushiom, Matesuda F. Effect of Rare Earth Metal Oxide Additions to Tungsten Electrodes [J]. Metallurgical Transactions A,1990,21A:3221-3236.
    [88]王亚平,张晖,丁秉钧,孙军.电极材料组织对真空电弧阴极斑点运动行为的影响[J].金属学报,2004,40(12):1269-1273.
    [89]王亚平,张丽娜,丁秉钧,周敬恩.选择性相强化对CuCr触头材料在真空小间隙中耐电压强度的影响[J].中国电机工程学报,1999,19(3):46-49.
    [90]荣命哲.电接触理论[M].北京:机械工业出版社,2004:181-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700