用户名: 密码: 验证码:
絮凝气浮—水解酸化—脱硫—厌氧消化治理生物制药废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物制药废水具有高悬浮物、高化学需氧量(COD)、高硫酸盐、高蛋白质、高负荷冲击等五高特点,具有好氧处理费用高、出水污染物浓度高、厌氧处理难度大,运行不稳定等难点。随着国家对环保的排放标准要求不断提高,能否使用切实可行的处理生物制药废水的工艺成为制约制药企业发展的重要因素。
     本文以山东新时代药业有限公司中试过程中产生的生物制药废水(该废水成分复杂,可厌氧生化性较差)作为研究对象,在参阅大量参考文献的基础上,以絮凝气浮-升流式厌氧污泥床(UASB)水解酸化-脱硫絮凝气浮-UASB厌氧消化处理工艺为主线进行降负荷预处理,通过实验室试验和扩大试验,对絮凝气浮、UASB水解酸化、脱硫絮凝气浮和UASB厌氧消化等主要工艺环节进行了创新性的整合,并对部分环节作了局部改进,对最佳控制条件进行了系统研究,得出了最佳工艺控制参数;并对冲击负荷、非平衡增长等敏感问题结合试验进行理论分析,为高浓度生物制药废水的有效治理开辟了新的途径。
     絮凝气浮能够去除生物制药废水中的悬浮物,投加絮凝剂量是主要运行参数,按照0.1kg/m~3的聚合氯化铝(PAC)和0.01kg/m~3的阴离子型聚丙烯酰胺(APAM)先后投加絮凝剂,能够稳定得到90%的废水中悬浮物(SS)去除率、15%的COD去除率,为后续生物处理提供了良好的基质准备。
     利用硫酸盐还原菌对环境的要求低于产甲烷菌的特性,以温度、水力停留时间为运行控制的主要参数,以培养硫酸盐还原菌为优势菌的UASB水解酸化反应器为主要设备,对还原硫酸盐进行了研究。结果表明,当水解酸化反应器进水COD 6500mg/L、SO_4~(2-)1200mg/L时,控制温度为30℃、升流速为1.17~1.46m/h、水力停留时间为12h,为较佳运行参数,硫酸盐的转化率可达80%以上,出水硫化物的浓度达到300mg/L,为后续脱硫工艺的进行创造条件。
     采用投加氯化铁于废水中硫化物反应生成FeS和S的混合沉淀的方式脱硫。在实验过程中,产生的不溶物沉降性差,同时产生大量的黏性泡沫,适宜采用气浮的原理去除不溶物。通过实验确定氯化铁与水中硫化物的投加比例为1.84:3左右为佳,此时的硫化物去除率达到93%,系统残留硫化物浓度在20mg/L左右。
     UASB厌氧消化是一套成熟的厌氧消化工艺,在本次试验中担负去除大量COD的重任,温度、pH值、停留时间等因素是反应器的主要运行参数。采取一倍出水回流的方式解决进水水质、水量冲击负荷问题,并节约大量的调节pH值投加碱和酸量。在采取一倍出水回流、t=36℃、HRT=30h、控制pH=6.9~7.2、进水COD浓度在3800~7100mg/L之间时,COD去除率在77~84%之间,每降解1kg COD可以收集到0.5m~3沼气。
     在扩大试验条件下(处理水量10m~3/d,25m~3/d),絮凝气浮的COD平均去除率为11.9%,水解反应器的COD平均去除率为19.6%,厌氧消化反应器的COD平均去除率为84.7%。COD总去除率为86.7%,出水COD浓度1405mg/L左右,进入一期环保站出水稳定达到中华人民共和国《污水综合排放标准》GB 8978-1996一级标准。
     采取调节消化出水回流、铁盐投加量、建造合适的水力调节设施和利用非平衡增长理论指导排泥等措施,可减少由COD、水量、含盐量、有毒物质、表面活性剂和pH等因素对活性污泥系统产生的冲击负荷。
     创新性地采取增设加搅拌的衡流反应池和斜管沉淀池沉降UASB系统的流失污泥,部分污泥回流;调整三相分离器参数,提高气体、固体截留率;将运行方式改为间歇运行等方式解决污泥流失的问题。
     引进铁碳吸收工艺吸收厌氧消化气中的硫化氢,回收生物能。
Biological pharmacy wastewater has the characteristics of high suspended solids, highCOD, high sulfate, high protein and high load and has the difficulties of high aerobic treatment cost, high pollutant concentration and instability running. With the increasing demands of national standards for environment, it became an important factor for pharmaceutical industry development whether we could practically deal with the biological pharmaceutical wastewater.
     The study object of this research is the biological pharmacy wastewater in Shandong New Ttimes Pharmaceutical Co.Ltd.(the wastewater has a complicated composition and poor anaerobic biodegradability). Based on a large number of references, our research used flocculation floatation-UASB hydrolytic acidification-desulfurization flocculation floatation-UASB anaerobic digestion for pre-treatment. By laboratory experiment and magnified experiment, we innovativly integrated flocculation floatation, UASB, hydrolytic acidification, desulfurization flocculation floatation and UASB anaerobic digestion process, and also improved some aspects of mid-procedure. Accodring to the experiment results, we also made theory analysis on impact load and non-equilibrium growth theory, which might be useful for open a new way on high effective treatment of high concentration bio-pharmaceutical wastewater.
     Flocculation flotation can remove suspended solids in the bio-pharmaceutical wastewater, the flocculant dosage is the main operating parameters. With a dosage of 0.1kg/m~3 PAC and 0.01kg/m~3 APAM one after another, the system can stably remove 90% of SS and 15% of COD, which provides a good basis preparation for the follow-up biological treatment.
     With the characteristics of the sulfate reducing bacteria having lower equirements than the methane bacteria, using temperature and hydraulic retention time as the main parameter for operational control and the UASB hydrolytic acidification reactor that cultivating sulfate reducing bacteria for the dominant bacteria as the main equipment, sulphate reduction was investigated. The result showed that when inlet water contained is 6500mg/L of COD and 1200mg/L of SO_4~(2-), the optimal operating parameters for UASB hydrolyticacidification reactor were temperature 30℃, 1.17~1.46m/h upflow velocity and 12 hhydraulic retention time. Under this condition, the sulfate conversion rate reached up to 80%, the effluent sulfide concentration was 300mg/L, which create the conditions on the follow-up desulfurization process.
     FeCl_3 was used in the wastewater treatment for the desulfurization process, forming the mixed precipitation of FeS and S. Druing the experimental process, poor settlement insoluble substance and a large amount of sticky foam were created at the same time. The insoluble substance could be removed by floatation process. Through experiment, the optimal proportion of FeCl_3 and sulfide in the water, about 1.84/3 was defined and the sulfur removal up to 93% and the concentration of sulfide residual about 20mg/L couild be achieved under this condition.
     The UASB is a mature anaerobic digestion technology, which bears the responsibility to remove a large amount of COD in this experiment. Temperature, pH, residence time and other factors are the main operating parameters for this reactor. By adopting a double volume inlet water flow, the problem caused by water quality and shock load of wastewater could be solved, and great amount of alkali and acid for adjusting pH was saved at the sametime. When adopting implanting a double volume of outlet water returning flow, t = 36℃,HRT = 30h, pH = 6.9~7.2, the influent COD concentration between3800~7100mg/L, the COD removal rate was within 77%~84%, and 0.5m~3 mash gas could be clected for 1kg COD degradation.
     Under the conditions of amplified experiment, (for treatment capacity of 200~400m~3/d ), the average removal rate of COD was 11.9% with flocculation flotation process,19.6% with hydrolysis reactor, and 84.7% with anaerobic digestion reactor. The total removal rate of COD was 86.7%. The effluent concentration of COD was about 1405mg/L, which stably met the first class standard of wastewater discharge standard GB 8978-1996 in China.
     By adjusting the digestion water effluen returning, the amount of ferric salt used, the construction of appropriate hydraulic regulation facilities and the use of non-equilibrium theory to guide the sludge discharge, it can reduce the impact load on activated sludge system caused by COD, water volume, salinity, toxic substances, surfactants, pH and other factors.
     A constant-flow reactor pool and a inclined sedimentation tank were used to precipitate the lossed sludge of UASB and part of the sludge was returned. Adjusting the parameters of three-phase separator, the gas and solid retention rates were improved; The use of intermittent operation solved the problem of sludge loss.
     The use of iron-carbon absorbing technology can achieve the purpose of absorbing hydrogen sulfide gas and recoverring bioenergy.
引文
[1]计志忠.化学制药工艺学[M].北京:化学工业出版社,1980:36-36.
    [2]吴郭虎,李鹏,王曙光,等.混凝法处理制药废水的研究[J].水处理技术,2000,26(1):53-55.
    [3]王玉坷.抗生素制药废水的炉渣处理[J].环境保护,1993,8:15-16.
    [4]潘志强.土霉素、麦迪霉素废水的化学气浮处理[J].工业水处理,1991,11(1):24-26.
    [5]徐扣珍,陆文雄,宋平,等.焚烧法处理氯霉素生产废水[J].环境科学,1998,19(4):69-71.
    [6]王淑琴,李十中.反渗透法处理土霉素结晶母液的研究[J].城市环境与城市生态,1999,12(1):25-27.
    [7]杨军,陆正禹,胡纪萃,等.抗生素工业废水生物处理技术的现状与展望[J].境科学,1997,18(5):83-85.
    [8]李道棠,赵敏钧,杨虹,等.深井曝气一ICEAS技术在抗菌素制药废水处理中的应用[J].给水排水,1996,22(3):21-24.
    [9]国家环保局科技处,清华大学环境工程系.我国几种工业废水治理技术研究(第三分册)一高浓度有机废水[M].北京:化学工业出版社1988.
    [10]胡晓东,胡冠民,景有海.SBR法处理高浓度土霉素废水的试验研究[J].给水排水,1995,21(7):21-22.
    [11]简英华.ORBAL氧化沟处理合成制药废水[J].重庆环境科学,1994,16(1):22-24..
    [12]毛卫兵,岳术涛,籍秀梅,陆少鸣,等.UBF处理抗生素废水运行稳定性的影响因素分析[J].中国给水排水2007,23(18):85-88.
    [13]李再兴,杨景亮,刘春艳,等.阿维菌素对厌氧消化的影响研究[J].中国沼气,2001,19(1):13-15.
    [14]林锡伦.上流式厌氧污泥床(UASB)工艺处理高浓度发酵药物混合有机废水[J].环境污染与防治,1990,12(3):20-22.
    [15]陈玉,刘峰,王建晨,等.上流式厌氧污泥床(UASB)处理制药废水的研究[J].环境科学,1994,15(1):50-52.
    [16]杨军,陆正禹,胡纪萃,等.林可霉素生产废水的厌氧生物处理工艺[J].环境科学,2001,22(2):82-86.
    [17]郝晓刚,李春.接种颗粒污泥UASB反应器处理味精-卡那霉素混合废水[J].工业水处理,1999,19(2):18-19.
    [18]邱波,郭静,邵敏,等.ABR反应器处理制药废水的启动运行[J].中国给水排水,2000,16(8):42-44.
    [19]邓良伟,彭子碧,唐一,等.絮凝一厌氧一好氧处理抗菌素废水的试验研究[J].环境科学,1998,13(3):66-69.
    [20]韩沛,张少倩.水解酸化-厌氧-好氧-絮凝-吸附工艺处理洁霉素生产丁提高浓度有机废水[J].环境工程,1998,16(1):19-20.
    [21]李炳伟,苏诚艺,宋乾武,等.庆大霉素-金霉素混合制药废水处理中试研究[J].环境科学研究,1998,11(2):59-62.
    [22]刘军,郭茜,翟永彬.厌氧水解生物法处理城市污水的研究[J].给水排水,2000,26(7):10-13.
    [23]Metcalf & Eddy,Inc.秦裕珩,等,译.废水工程处理及回用第四版[M].北京:化学工业出版社,2004:721-721.
    [24]Metcalf & Eddy,Inc.秦裕珩,等,译.废水工程处理及回用第四版[M].北京:化学工业出版社,2004:729-729.
    [25]Metcalf & Eddy,Inc秦裕珩,等,译.废水工程处理及回用第四版[M].北京:化学工业出版社,2004:459-459.
    [26]胡纪萃主编,顾夏声主审.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003:52-52.
    [27]胡纪萃主编,顾夏声主审.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003:41-41.
    [28]贺延龄.废水的厌氧生物处理[M].北京:中国轻工出版社,1998:17-18.
    [29]王凯军.厌氧(水解)好氧处理工艺的理论与实践[J].中国环境科学,1998,18(4):337-340.
    [30]闵航.厌氧微生物学[M].杭州:浙江大学出版社,1993:25-39.
    [31]D.R.Boone.Methods for the Study of Methanogens and other Strictly Anaerobic Bacteria.Institute of Methane[J].Science Chengdu,1993:25-39.
    [32]D.R.Boone.Content of organic solids and protein[J].Wat.Res,1999,33(15):3281-3290.
    [33]Han Qingyu,et al.Acidogenesis of gelatin-rich wastewater in an upfolow anaerobic reaetor influence of pH and temperature[J],Wat.Res,2003,37:55-66.
    [34]Dinopoulou G,et al.Anaerobic acidogenesis of a complex wastewater.1.The influence of operation parameters on reactor performance[J],Biotechnol.Bioeng.,1988,31(9):958-968.
    [35].张希衡.废水厌氧生物处理工程[M].北京:中国环境科学出版社,1996:383-397.
    [36]G..Letinga.Fundamentals of Anaerobic Digestion 2.in:1st Int.Course.Anaerobic and Low Cost of Treatment of Wastes and Wastewaters[J].The Netherlands:IAC and WAU,1994:123-123.
    [37]J.T.O'Rourke.Kinetics of Anaerobic Treatment at Reduced TemperatureS[J].Dissertation of Stanford University,DePt.of Civil Engineering,1968:5-5.
    [38]C.P.Leislie Grady Jr,C.Herry Lim.李献文,杨希昆,等,译.废水生物处理理论与应用[M].北京:中国建筑工业出版社,1989:12-12.
    [39]胡纪萃主编,顾夏声主审.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003:274-276.
    [40]蒋永荣,胡明成.硫酸盐废水生物脱硫研究进展[J].环境科学与技术,2008,(09):67-72.
    [41]Metcalf & Eddy,Inc.秦裕珩,等,译.废水工程处理及回用第四版[M].北京:化学工业出版社,2004:459-461.
    [42]吴婉娥,葛红光,张克峰,编著.废水生物处理技术[M].北京:化学工业出版社,2003:145-148
    [43]吴婉娥,葛红光,张克峰,编著.废水生物处理技术[M].北京:化学工业出版社,2003:83-83.
    [45]孙光跃,刘昌玉.石化废水处理厂活性污泥系统受冲击的原因和对策[J].给水排水,1999,25(5):35-37.
    [46]彭党聪,等.活性污泥非平衡增长理论及其应用[J].中国给水排水,2001,17(2):19-21
    [47]Metcalf & Eddy,Inc.秦裕珩,等,译.废水工程处理及回用第四版[M].北京:化学 工业出版社,2004:727-728.
    [48]Majone M,Dircks K,Beun J.Aerobic storage under dynamic conditions in activated sludge processes[J].Water Sci.Tech.1999,39(1):61-73.
    [49]peng D C.Effects of oxygen supply methods on the performance of SBR for high ammonium nitrification[J],water Envir.Res.2000,72(2):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700