用户名: 密码: 验证码:
岷江上游山地森林/干旱河谷交错带不同植被类型土壤微生物及土壤酶活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在岷江上游山地森林/干旱河谷交错带选择幼林、阔叶混交林、灌木林、针阔混交林、次生林等5个植被类型为研究对象,系统研究了不同植被类型土壤微生物和土壤酶活性的变异情况和变化规律,讨论了不同植被类型对土壤土壤微生物和土壤酶活性的影响,为认识和评价岷江上游山地森林/干旱河谷交错带植被恢复调节机制、恢复效果及充实交错带生态演化过程理论提供研究资料。主要研究结果如下:
     1岷江上游山地森林/干旱河谷交错带不同植被类型土壤微生物数量的差异很大。三大类土壤微生物的数量关系为细菌>放线菌>真菌,生理类群微生物的数量关系为氨化细菌>固氮菌>纤维素分解菌。真菌数量以针阔混交林最多,细菌、放线菌数量以灌木林最多。真菌、细菌、放线菌、氨化菌、固氮菌的数量随海拔的升高先增多后减少,纤维素分解菌的数量随海拔的升高而增多。土壤微生物数量随季节不同有明显变化,除灌木林真菌数量上升到夏季后逐渐降低外,其他植被真菌数量均表现为秋季最高,春夏冬三季较低;细菌为夏季最高,春秋冬三季较低;放线菌除幼林外,均表现为夏季最高,随后逐渐降低,冬季最低。
     2脲酶、过氧化氢酶活性灌木林最高,蔗糖酶活性针阔混交林最高,蛋白酶活性次生林最高。不同植被类型土壤酶活性随季节变化明显且因林分而异。脲酶、蔗糖酶活性在夏季较高,过氧化氢酶活性随季节变化规律不一致,土壤蛋白酶活性则从春季先降低到夏季后开始逐渐回升。
     3交错带不同植被类型土壤pH值随海拔高度的增加而降低,在低海拔幼林地最高。土壤容重在0.96-1.39 g.cm-3之间,土壤容重阔叶混交林最大,灌木林最小,随土层加深土壤容重增大。土壤孔隙状况灌木林最好,阔叶混交林最差,土壤孔隙度是表层优于亚表层。随着海拔高度的增加,土壤养分的含量明显增加,土壤有机碳、全氮、速效氮和速效磷的含量以次生林土壤最高;全磷含量以灌木林土壤最高;全钾、速效钾的含量以阔叶混交林土壤最高;幼林地由于植被恢复时间短,土壤养分含量均处于最低水平。
     4在交错带各植被类型中,土壤养分、微生物数量与酶活性在土壤剖面上具有显著的垂直分布特征。土壤养分含量均随着土层的加深而减少,各类微生物的数量随着土层深度的增加而减少,各种酶活性亦随着土层深度的增加而呈现减弱趋势,说明土壤养分、土壤微生物与土壤酶活性这三者之间存在着显著的相关关系。
     5通过对土壤微生物量、土壤酶与土壤养分的相关性分析表明,本研究区域土壤微生物数量、土壤酶活性均与土壤pH呈负相关,除蛋白酶与容重呈正相关以外均与容重呈负相关,与土壤养分均呈正相关。由此可见土壤微生物数量与土壤理化性质之间存在密切的相关关系,土壤微生物和土壤酶活性在交错带中随海拔的下降而减少与土壤养分的丧失有直接的关系,土壤微生物数量和土壤酶活性可作为评价土壤肥力的指标。说明土壤微生物数量及土壤酶活性可以反映干旱河谷植被恢复的程度。
     在岷江上游山地森林/干旱河谷交错带随着海拔的升高,水分条件逐步变好,土壤肥力、土壤微生物及土壤酶活性逐渐改善。这为干旱河谷区的植被恢复从上至下逐渐推进,提高植被恢复成效提供了理论依据。交错带内,由于灌木林多为带刺植物,减少了动物的干扰,恢复效果优于其它植被类型,表明在山地森林/干旱河谷交错带植被恢复中,进行封禁管理是确保植被恢复效果的重要措施之一。
This dissertation studied on five resume modes of degraded ecosystem in the mountain forests-the arid valley ecotone of the upper reach of Minjiang River, they are young forest, broad-leaved mixed forest, shrub, theropencedrymion and secondary forest, Systematically studied the variations and changes in laws of soil microorganisms and soil enzyme activity under different vegetation, discussed the restoration of vegetation effect on soil microorganisms and soil enzyme activity, for understanding and evaluation of the mountain forests-the arid valley ecotone of the upper reach of Minjiang River vegetation restoration of the adjustment mechanism, and enrich Ecotone ecological theory of evolution. The results show:
     1. The number of soil microorganisms in the mountain forests-the arid valley ecotone of the upper reach of Minjiang River is very prominence. The relation with the quantity between hetero rophic microorganisms is that:bacterial>actinomyceto>fungi, the relation with the quantity between physiological groups of microorganisms is that:ammonifiers> azotobacteria>cellulose decomposing bacteria. The most number of fungi is in theropence-drymion, shrub have the most number of bacterial and actinomyceto. With the increase of the elevation, the numbers of fungi, bacteria, actinomyceto, ammonifiers and azotobacteria after the first increase is reducing, while the numbers of Cellulose-decomposing bacteria increases gradually. The number of soil microbial significant change with the seasons, except the number of fungi in shrub after the first increased is gradually decreased after the summer, other vegetation the number of fungi were highest in autumn, The other three quarters is lower; bacterial was highest in summer; except young forest, actinomy- ceto showed the highest in summer, then gradually decreased, the lowest in winter in other vegetation.
     2. Both the activity of urease and catalase is highest in the shrub sites, the activity of invertase is hightest in the theropencedrymion sites, the activity of protease is hightest in the secondary forest sites. The soil activity of enzyme represents the significantly seasonal dynamics, urease and invertase are higher in autumn, catalase inconsistent with the seasonal variation, and protease decreased from spring to summer, and then increased gradually.
     3. The pH is greatest in lower altitude (young forest) and with the increase in altitude to reduce, besides young forest the value of its upper (0-10cm) is small than the lower (10-20cm). The soil bulk density under different vegetation types is around 0.96~1.39 g.cm-3 in the study area, soil bulk density in broad-leaved mixed forest is the largest, shrub is the smallest and with soil depth the soil bulk increased. The soil porosity in shrub is the best, broad-leaved mixed worst, and surface layer is better than the lower. With the increase in altitude and vegetation restoration, the content of soil nutrient have a marked increase in the study area, secondary forest have the highest content of organic carbon, total nitrogen, available nitrogen and available phosphorus; shrub have the highest content of total phosphorus; broad-leaved mixed forest have the highest contest of total potassium and available potassium; young forest vegetation recovery time is short, soil nutrient content is at the lowest level.
     4. Among the five types of restoration mode of vegetation in mountain forests-the arid valley ecotone, the content of soil nutrients, the amount of microorganism and the activity of enzyme have evident gradient. They decrease rapidly with increasing soil depth. Among they have a significant correlation
     5. The correlation analysis among the amount of microorganism, the activity of enzyme and the content of soil nutrients shows, the minus correlation between the pH and the amount of microorganism、the activity of enzyme. The activity of protease and soil bulk density has positive correlation, the amount of microorganism、the other activity of enzyme and soil bulk density has minus correlation. Otherwise, the amount of microor-ganism、the activity of enzyme were positively correlated with soil nutrients. Thus it can be seen that between the amount of microorganism、the activity of enzyme and soil nutrients has close relationship. Soil microorganisms and the activities of enzyme decreased with altitude are directly related to soil nutrient loss. The amount of microorganism、the activity of enzyme can be used as indicators of soil fertility, and could reflect the extent of vegeta-tion restoration in dry valley.
     Vegetation recovery with the return of a lot of litter and vegetation on wind erosion and dust interception effect, soil fertility and soil biological activity gradually improved. It provides a theoretical basis on dry valley area to promote vegetation gradually from top to bottom, to improve the effectiveness of vegetation. In the mountain forests-the arid valley ecotone, shrub has most barbed shrub plants, reducing the interference of the animal, so the recovery is better than other vegetation types. Show that in the mountain forests-the arid valley ecotone vegetation restoration process, make the block management is the important measures in vegetation restoration
引文
[l]浦发鼎.岷江上游生态学现状及生物多样性保护[J].资源科学,2000,22(5):83-85
    [2]包维楷,王春明.岷江上游山地生态系统的退化机制.山地学报,2000,18(1):57-62
    [3]齐泽民,王开运.川西亚高山不同密度缺苞箭竹对土壤生物学特性的影响[J].水土保持学报,2007,21(4):154-158,176
    [4]刘兴良,幕长龙,向成华等.四川西部干旱河谷自然特征及植被恢复与重建途径[J].四川林业科技,2001,22(2):10-17
    [5]王金锡.四川西部干旱河谷的生态环境与退耕还林[J].四川林业科技,2001,22(1):27-31
    [6]关文彬,冶民生,马克明等.岷江干旱河谷植物群落物种周转速率与环境因子的关系[J].生态学报,2004,24(11):2367-2373
    [7]陈利军,武志杰.与氮转化有关的土壤酶活性对抑制剂使用的响应[J].应用生态学报,2002,13(9):1099-1101
    [8]王书锦,胡江春.新世纪中国土壤微生物学的展望[J].微生物学杂志,2002,22(1):36-39
    [9]薛立,邝立刚,陈红跃等.不同林分土壤养分、微生物与酶活性的研究.土壤学报,2003,40(2):280-285
    [10]关松荫.土壤酶及其研究法.北京:农业出版社,1986
    [11]Jack B, Kris F, Robert J W. The edge effect and ecotonal species: birds communities across a natural edge in southestern Australia. Ecology,2002,83(11):3048~3059
    [12]Hansen A J, Castri F D, Naiman R J.Ecotones:what and why? In: A new look at ecotone:emerging international projects on landscape boundaries. Biology International,1998,17(Special Issue):1~163
    [13]Wilson J B, Agnew A D Q. Positive-feedback switches in plant communities. Advance in Ecological Research,1992,23:263~336
    [14]Neilson R P. Climatic constraints and issues of scale controlling regional biomes. In:Holland M M, Risser P G & Naiman R J eds. Ecotones:the role of landscaps boundaries in the management and restoration of changing environments. London, UK. Chapman & Hall,1991,31~51
    [15]Kupfer J A, Cairns D M. The suitability of montane ecotones as indicators of global climatic change. Progress in Physical Geography,1996,20(3):253~272
    [16]Allen C D and Breshears D D.Drought-induced shift of a forest-woodland ecotone:rapid landscape response to climate variation. Proceedings of the National Academy of Sciences of the USA,1998,95: 14839~14842
    [17]Clements F E. Research methods in ecology. Nebraska:University Publishing Company,1905
    [18]Leopold A. Game management. New York:Charles Scribner's Sons,1933
    [19]Odum E P. Fundamentals of ecology(Second edition). Pennysyvania:W B Saunders Company, 1971
    [20]Anderson J M. Ecology of environmental science-resources and environmental science series [J]. Edward Arnold(Ltd.).1981,87~95
    [21]Di Castri F, Hansen A J. The environment and development crises as determinants of landscape dynamics [A]. In:Hansen A J, Castris F D(eds.). Landscape Boundaries[C], New York: Springer-Verlag,1992,3~18
    [22]Forman R T T, Godron M. Landscape Ecology [M]. New York:John Wiley and Sons.1986
    [23]Holland M M. SCOPE/MAB technical consultations on landscape boundaries:report of a SCOPE/MAB workshop on ecotones. Biology International(Special Issue),1988,17:47~106
    [24]Gosz J R. Ecotone Hierarchies. Ecol. Appl.,1993,3(3):369~376
    [25]Lloyd K M, McQueen A A M, Lee B J, et al. Evidence on ecotone concepts from switch, environmental and anthropogenic ecotones. J. Veg. Sci,2000,11(6):903~910
    [26]Laurance W F, Didham R K, Power M E. Ecological boundaries: a search for synthesis. Trends Ecol. Evol.,2001,16(2):70~71
    [27]朱芬萌,安树青,关保华.生态交错带及其研究进展.生态学报,2007,27(7):3032-3042
    [28]池振明编著.微生物生态学.济南:山东大学出版社[M],1999:5-6
    [29]杨喜田,宁国华,董慧英等.太行山区不同植被群落土壤微生物学特征变化[J].应用生态学报,2006,17(9):1761-1764
    [30]何玉梅,张仁陟,蔡立群,等.冶力关森林公园不同林型土壤微生物区系的研究[J].甘肃农业大学学报,2007,2(1):63-67.
    [31]David A W. Communities and Ecosystems linking the aboveground and belowground components[M]. New Jersey Princeton university press,2002,56~104
    [32]Amalia V D S, Flora A R, Bjom B, et al. Fungal mycelium and decomposition of needle litter in three contrasting coniferous forests[J]. Acta Oecologica,2002,23:247~259
    [33]Balser T, Kinzig A, Firestone M. The functional consequences of biodiversity. In:Kinzig A, Pacala S and Tilman D eds. The Functional Consequences of Biodiversity[M]. Princeton Princeton University Press,2002,265~290
    [34]Cavigelli M A, Robertson G P. The functional significance of denitrifier community composition in a terrestrial ecosystem[J]. Ecology (Washington D C),2000,81:1402~1414
    [35]Noah F, Joshua P S, Patricia A H. Variations in microbial community composition through twosoil depth profiles[J]. Soil Biol Biochem.,2003,35(1):167~176
    [36]陈文新.土壤和环境微生物学[M].北京:北京农业大学出版社,1990
    [37]陈文新,李阜棣,阎章才.我国土壤微生物学和生物固氮研究的回顾与展望.世界科技研究与发展,2003,24(4):6-12
    [38]中国农业百科全书编辑部.中国农业百科全书(林业卷)[M].北京:农业出版社,1989,547-548
    [39]中国农业百科全书编辑部.中国农业百科全书(土壤卷)[M].北京:农业出版社,1996,388-390
    [40]王岩,沈其荣.土壤微生物量及其生态效应[J].南京农业大学学报,1996,19(4):45-51
    [41]Carter M R. Microbial biomass as index for tillage-induced changes in soil biological properties[J]. Soil Tillage Res,1986,17:29~40
    [42]蔡燕飞,廖宗文.土壤微生物生态学研究方法进展[J].土壤与环境,2002,11(2):167-171
    [43]Decbesne A, Pallud C, Debouzie D, et al. A novel method for eharacterizing the micro scale 3D spatial distribution of bacteria in soil[J]. Soil Biology & Biochemistry,2003,35(12):1537~1547
    [44]Attiwill P M, Adams M A. Nutrient cycling in forests[J]. New Phytol.1993,124:561~582
    [45]梁秀棠,雷玉宝.纯松林、纯杉林、混交林的土壤微生物区系分析.广西林业科技,1991,20(1):23-28
    [46]胡延杰,翟明普,武勤文等.杨树刺槐混交林及纯林土壤微生物数量及活性与土壤养分转化关系的研究.土壤,2002,1:42-46,50
    [47]蔡艳,薛泉宏,侯琳等.黄土高原几种乔灌木根区土壤微生物区系研究.陕西林业科技,2002,1:4-9,1
    [48]柯明哲.厦门市坂头林场森林土壤微生物生态分布研究.福建林业科技,2000,27(1):5-9
    [49]胡承彪,朱宏光,韦源连.龙胜里驼林区土壤微生物学特性研究.广西科学院学报,1992,8(2):44-52
    [50]叶镜中.森林生态学.哈尔滨:东北林业大学出版社,1992
    [51]杜国坚,张庆荣,洪利兴等.杉木连栽林地土壤微生物区系及其生化特性和理化性质的研究[J].浙江林业科技,1995,15(5):14-20
    [52]夏北成,Zhou J Z, James M T.植被对土壤微生物群落结构的影响[J].应用生态学报,1998,9 (3):296-300
    [53]Zak D R, Holmes W E, White D C, et al. Plant diversity, soil microbial communities, and ecosystem function:Are there any links?[J]. Ecology,2003.84:2042~2050.
    [54]胡亚林,汪思龙,颜绍馗.影响土壤微生物活性与群落结构因素研究进展.土壤通报,2006,37(1):170-176
    [55]Newman E I. The rhizosphere carbon sources and microbial populations[A].Fitter A H, Atkinson D, Read D J and Usher M B. Ecological interactions in soil-plants, microbes and animals[C]. Boston Black well Scientific Publications.1985,107~121.
    [56]David T, Johannes K, David W, et al. The influence of functional diversity and composition on ecosystem processes[J]. Science,1997,227:1300~1302
    [57]Van Bruggen A H C, Semenov A M. In search of biological indicators for soil health and disease suppression[J]. Applied Soil Ecology,2000,15:13~24.
    [58]张炳欣,张平,陈晓斌.影响引入微生物根部定殖的因素[J].应用生态学报,2000,11(6):951-953
    [59]林超峰,陈占全,薛泉宏等.青海三江源区植被退化对土壤养分和微生物区系的影响.应用与环境生物学报.2007,13(6):788-793
    [60]Potthoff M, Steenwerth K, Jackson L E, et al. Soil microbial community composition as affected by restoration practices in California grassland[J]. Soil Biology & Biochemistry,2006,38:1851~1860
    [61]张秀艳.川西常绿阔叶林不同恢复阶段土壤微生物区系研究[D].四川农业大学,2004
    [62]Tscherko D, Hammesfahr U, Zeltner G, et al. Plant succession and rhizosphere microbial communities in a recently deglaeiated alpine terrain. Basic and Applied Ecology,2005,6:367~383
    [63]Chan O C, Yang X D, Fu Y, et al.16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad 2 leaved forests in south west China [J]. FEM S Microbiol Ecol,2006,58:247 ~259
    [64]王光华,金剑,徐美娜等.植物、土壤及土壤管理对土壤微生物群落结构的影响.生态学杂志,2006,25(5):550-556
    [65]Sessitsch A, Weilharter A, Gerzabek M, et al. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment[J]. Applied and Environmental Microbiology,2001, 67(9):4215~4224
    [66]王龙昌,玉井理,永田雅辉等.水分和盐分对土壤微生物活性的影响[J].垦殖与稻作,1998, (3):40-42
    [67]王国兵,阮宏华,唐燕飞等.森林土壤微生物生物量动态变化研究进展[J].安徽农业大学学报,2009,36(1):100-103
    [68]Sanchez P A. Properties and Management of Soils in the Tropics[M]. Wiley, New York,1976
    [69]Singh J S, Raghubanshi A S, Singh R S, et Srivastava[J].Nature,1989,338(6):499~500
    [70]刘增文,潘开文,杜红霞等.森林植物·枯落物-土壤微生物系统N关系研究进展[J].西北林学院学报,2006,21(1):72-75
    [71]Heal O W, Dighton J. Resource quality and trophic structure in the soil system[A]. Fitter A H, Atkinson D, Read D J and Usher M B eds. Ecological interactions in soil-plants, microbes and animals[C]. Boston Blackwell Scientific Publications.1985,339~354
    [72]Noah F, Joshua P S, Patricia A H. Variations in microbial community composition through two soil depth profiles[J]. Soil Biol Biochem.2003,35(1):167~176
    [73]潘维旺,李景英,周启水等.土壤微生物与森林环境因子关系初探[J].南昌水专学报,1998,17(4):38-41
    [74]Muller R N, Bormann F H. Role of Erythronium americanum Ker. in energy flow and nutrient dynamics in the northern hardwood forest[J]. Science,1976,193:1126~1128
    [75]许景伟,王卫东,李成.不同类型黑松混交林土壤微生物、酶及其与土壤养分关系的研究[J].北京林业大学学报,2000,22(1):51-55
    [76]XIAO-HUA YAO, HANG MIN, ZHEN- HUA LU, et al. Influence of acetamiprid on soil enzymatic activities and respiration[J]. European Journal of Soil Biology,2006(42):120~126
    [77]Gloria Rodriguez-Loinaz, Miren Onaindiaa, Ibone Amezagaa, et al. Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests[J]. Soil Biology & Biochemistry,2008,40:49~60
    [78]Bums R G. Soil Enzymes. New York:Academic Press,1978
    [79]Bums R G, Dick R P. Enzymes in the Environment:Ecology, Activity and Applications. New York: Marcel Dekker, Ine.,2001
    [80]Kiss S. Pasca D. Dragan-Bulardan M. Enzymology of Disturbed Soils. Amsterdam:Elsevier.1998, 1~340
    [81]Garcia C, Hernandz M T. Research and Perspectives of Soil Enzymology in Spain. Spain Murcia: CEBAS-CSIC,2000
    [82]周礼恺编著.土壤酶学[M].北京:科学出版社,1989
    [83]杨万勤,王开运.森林土壤酶的研究进展.林业科学,2004,40(2):152-159(原90改为83)
    [84]中国土壤学会编.中国土壤科学的现状与展望.南京:河海大学出版社,2007.101-109.
    [85]和文祥,陈会明,冯贵印等.环境科学学报,2000,20(3):338-343
    [86]沈标,李顺鹏,赵硕伟.氯苯、对硝基酚对土壤生物活性的影响.土壤学报,1997,34(3):309-314
    [87]和文祥、朱铭莪、张一平,土壤酶与重金属关系研究现状,土壤与环境,2000,9(2):139-142
    [88]Gramss G, Voigt K-D, Kirsche B. Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material[J]. Chemosphere,1999.38:1481~1494
    [89]曹慧,孙辉,杨浩等.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报,2003,9(1):105-109
    [90]Dick W A, Juma N C, Tabatabai M A. Effects of soils on acid phosphatase and inorganic pyrophsphatase of corn roots. Soil Sci,1983,136:19-25
    [91]杨芳.川西亚高山森林土壤微生物和酶活性分布特征研究[D].西南农业大学,2004
    [92]黄懿梅,安韶山,曲东等.黄土丘陵区植被恢复过程中土壤酶活性的响应与演变.水土保持学报,2007,21(1):152-155
    [93]杨万勤,李瑞智,韩玉萍.缙云山天然次生林土壤酶活性的分布特征.生态学研究论文集(董鸣,M J A Werger编著).重庆:西南师范大学出版社,1999:171-179
    [94]杨万勤,钟章成,韩玉萍.缙云山森林土壤酶的分布特征和季节动态及其与四川大头茶的关系.西南师范大学学报(自然科学版),1999,24(3):318-324
    [95]杨万勤,钟章成,陶建平等.缙云山森林土壤酶活性与植物多样性的关系.林业科学,2001,37(4):124-128
    [96]Hooper D U, Bignell D E, Brown V K et al. Interactions between above and belowground
    biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience,2000,50: 1049~1061
    [97]Lucas Y, Luizao F J, Chauvel A et al. The relation between biological activity of the rain forest and mineral composition of soils. Science,1993,260:521~523
    [98]Freckman D W, Blackburn TH, Brussaard L et al. Linking biodiversity and ecosystem functioning of soils and sediments. Ambio,1997,26:555~562
    [99]Brussaard L, Behan-Pelletier V M, Bignell D et al. Biodiversity and ecosystem functioning in soil. Ambio,1997,26:563~570
    [100]Martens D A, Johanson J B, Frankenberger W T. Production and persistence of soil enzymes with repeated additions of organic residues. Soil Sci,1992,153:53~61
    [101]Theng B K G, Aislabie J, Fraser R. Bioavailability of phenanthrene intercalated into an alkylammonium-montmorillonite clay[J]. Soil Biol Biochem,2001,33:845~848
    [102]Mendes C, Bandick A K, Dick R P, Bottomley P J. Microbial biomass and activities in soil aggregates by winter cover crops. Soil Sci Soc Am J,1999,63:873~881
    [103]Rao M A,Giangreda L. Propeties of acid phosphatase-tannic acid complexes formed in the presence of Fe and Mn[J]. Soil Biol Biochem,2000,32:1921~1926
    [104]Albiach R, Canet R, Pomanes F, et al. Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil[J]. Biore Technol,2000,75:43~48
    [105]Kramer S, Green D M. Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland[J]. Soil Biol Biochem,2000,32:179~188
    [106]胡延杰,翟明普等.杨树刺槐混交林及纯林土壤酶活性的季节性动态研究.北京林业大学学报,2001,23(5):23-26
    [107]NIEMI R M, VEPSLINEN M. Stability of the fluorogenic enzyme substrates and pH optima enzyme activities in different Finnish soils[J]. Journal of Microbiological Methods,2005(60):195~205
    [108]杨万勤,王开运.土壤酶研究动态与展望.应用与环境生物学报,2002,8(5):564-570
    [109]Naseby D C, Pascual J A, Lynch J M. Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities[J].J Appl Microbiol,2000,88:161~169
    [110]Vazquez M M, Cesar S, Azcon R. Interactions between arbuscular mycorrizal fungi other microbial inocants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants[J]. Appl Soil Ecol,2000,15:261~272
    [111]Frankenberger W T, Dick WA. Relationships between enzyme activities and microbial growth and activity indices in soil[J]. Soil Sci Soc Am J,1983,47:945~951
    [112]Hader D P. Effects of solar UV-B radiation on aquatic ecosystems[J]. Adv Space Res,2000,12: 2029~2040
    [113]Kayang H. Fungal and bacterial enzyme activities in Alnus mepalensis D. Don[J]. Eur J Soil Biol, 2001,37:175~180
    [114]Taylor J P, Wilson B, Mills M S, et al. Comparison of microbial numbers and enzymatic activities in surface and subsoils using various techniques[J]. Soil Biol Biochem,2002,34:387~401
    [115]Aon M A, Cabello M N, Sarena D E, et al. I. Spatio-temporal patterns of soil microbial and enzymatic activities in an agricultural soil[J]. Appl Soil Ecol,2001,18:239~254
    [116]Asmer F, Eiland F, Nielsen N E. Interrelationship between extracellular enzyme activities, ATP content, total counts of bacteria and CO2 evolution. Biol Fert Soil,1992,14:288~292
    [117]Howard P J A. Problems in the estimation of biological activity in soil. Oikos,1972,23:235~240
    [118]Perucci P. Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biol Fert Soils,1992,14:54~60
    [119]张猛,张健.林地土壤微生物、酶活性研究进展.四川农业大学学报,2003,4(21):347-351
    [120]张荣祖.横断山区干旱河谷[M].北京:科学出版社会,1992
    [121]严代碧,岳永杰,郑绍伟等.岷江上游干旱河谷区土壤水分含量及其动态.南京林业大学学报(自然科学版),2006,30(4):64-68
    [122]王春明,包维楷,陈建中等.岷江上游干旱河谷区褐土不同亚类剖面及养分特征.应用与环境生物学报,2003,9(3):230-234
    [123]何飞,慕长龙,潘攀.岷江上游杂谷脑河干旱河谷植被特性研究.成都大学学报(自然科学版),2005,24(4):258-261
    [124]杨兆平,常禹,杨孟等.岷江上游干旱河谷景观边界动态及其影响域.应用生态学报,2007,18(9):1982-1976
    [125]殷国兰,李梅,吴宗兴等.岷江干旱河谷辐射松人工林土壤微生物数量的季节动态[J].四川农业大学学报,2007,25(4):410-414
    [126]肖玲,王开运,张远彬等.岷江冷杉根际土壤微生物对大气CO2浓度和温度升高的响应[J].应用生态学报,2006,17(5):773-777
    [127]杨芳,王开运,杨万勤.川西亚高山不同林地土壤微生物和酶活性研究[J].内蒙古林业科技,2008,34(1):5-7
    [128]刘文彬.岷江上游半干旱河谷灌丛的主要类型.山地研究,1994,12(1):27-31
    [129]何飞,刘兴良,郑绍伟等.四川卧龙自然保护区川滇高山栋林在海拔梯度上的植物种-面积的关系[J].成都大学学报(自然科学版),2005,25(1):31-34
    [130]中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985
    [131]南京农业大学,1996.中国科学院南京土壤研究所土壤物理室,1978
    [132]何其华,何永华,包维楷.岷江上游干旱河谷典型阳坡海拔梯度上土壤水分动态[J].应用与环境生物学报,2004,10(1):68-74
    [133]薛立,陈红跃,邝立刚.湿地松混交林地土壤养分、微生物和酶活性的研究.应用生态学报,2003,14(1):157-159
    [134]赵辉,赵铭钦,程玉渊等.土壤微生物影响因子研究综述.江西农业学报,2009,21(12):52-56
    [135]Nemergut D R, Costello E K, Meyer A F, et al. Structure and function of alpine and arctic soil microbial communities[J].Research in Microbiology,2005, (156):775~784
    [136]宋娟丽,吴发启,姚军等.弃耕地植被恢复过程中土壤酶活性与理化特性演变趋势研究.西北农林科技大学学报(自然科学版),2009,4(37):103-107
    [1]易海燕,宫渊波,陈林武等.岷江上游山地森林/干旱河谷交错带退耕还林后土壤养分变化和微生物分布特征[J].水土保持研究,2010,17(2):130-135
    [2]易海燕,宫渊波,伍维翰等.岷江上游山地森林/干旱河谷交错带植被恢复对土壤微生物量及酶活性的影响[J].水土保持学报,2010,24(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700