用户名: 密码: 验证码:
调控紫杉醇合成转录因子TcMYC和TcWRKY1的克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物细胞培养是一种最有希望解决紧缺次生代谢物来源的方法,然而植物细胞培养生产次生代谢产物如紫杉醇的产量较低。紫杉醇是来源于红豆杉的具有广谱抗肿瘤作用的二萜类生物碱,当前市场需求大,药物来源紧张。红豆杉细胞培养生产紫杉醇是解决其供需矛盾的有效方法之一。然而,利用红豆杉细胞培养生产紫杉醇同样存在着产量较低,工业化成本较高的问题。转录因子可激活特定次生代谢产物系列合成酶的协同表达,有效地促进目标次生代谢产物的合成。因而利用转录因子构建转基因细胞系成为解决此问题的有效途径之一。本论文通过研究MeJA和SA诱导紫杉醇合成酶基因的表达模式,选择显著受到MeJA和SA诱导的紫杉醇合成酶基因作为研究对象,分别克隆其启动子并鉴定其关键的顺式作用区,采用酵母单杂交技术筛选转录因子,并通过过表达和RNAi进行转录因子的功能研究,筛选调控紫杉醇合成的转录因子,同时构建受微量酒精诱导转录因子表达的中国红豆杉转基因细胞系,实现调控紫杉醇合成的转录因子的可控表达和紫杉醇稳定可控合成。
     本研究取得创新性结果如下:
     (1)获得MeJA和SA诱导紫杉醇合成酶基因的表达模式,发现MeJA对于紫杉醇合成的前期步骤基因如ts、t5αh、tat诱导非常显著,而SA则显著诱导紫杉醇合成中后期步骤t13αh,tbt,dbat,dbtnbt,bapt。
     (2)获得了紫杉醇合成酶基因ts、dbat的启动子序列。用PLACE和PlantCARE对分离的启动子序列进行分析发现,ts启动子中含有典型的JA响应元件,包括G-box、TGACG等,而在dbat启动子上则含有典型的SA响应元件如W-box等。采用农杆菌和基因枪分别转化烟草和红豆杉细胞,经GUS分析发现ts、dbat基因启动子均能驱动GUS基因在烟草和红豆杉细胞中表达,且ts启动子的(-239/-131)为JA响应区,dbat启动子的(-940/-240)为SA响应区。
     (3)以获得的ts启动子JA响应区和dbat启动子SA响应区为为诱饵,采用酵母单杂交技术筛选获得一个可以和ts启动子JA响应区结合的bHLB家族类转录因子TcMYC蛋白,以及一个可与dbat启动子SA响应区结合的WRKY家族类转录因子TcWRKY1,亚细胞定位实验证明其均定位于细胞核,且EMSA分析发现TcWRKY1可在体外结合dbat启动子SA响应区上的2个W-box。对TcWRKY1在中国红豆杉细胞中进行过表达和RNAi分析发现TcWRKY1能激活dbat基因的表达,而TcMYC的过表达则可激活ts基因的表达。
     (4)构建微量酒精诱导转录因子TcWRKY1表达载体,以获得的转录因子TcWRKY1为目标基因,将其构建到微量酒精诱导载体上转化到中国红豆杉细胞中,酒精诱导后发现ts,t5αh,dbbt,dbat,dbtnbt基因的表达增强,且紫杉醇含量提高了2.7倍。
Plant cell cultures is one of the most promising method to solve theshortage of rare secondary metabolites, however, the yield of secondarymetabolites in plant cell cultures is low, which limited its commercialapplication. One of effective approaches is metabolic engineering of plantcell in an attempt to obtain a higher secondary metabolites content.Transcriptional factors can activate multiple expression of genes encodingsynthases in biosynthetic pathway of certain secondary metabolite, improvingthe content of this secondary metabolite. Taxol (paclitaxel) is an efficientantitumor agent originated from yew trees and has been widely used in thetreatment of breast, ovary and other cancers. Taxus suspension cells culture issuitable for the commercial sources of taxol due to its renewable andsustainable production system. However, the yield of taxol is low in culturedTaxus cells, which limited the application of cell culture. In this research, theMeJA and SA-induced Taxol synthesis key enzyme genes were chosed as model, and the promoter of gene response to MeJA and SA was cloned,through5’ deletion analysis identified the MeJA and SA-responsed elements,and then isolating the binding protein from the T.chinensis cells by the yeastone-hybrid system using MeJA and SA-responsed elements as baitrespectively, Constitutive expression and RNAi of the binding protein in T.chinensis cells were used to study the function of these genes. Constructedthe alcohol inducible transcription factor expression vector, which was thenintroduced into T. chinensis cells for achieved the transgenic Taxus cells withcontrollable expression of transcription factors regulating taxol biosynthesis.
     The innovative results of this study were as follows:
     (1) The expression patterns of the key taxol biosythesis genes responsed toMeJA and SA were obtained by quantitative PCR. It is found that most of thetaxol biosynthesis genes were induced by MeJA, especially for thepreliminary steps such as ts、t5αh、tat, the late steps gene t13αh,tbt,dbat,dbtnbt,bapt can be significantly induced by SA.
     (2) The promoter sequence of taxol biosythesis gene ts and dbat werecloned from T. chinensis.Using PLACE and PlantCARE database analysisfound that the promoter of ts gene contained typical JA responsive elements,including the G-box region, TGACG and GCC-box, while the promoter ofdbat contains a typical SA response elements such as W-box.The functioncharacteristics of ts, dbat promoter was analyzed, GUS analysis showed thatthe ts, dbat promoter can drive GUS gene expression in tobacco and T.chinensis cells, GUS quantitative analysis showed that the (-940/-240)element of dbat promoter was significantly induced by SA, the (-239/-131)element of ts promoter were significantly induced by JA.
     (3) A WRKY family transcription factor named TcWRKY1was isolatedusing the SA response element(-940/-240) as bait, and a bHLB familytranscription factors named TcMYC was isolated using the JA responseelement(-239/-131) as bait, Subcellular localization experiments show thatTcWRKY1and TcMYC were located in the nucleus, EMSA experiments showed that TcWRKY1can bind to the W-box of SA response element(-940/-240) in vitro. The constitutive expression and RNAi experimentdemonstrated that TcWRKY1can regulated the expression of dbat gene, andthe overexpression of TcMYC in T. chinensis cells showed that the TcMYCcan activation the ts gene expression.
     (4) Construction the alcohol-induced transcription factor TcWRKY1expression vector using the transcription factor TcWRKY1as the target genes,which was introduced into the T. chinese cells to study the the expressionchanges of key enzyme and content of taxanes. After alcohol induce, theexpression of ts,t5αh,dbbt,dbat,dbtnbt was enhanced, and taxol yield wasabout2.7times that of the uninduced cells.
引文
[1] Phillipson JD. Plants as sources of valuable products. In Proceedings ofthe Phytochemical Society of Europe, volume30. Secondary productsfrom plant tissue cultures, B.V. Charlwood and M.J.C. Rhodes, eds(New York: Oxford University Press),1990, pp.1-22.
    [2] Wink M. Functions of plant secondary metabolites and their exploitationin biotechnology.(1999).(Sheffield, England: Sheffield AcademicPress).
    [3]何水林,郑金贵,王晓峰,等.植物次生代谢:功能、调控及其基因工程.应用与环境生物学报,2002,8(5):558-563.
    [4] Bourgaud F, Gravot A, Milesi S, et al. Production of plant secondarymetabolites: a historical perspective. Plant Sci,2001,161:839-851.
    [5] Croteau R, Ketchum REB, Long RM, et al. Taxol biosynthesis andmolecular genetics. Phytochem Rev,2006,5:75-97.
    [6] Heinig U, Jennewein S. Taxol: A complex diterpenoid natural productwith anevolutionarily obscure origin. Afr J Biotechnol,2009,8(8):1370-1385.
    [7] Malik S, Cusido RM, Mirjalili MH, et al. Production of the anticancerdrug taxol in Taxus baccata suspension cultures: A review. ProcessBiochem,2011,46:23-34.
    [8] Guo BH, Kai GY, Jin HB, Tang KX. Taxol synthesis. Afr J Biotechnol.2006,5(1):15-20.
    [9] Facchini PJ. Alkaloid biosynthesis in plants: biochemistry, cell biology,molecular regulation, and metabolic engineering applications. Ann RevPlant Physiol Plant Mol Biol,2001,52:29-66.
    [10] Vanisree M, Lee CY, Lo SF. Studies on the production of someimportant secondary metabolites from medicinal plants by plant tissuecultures. Bot Bul l Acad Sin,2004,45:1-22
    [11] Roberts SC. Production and engineering of terpenoids in plant cellculture. Nat Chem Biol,2007,3:387-395.
    [12] Zhao J, Davis LC, Verpoorte R. Elicitor signal transduction leading toproduction of plant secondary metabolites. Biotechnol Adv,2005,23:283-333.
    [13] Sato F, Hashimoto T, Hachiya A, et al. Metabolic engineering of plantalkaloid biosynthesis. Proc Natl Acad Sci USA,2001,98:367-372.
    [14] Verpoorte R, Van DHR, Memelink J. Engineering the plant cell factoryfor secondary metabolite production. Transgenic Res,2000,9:323-343.
    [15] Capell T, Christion P. Progress in Plant metabolic engineering. CurrOpin Biotech,2004,15:148-154.
    [16]杜丽娜,张纯丽,朱纬,等.植物次生代谢合成途径及生物学意义.西北农林科技大学学报.2005,20(3):150-155.
    [17] Han JL, Liu BY, Ye HC. Effects of overexpression of the endogenousfarnesyl diphosphate synthase on the artemisinin content in Artemisiaannua. J Integr Plant Biol,2006,48:482-487.
    [18] Aquil S, Husaini AM, Abdin MZ, et al. Overexpression of theHMG-CoA reductase gene leads to enhanced artemisinin biosynthesis intransgenic Artemisia annua plants. Planta Med,2009,75:1453-1458.
    [19] Zhang L, Ding RX, Chai YR, et al. Engineering tropane biosyntheticpathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad SciUSA,2004,101:6786-6791.
    [20] Zhang P, Li ST, Liu TT, et al. Overexpression of a10-deacetylbaccatinIII-10β-O-acetyltransferase gene leads to increased taxol yield in cellsof Taxus chinensis. Plant Cell Tiss Organ,2011,1:63-67.
    [21] Vom Endt D, Kijne JW, Mernelink J. Transcription factors controllingPlant secondary metabolism: what regulates the regulators?Phytochemistry,2002,61:107-114.
    [22] Gantet P, Memelink J. Transcription factors: tools to engineer theproduction of pharmacologically active plant metabolites. TrendsPharmacol Sci,2002,23:563-569.
    [23] Bovy AG, de Vos CHR, Kemper M, et al. High-flavonol tomatoesthrough heterologous expression of the maize transcription factor genesLC and C1. Plant Cell,2002,14:2509–2526.
    [24] Van der Fits L, Memelink J. ORCA3, a jasmonate-responsivetranscriptional regulator of plant primary and secondary metabolism.Science,2000,289:295-297.
    [25]龚一富.长春花萜类吲哚生物碱代谢工程[博士学位论文].上海:上海交通大学,2005.
    [26] Borevitz JO, Xia YJ, Blount J, et al. Activation Tagging Identifies aConserved MYB Regulator of Phenylpropanoid Biosynthesis. Plant Cell,2000,12:2383-2393.
    [27] Liu L, White MJ, MacRae TH. Transcription factors and their genes inhigher plants: Functional domains, evolution and regulation. Eur JBiochem,1999,262:247-257.
    [28] Aharoni A, Galili G. Metabolic engineering of the plantprimary-secondary metabolism interface. Curr Opin Biotechnol,2011,22(2):239-244.
    [29] Riechmann JL, Ratcliffe OJ. A genomic perspective on planttranscription factors. Curr Opin Plant Biol,2000,3:423-434.
    [30] Schwechheimer M, Zourelidou M, Bevan MW. Plant transcriptionfactor studies. Annu Rev Plant Physiol Plant Mol Biol,1998,49:127-150.
    [31] Liu JD, Wilson TF, Milbrandt J, et al. Identifying DNA binding sitesand analyzing DNA-binding domains using a yeast selection system.Methods,1993,57(5):125-137.
    [32] Yoshihiro KK, Takuji W, Tatsuhiko T, et al. Regulation of CAPRICEtranscript ion by MYB prot eins for root epidermis differentiation inArabidopsis. Plant Cell Physiol,2005,46(6):817-8261.
    [33] Kosugis S, OhashiY. PCF1and PCF2specifically bind to cis-elementsin the rice proliferating cell nuclear antigen gene. Plant Cell,1997,9(9):1607-1619.
    [34] Maeda K, Kimura S, Demura T, et al. DcMYB1acts as a transcriptionalactivator of the carrot phenylalanine ammonia-lyase gene (DcPAL1) inresponse to elicit or treatment, UV-B irradiation and the dilution effect.Plant Mol Biol,2005,59(5):739-752.
    [35] Zhao J, Davis LC, Verpoorte R. Elicitor signal transduction leading toproduction of plant secondary metabolites. Biotechnol Adv,2005,23:283-333.
    [36] Gundlach H, Müller MJ, Kutchan TM, et al. Jasmonic acid is a signaltransducer in elicitor-induced plant cell cultures. Proc Natl Acad SciUSA,1992,89:2389-2393.
    [37] Turner JG, Ellis C, Devoto A. The jasmonate signal pathway. Plant Cell,2002,14Suppl: S153-S164.
    [38] Wasternack C. Jasmonates: an update on biosynthesis, signaltransduction and action in plant stress response, growth anddevelopment. Ann Bot,2007,100:681-697.
    [39] Balbi V, Devoto A. Jasmonate signalling network in Arabidopsisthaliana: crucial regulatory nodes and new physiological scenarios.New Phytol,2008,177:301-318.
    [40] Shah J. The salicylic acid loop in plant defense. Curr Opin Plant Biol.2003,6:365-371.
    [41] Baldwin IT. Methyl jasmonate-induced nicotine production inNicotiana attenuata: Inducing defenses in the field withoutwounding. Entomol Exp Appl,1996,80:213-220.
    [42] Gundlach H, Muller MJ, Kutchan TM, et al. Jasmonic acid is a signaltransducer in elicitor-induced plant cell cultures. Proc Natl Acad SciUSA,1992,89(6):2389-2393.
    [43] Aerts RT, Gisi D, De Carolis E, et al. Methyl jasmonate vaporincreases the developmentally controlled synthesis of alkaloids inCatharanthus and Cinchona seedlings. Plant J,1994,5:635-643.
    [44] Binns SE, Inparajah I, Baum BR, et al. Methyl jasmonate increasesreported alkamides and ketoalkene/ynes in Echinacea pallida(Asteraceae). Phytochem,2001,57:417-420.
    [45] WangYD, Yuan YJ, Wu JC. Induction studies of methyl jasmonate andsalicylic acid on taxane production in suspension cultures of Taxuschinensis var. mairei. Biochem Eng J,2004,19:259-265.
    [46]张春荣,李玲.水杨酸、茉莉酸甲酯和乙烯利对野葛细胞悬浮培养生产葛根素的影响.植物资源与环境学报,2003,12(1):56-57.
    [47] Memelink J. Regulation of gene expression by jasmonate hormones.Phytochem.2009,70:1560-1570.
    [48] Chini A, Fonseca S, Fernández G, et al. The JAZ family of repressorsis the missing link in jasmonate signalling. Nature,2007,448:666-671.
    [49] Katsir L, Chung HS, Koo AJ, et al. Jasmonate signaling: a conservedmechanism of hormone sensing. Curr Opin Plant Biol,2008a,11:428-435.
    [50] Dombrecht B, Xue GP, Sprague SJ, et al. MYC2differentiallymodulates diverse jasmonate-dependent functions in Arabidopsis. Plantcell,2007,19(7):2225-2245.
    [51] Pauwels L, Goossens A. The JAZ Proteins: A Crucial Interface in theJasmonate Signaling Cascade. Plant Cell,2011,23:3089-3100.
    [52] Thines B, Katsir L, Melotto M, et al. JAZ repressor proteins are targetsof the SCFCOI1complex during jasmonate signalling. Nature,2007,448:661-665.
    [53] Fernández-Calvo P, Chinia A, Fernández-Barbero G, et al. TheArabidopsis bHLH transcription factors MYC3and MYC4are targetsof JAZ repressors and act additively with MYC2in the activation ofjasmonate responses. Plant Cell,2011,23:701-715.
    [54] Zhang HT, Hedhili S, Montiel G, et al. The basic helix-loop-helixtranscription factor CrMYC2controls the jasmonateresponsiveexpression of the ORCA genes regulating alkaloid biosynthesis inCatharanthus roseus. Plant J,2011,67(1):61-67.
    [55] Van der Fits, L, Memelink J. The jasmonate-inducibleAP2/ERF-domain transcription factor ORCA3activates geneexpression via interaction with a jasmonate-responsive promoterelement. Plant J,2001,25:43-53.
    [56] Shoji T, Hashimoto T. Tobacco MYC2Regulates Jasmonate-InducibleNicotine Biosynthesis Genes Directly and By Way of the NIC2-LocusERF Genes. Plant Cell Physiol,2011,52(6):1117-1130.
    [57] Shoji T, Ogawa T, Hashimoto T. Jasmonate-induced nicotineformation in tobacco is mediated by tobacco COI1and JAZ genes.Plant Cell Physiol,2008,49:1003-1012.
    [58] Zhang HB, Bokowieca MT, Rushton PJ, et al. Tobacco TranscriptionFactors NtMYC2a and NtMYC2b Form Nuclear Complexes with theNtJAZ1Repressor and Regulate Multiple Jasmonate-Inducible Steps inNicotine Biosynthesis. Mol Plant,2012,5(1):73-84.
    [59] Loake G, Grant M. Salicylic acid in plant defence the players andprotagonists. Curr Opin Plant Biol,2007,10(5),466–472.
    [60] Vlot AC, Dempsey DMA, Klessig DF. Salicylic Acid, a MultifacetedHormone to Combat Disease. Annu Rev Phytopathol,2009.47:177-206.
    [61] Dong XN. NPR1, all things considered. Curr Opin Plant Biol,2004,7:547-552.
    [62] Spoel SH, Mou ZL, Tada Y, et al. Proteasome-Mediated Turnover ofthe Transcription Coactivator NPR1Plays Dual Roles in RegulatingPlant Immunity. Cell,2009,137(5):860-872.
    [63] Kunkel BN, Brooks DM. Cross talk between signaling pathways inpathogen defense. Curr Opin Plant Biol,2002,5:325-331.
    [64] Feys BJ, Parker JE. Interplay of signaling pathways in plant diseaseresistance. Trends Genet,2000,16(10):449-455.
    [65] Dong XN. SA, JA, ethylene, and disease resistance in plants. CurrOpin Plant Biol,1998,1(4):316-323.
    [66]胡廷章.植物的化学诱导表达系统.分子植物育种,2003,1(6):731-736.
    [67]庄晓英,卢钢,曹家树,等.诱导表达系统及其在植物中的应用.细胞生物学杂志,2005,27:407-413.
    [68] Felenbok B, Flipphi M, Nikolaev I. Ehanol catabolism in Aspergillusnidulans: A model system for studying gene regulation. Prog NuclAcid Res Mol Biol.2001,69:149-204.
    [69] Peebles CAM, Gibson SI, Shanks JV, et al. Characterization of anethanol-inducible promoter system in Catharanthus roseus hairy roots.Biotechnol Prog,2007,23:1258-1260.
    [70]陈衰,曹守云, Martinez A,等. alc基因开关系统在水稻中的建立和优化,科学通报,2002,47(5):366-370.
    [71] Wani MC, Taylor HL, Wall ME, et al. Plant antitumor agents. VI. Theisolation and structure of taxol, a novel antileukemic and antitumoragent from Taxus brevifolia. J Am Chem Soc,1971,93:2325-2327.
    [72] Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly invitro by taxol. Nature,1979,277:665-667.
    [73] Choy H, Akerley W, Safran H, et al. Phase I trail of outpatient weeklypaclitaxel and concurrent radiation therapy for advanced non-small-celllung cancer. J Clin Oncol,1994,12:2682-2686.
    [74]佘馄,丁艳涛,孟宪,等.紫杉醇在我国的应用近况.肿瘤防治杂志,2001,8(4):440-443.
    [75] Kohler J, Goldspiel BR. Evaluation of new drug Paclitaxel (Taxol).Pharmaco-therapy,1994,14:3-34.
    [76] Regression of collagen-induced arthritis with taxol, a microtubulestabilizer. Arthritis Rheum,1994,37:839-845.
    [77] Oliver SJ, Banquerigo ML, Brahn E. Suppression of collagen-inducedarthritis using an angiogenesis inhibitor, AGM-1470, and a microtubulestabilizer, taxol. Cell Immunol,1994,157:291-299.
    [78] Pouvelle B, Farley PJ, Long CA, et al. Taxol arrests the developmentof blood-stage plasmodium faciparum in vitro and plasmodiumchabaudi adimi in malaria-infected mice. J Clin Invest,1994,1:413-417.
    [79] Burke WJ, Raghu G, Strong R. Taxol protects against calcium-mediatedeath of differentiated rat pheochromocytoma cell. Life Sci,1994,55:313-319.
    [80] Wood DDL, Miao SYP, Pelayo JC, et al. Taxol inhibits progression ofcongenital polycytic kidney disease. Natrue,1994,368:750-753.
    [81] McAuliffe G, Roberts L, Roberts S. Paclitaxel administration and itseffects on clinically relevant human cancer and non cancer lines.Biotechnol Lett,2002,24:959-964.
    [82]王金盾.红豆树杉木混交林生长效果分析.福建林业科技,2001,28:51-54.
    [83]谢志远,方起程,钟晶.曼地亚红豆杉的引种栽培和速生刺激剂的研究.中草药,1999,2:143.
    [84]罗士德,宁冰梅,阮德春,等.红豆杉及其近缘植物中紫杉醇与同系物的高效色谱分析.植物资源与环境,1994,3(2):31-34.
    [85]周荣汉,朱丹妮,高山林,等.紫杉醇及短叶醇在白豆杉中的存在.中国药科大学学报,1994,25:259-261.
    [86] Holton RA, Somoza C, Kim HB, et al. First total synthesis of taxol1:Functiona-lization of the B ring. J Am Chem Soc,1994,116:1597-1602.
    [87] Danishefsky SJ, Master JJ, Young WB, et al. Total synthesis ofbaccatin III and taxol. J Am Chem Soc,1996,118:2843-2859.
    [88] Wender PA, Badham NF, Conway SP, et al. The pinene path to taxanes6: a concise stereocontrolled synthesis of taxol. J Am Chen Soc,1997,119:2757-2757.
    [89] Nicolaon KC, Yang Z, Liu JJ, et al. Total synthesis of taxol. Nature,1994,367:630-634.
    [90] Gueritte-Voegelein F, Guenard D, Potier P. From Taxus baccatin III and10-deacetylbaccatin III to taxol and taxotere. Second National CancerInstitute Workshop on Taxol and Taxus. Alexandria Virginia USA:Mark Center.1992, September, p23-24.
    [91] Jean-Noel D, Greene AE. A highly efficient, practical approach tonatural taxol. J Am Chem Soc,1988,110:5917-5919.
    [92] Stierle A, Stroble G, Stierle D. Taxol and taxane production byTaxomyces andreanae, an endophytic fungus of Pacific yew. Science,1993,260:214-216.
    [93] Strobel GA, Yang X, Sears J, et al. Taxol from Pestalotiopsismicrospora, and endophytic fungus from Taxus wallacbiana.Microbiology,1996,142:435-440.
    [94]邱德有,黄美娟,方晓华,等.一种南豆杉内生真菌的分离.真菌学报,1994,13:14-316.
    [95]陈建华,减巩固,李育君,等.产紫杉醇内生真菌的筛选研究.中国麻业,2002,24:42-45.
    [96] Kem SU, Strobel G, Ford E. Screening of taxol-producing endophyticfungi from Ginkgo biloba and Taxus cuspidate in Korea. Agric ChemBiotechnol,1999,42:97-99.
    [97] Li JY, Strobel G, Sidhu R, et al. Endophytic taxol-producing fungi frombald cypress, Taxodium distichum. Microbiology,1996,142:2223-2226.
    [98] Ajikumar PK, Xiao WH, Tyo KEJ, et al. Isoprenoid PathwayOptimization for Taxol Precursor Overproduction in Escherichia coli.Science,2010,330(6000):70-74.
    [99] Fett-Neto, AG, DiCosmo F, Reynolds WF, et al. Cell culture of Taxusas a source of the antineoplastic drug Taxol and related taxanes.Biotechnol,1992,10:1572-1575.
    [100]胡开,何颖,祝顺琴,等.红豆杉细胞悬浮培养生产紫杉醇研究进展.天然产物研究与开发,2004,15:471-475.
    [101] Ketchum REB, Gibson DM. Paclitaxel production in cell suspensioncultures of Taxus. Plant Cell Tissue Organ Cult,1996,46:9-16.
    [102]孙雷心.美国Cytoclnoal公司试生产重组红豆杉醇.生物技术通报,1997,1:32.
    [103] Christen AA, Gibson DM, Bland J. Production of taxol or taxol-likecompounds with Taxus brevifolia callus culture. U.S. Patent,1991, US5019504.
    [104] Yu LJ, Lan WZ, Qin WM, et al. Effects of salicylic acid on fungalelicitor-induced membrane-lipid peroxidation and taxol production incell suspension cultures of Taxus chinensis. Process Biochem,2001,37:477-482.
    [105] Yukimune Y, Tabata H, Higashi Y, et al. Methyljasmonate-inducedoverproduction of paclitaxel and baccatin III in Taxus cell suspensionculture. Nat Biotech,1996,14:1129-1131.
    [106] Fett-Neto AG, Melanson SJ, Sakata K, et al. Improved growth andtaxol yield in developing calli of Taxus cuspidate by mediacomposition modification. Biotechnol,1993,11:731-735.
    [107] Kim JH, Yun JH, Hwang YS, et al. Production of taxol and relatedtaxanes in Taxus brevifolia cell cultures effect of sugar. Biotechnol lett,1995,17:101-106.
    [108] Hirasuna TJ, Pestchanker LJ, Srinivasan V, et al. Taxol production insuspension cultures of Taxus baccata. Plant Cell Tiss Org,1996,44:95-102.
    [109] Fett-Neto AG,Zhang WY,Dicosmo F. Kinetecs of taxol production,growth and nutrient uptake in cell suspensions of Taxus cuspitada.Biotech Bioeng,1994,44:205-210.
    [110] Mei XG, Huang W, Wang CG, et al. Production of taxol by two-phaseculture Taxus cell suspension. Biotechnol,2000,10:10-12.
    [111] Li JY, Sidhu RS, Blolln A, et al. Stimulation of taxol production inliquid cultures of Pestalotipsis microspora. Mycol Res,1998,102:461-464.
    [112] Hefner J, Ketchum REB, Croteau R. Cloning and functional expressionof a cDNA encoding geranylgeranyl diphosphate synthase from TaxusCanadensis and assessment of the role of this prenyltransferase in cellsinduced for Taxol production. Arch Biochem Biophys,1998,360:62-74.
    [113] Wildung MR, Croteau R. A cDNA for taxadiene synthase, thedeterpene cyclase that catalyzes the committed step of taxolbiosynthesis. J Biol Chem,1996,271:9201-9204.
    [114] MyDoanh C, Croteau R. Molecular cloning and characterization of acytochrome P450taxoid2α-hydroxylase involved in taxolbiosynthesis. Arch Biochem Biophys,2004,427:48-57.
    [115] Schoendorf A, Rithner CD, Willianms R, et al. Molecular cloning of acytochrome450taxane10β-hydroxylase cDNA from Taxus andfunctional expression in yeast. Proc Nat Acad Sci USA,2001,97:1501-1506.
    [116] Jennewein S, Long RM, Willianms RM, et al. Cytochrome P450taxadiene5α-hydroxylase, a mechanistically unusual monoxogenasecatalyzing the first oxygenation step of taxol biosynthesis. Chem&Biol,2004,11:379-387.
    [117] Jennewein S, Rithener CD, Williams RM, et al. Taxol biosynthesis:taxane13-hydroxylase is a cytochrome P450-dependentmonoxygenase. Proc Natl Acad Sci USA,2001,98:13595-13600.
    [118] Jennewein S, Rithener CD, Williams RM, et al. Taxoid metabolism;taxoid14β-hydroxylase is a cytochrome P450-dependentmonooxygenase. Arch Biochem Biophys,2003,413:262-270.
    [119] MyDoanh C, Jennewein S, Wakler K, et al. Taxol biosynthesis:molecular cloning and characterization of a cytochrome P450taxoid7β-hydroxylase. Chem&Biol,2004,11:663-672.
    [120] Walker K, Schoendorf A, Croteau R. Molecular cloning of a taxa-4(20),11(12)-dien-5α-ol–o-acetyl transferase cDNA from Taxus andfunctional expression in Eschericha coli. Arch Biochem Biophys,2000,374(2):371-380.
    [121] MyDoanh C, Walker K, Long RM, et al. Regioselectivity oftaxoid-O-acetyl transferase: heterologous expression andcharacterization of a new taxadien-5α-ol-o-acetyltransferase. ArchBiochem Biophys,2004,430:237-246.
    [122] Walker K, Croteau R. Molecular cloning of a10-deacetylbaccatinIII-10-O-acetyl transferase cDNA from Taxus and functionalexpression in Escherichia coli. Proc Natl Acad Sci USA,2000,97:583-587.
    [123] Walker K, Croteau R. Taxol biosynthesis: molecular cloning of abenzoyl-CoA: taxane2α-O-benzoyltransferase cDNA from Taxus andfunctional expression in Escherchia coli. Proc Natl Acad Sci USA,2000,97:13591-13596.
    [124] Walker K, Fujisaki S, Long RM, et al. Molecular cloning andheterologous expression of the C-13phenylpropanoid side chain-CoAacytransferase that functions in Taxol biosynthesis. Proc Natl Acad SciUSA,2002,99:12715-12720.
    [125] Steele CL, Chen YJ, Dougherty BA, et al. Purification, cloning andfunctional expression of phenylalanine aminomutase: the firstcommitted step in taxol side-chain biosynthesis. Arch BiochemBiophys,2005,438:1-10.
    [126] Jennewein S, Wildung MR, Chau MDh, et al. Random sequencing ofan induced Taxus cell cDNA library for identification of clonesinvolved in Taxol biosynthesis. Proc Natl Acad Sci USA,2004,101:9149-9154.
    [127] Wu Q, Sun C, Luo H, et al. Transcriptome analysis of Taxus cuspidataneedles based on454pyrosequencing. Planta Med,2010,77:394-400.
    [128] Demeulemeester MAC, Stallen NV, Proft MPD. Degree of DNAmethylationinchicory influece of plant age and venalization. Plant Sci,1999,142:101-108.
    [129] Lee HS, Chen ZJ. Protein-coding genes are epigenetically regulated inArabidopsis polyploids. Proc Natl Acid Sci USA,1998,98:6753-6758,
    [130] Demeulemeester MAC, Stallen NV, Proft MPD. Degree of DNAmethylationinchicory influece of plant age and venalization. Plant Sci,1999,142:101-108.
    [131] Antequera F, Boyes J, Bird A. High levels of de novo methylation andalteredchromatin structure at cpg islands in cell lines. Cell,1990,62:503-514.
    [132]李丽琴.红豆杉细胞合成紫杉醇的分子调控机理[博士学位论文].武汉:华中科技大学,2009.
    [133] Nilsen TW. Mechanisms of microRNA-mediated gene regulation inanimal cells. Trends Genet.2007,23:243-249.
    [134] Zhang BH, Pan XP, Cobb GP. et al. Plant microRNA: a smallregulatory molecule with big impact. Dev Biol.2006b,289:3-16.
    [135] Qiu D, Pan X, Wilson LW, et al. High throughput sequencingtechnology reveals that the taxoid elicitor methyl jasmonate regulatesmicroRNA expression in Chinese yew (Taxus chinensis). Gene,2009,436:37-44.
    [136] Theodou F L. Plant ABC transporters, Biochim Biophys Acta,2000,1465:79-103.
    [137] Yazaki K. Transporters of secondary metabolites. Curr Opin Plant Biol.2005,8:301-307.
    [138] Sánchez-Fernández R, Davies TG, Coleman JO, et al. The Arabidopsisthaliana ABC protein superfamily, a complete inventory. J Biol Chem,2001,276:30231-30244.
    [139]金宏滨.药用植物ABC转运蛋白基因的克隆与特征研究[博士学位论文].上海:上海交通大学,2007.
    [140]戴怡龄.红豆杉中与异戊二烯代谢途径相关的AP2类转录调控因子的克隆与功能研究[博士学位论文].上海:上海交通大学,2008.
    [141] Mirjalili N, Linden JC. Methyl jasmonate induced production of taxolin suspension cultures of Taxus cuspidata: ethylene interaction andinduction models. Biotechnol Prog,1996,12:110-128.
    [142] Yukimune Y, Tabata H, Higashi Y, et al. Methyl jasmonate-inducedoverproduction of paclitaxel and baccatin III in Taxus cell suspensioncultures. Nat Biotechnol,1996,14:1129-1132.
    [143]苗志奇,未作君,元英进.水杨酸在紫杉醇生物合成中诱导作用的研究.生物工程学报,2000,16(4):509-513.
    [144]周忠强,梅兴国.水杨酸对细胞培养生产紫杉烷的影响.天然产物研究与开发,2002,14(2):11-13.
    [145] Higo K, Ugawa Y, Iwamoto M, et al. Plant cis-acting regulatory dnaelements (place) database. Nucleic Acids Res,1999,27:297-300.
    [146] Lescot M, Dehais P, Thijs G, et al. Plantcare, a database of plantcis-acting regulatory elements and a portal to tools for in silico analysisof promoter sequences. Nucleic Acids Res,2002,30:325-327.
    [147] Jefferson RA, Kavanagh TA, Bevan MW. Gus fusions:beta-glucuronidase as a sensitive and versatile gene fusion marker inhigher plants. Embo J,1987,6:3901-3907.
    [148] Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool.J Mol Biol,1990,215:403-410.
    [149] Nakai K, Kanehisa M. A knowledge base for predicting proteinlocalization sites in eukaryotic cells. Genomics,1992,14(4):897-911.
    [150] Emanuelsson O, Nielsen H, Brunak S, et al. Predicting SubcellularLocalization of Proteins Based on their N-terminal Amino AcidSequence. J Mol Biol,2000,4(300):1005-1016.
    [151] Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_XWindows Interface: Flexible Strategies for Multiple SequenceAlignment Aided by Quality Analysis Tools.1997,25(24):4876-4882.
    [152] Saitou N, Nei M. The neighbor-joining method: a new method forreconstructing phylogenetic trees.1997,4(4):406-425.
    [153] Nims E, Dubois CP, Roberts SC, et al. Expression profiling of genesinvolved in paclitaxel biosynthesis for targeted metabolic engineering.Metab Eng.2006,8:385-394.
    [154] Kim SR, Choi JL, Costa MA, et al. Identification of G-box sequence asan essential element for methyl jasmonate response of potatoproteinase inhibitor II promoter. Plant Physiol,1992,99:627-631.
    [155] Brown RL, Kazan K, McGrath KC, et al. A role for the GCC-box injasmonate-mediated activation of the PDF1.2gene of Arabidopsis.Plant Physiol,2003,132:1020-1032.
    [156] Xu BF and Michael Timko. Methyl jasmonate induced expression ofthe tobacco putrescine N-methyltransferase genes requires both G-boxand GCC-motif elements. Plant Mol Biol,2004,55(5):743-761.
    [157] Guerineau F, Benjdia M, Zhou DX. A jasmonate-responsive elementwithin the A. thaliana vsp1promoter. J Exp Bot,2003,54:1153-1162.
    [158] He Y, Gan S. Identical promoter elements are involved in regulation ofthe OPR1gene by senescence and jasmonic acid in Arabidopsis. PlantMol Biol,2001,47:595-605.
    [159] Figueroa P, Browse J. The Arabidopsis JAZ2Promoter Contains aG-box and Thymidine-Rich Module that are Necessary and Sufficientfor Jasmonate-Dependent Activation by MYC Transcription Factorsand Repression by JAZ Proteins. Plant Cell Physiol,2012,53(2):330-343.
    [160] Mason HS, DeWald DB, Mullet JE, Identification of a methyljasmonate responsive domain in the soybean vspB promoter. Plant Cell,1993,5:241-251.
    [161] Menke, FLH, Champion A, Kijne JW, et al. A novel jasmonate-andelicitor-responsive element in the periwinkle secondary metabolitebiosynthetic gene Str interacts with a jasmonate-and elicitor-inducibleAP2-domain transcription factor, ORCA2. EMBO J,1999,18:4455-4463.
    [162] Rouster J, Leah R, Mundy J, et al. Identification of a methyljasmonate-responsive region in the promoter of a lipoxygenase1geneexpressed in barley grain. Plant J,1997,11:513-523.
    [163] Kim SR, Kim Y, An G. Identification of methyl jasmonate andsalicylic acid response elements from the nopaline synthase (nos)promoter. Plant Physiol,1993,103:97-103.
    [164] Li YF, Zhu R, Xu PL, Activation of the gene promoter of barleyβ-1,3-glucanase isoenzyme GIII is salicylic acid (SA)-dependent intransgenic rice plants. J Plant Res,2005,118(3):215-221.
    [165] Shall J, Kessig DF. Identification of a salicylic acid-responsive elementin the Promoter of the tobacco pathogenesis-related l,3-β-glucanasegene, PR-2d. Plant J,1996,10(6):1089-1101.
    [166] Hwang SH, Lee IA, Yie SW, et al. Identification of an OsPR10apromoter region responsive to salicylic acid. Planta,2008,227:1141-1150.
    [167] Eulgem T, Rushton PJ, Robatzek S, et al. The wrky superfamily ofplant transcription factors. Trends Plant Sci,2000,5:199-206.
    [168] Rushton PJ, Somssich IE, Ringler P, et al. Wrky transcription factors.Trends Plant Sci,2010,15:247-258.
    [169] Rushton PJ, Macdonald H, Huttly AK, et al. Members of a new familyof dna-binding proteins bind to a conserved cis-element in thepromoters of alpha-amy2genes. Plant Mol Biol,1995,29:691-702.
    [170] Chen C, Chen Z. Potentiation of developmentally regulated plantdefense response by atwrky18, a pathogen-induced arabidopsistranscription factor. Plant Physiol,2002,129:706-716.
    [171] Eulgem T. Dissecting the wrky web of plant defense regulators. PLoSPathogens,2006,2: e126.
    [172] Mare C, Mazzucotelli E, Crosatti C, et al. Hv-wrky38: a newtranscription factor involved in cold-and drought-response in barley.Plant Mol Biol,2004,55:399-416.
    [173] Ramamoorthy R, Jiang SY, Kumar N, et al. A ComprehensiveTranscriptional Profiling of the WRKY Gene Family in Rice UnderVarious Abiotic and Phytohormone Treatments. Plant Cell Physiol.2008,49(6):865-879.
    [174] Ulker B, Shahid MM, Somssich IE. The wrky70transcription factor ofarabidopsis influences both the plant senescence and defense signalingpathways. Planta,2007,226:125-137.
    [175] Devaiah BN, Karthikeyan AS, Raghothama KG. Wrky75transcriptionfactor is a modulator of phosphate acquisition and root development inarabidopsis. Plant Physiol,2007,143:1789-1801.
    [176] Pan YJ, Cho CC, Kao YY, et al. A novel wrky-like protein involved intranscriptional activation of cyst wall protein genes in giardia lamblia.J Biol Chem,2009,284:17975-17988.
    [177] Kato N, Dubouzet E, Kokabu Y, et al. Identification of a wrky proteinas a transcriptional regulator of benzylisoquinoline alkaloidbiosynthesis in coptis japonica. Plant Cell Physiol,2007,48:8-18.
    [178] Xu YH, Wang JW, Wang S, et al. Characterization of gawrky1, acotton transcription factor that regulates the sesquiterpene synthasegene (+)-delta-cadinene synthase-a. Plant Physiol,2004,135:507-515.
    [179] Heim MA, Jakoby M, Werber M, et al. The basic helix-loop-helixtranscription factor family in plants: Agenome-wide study of proteinstructure and functional diversity. Mol Biol Evol.2003,20:735-747.
    [180] Duek PD, Fankhauser C. bHLH class transcription factors take centrestage in phytochrome signaling. Trends Plant SCI,2005,10(2):51-54.
    [181] Dong J, Chen C, Chen Z. Expression profiles of the ArabidopsisWRKY gene superfamily during plant defense response. Plant MolBiol,2003,51(1): p21-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700