用户名: 密码: 验证码:
岩黄连中小檗碱型生物碱生物合成途径相关基因的研究及藜芦中甾体生物碱的微生物转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩黄连为罂粟科植物石生黄堇(Corydalis saxicola Bunting)的全草,是一种名贵的中药材主要分布在贵州,云南,四川,广西等省,对环境条件要求十分苛刻,野生状态下只生长在石灰岩地区阴湿的岩洞口,被列入中国南部濒危植物名录。岩黄连具有清热解毒、利湿、止痛止血之功效,在临床上主要药理活性有抗菌,抗病毒,抗癌。岩黄连中的活性成分为小檗碱型生物碱类化合物,而这类化合物具有潜在的抗HBV活性和肝保护活性。
     本文对岩黄连中小檗碱类生物碱生物合成途径中的相关酶基因进行了克隆、表达及功能分析。
     岩黄连中(S)-四氢小檗碱氧化酶的克隆,表达及功能分析
     (S)-四氢小檗碱氧化酶是小檗碱生物合成途径中的关键酶,是黄连小檗碱的合成途径中最后一个酶,将(S)-四氢小檗碱氧化成小檗碱。通过RACE获得了(S)-四氢小檗碱氧化酶cDNA全长序列,其长度为1127bp,含有5'-UTR, 3'-UTR,ploy (A)+结构以及一个699bp的开放阅读框架,编码232个氨基酸残基,预测分子量为25.20 kDa。将该基因注册到GenBank,编号为HQ393909。RT-PCR分析表示(S)-THBO在岩黄连植株的根、茎、叶、花中都有表达,在根中表达量最高。诱导实验表明(S)-THBO具有明显的防御作用。
     将(S)-四氢小檗碱氧化酶构建表达载体并在大肠杆菌中表达,并对表达(S)-四氢小檗碱氧化酶的大肠杆菌对底物进行体内转化。表达(S)-四氢小檗碱氧化酶的大肠杆菌可以体内转化(S)-四氢小檗碱氧化成小檗碱,但对底物有一定的选择性,不能将内消旋四氢小檗碱转化完全。
     岩黄连中(S)-去甲乌药碱合成酶的克隆
     (S)-去甲乌药碱合成酶是原小檗碱生物合成途径中的第一个酶,它可以将多巴胺(Dopamine)和(4-羟苯乙酮4-hydroxyphenylhydroxyphenylacetaldehyde,(4-HPAA) )催化成(S)-去甲乌药碱( (S)-Norcoclaurine)。对岩黄连的总RNA进行PT-PCR得到一段(S)-去甲乌药碱合成酶的核心片段。通过RACE获得了(S)-去甲乌药碱合成酶cDNA全长序列,其长度为1003bp,含有5'-UTR, 3'-UTR,ploy (A)+结构以及一个621bp的开放阅读框架,编码207个氨基酸残基。将该基因注册到GenBank,编号为JF488074。
     岩黄连中氢化小檗碱合酶的克隆
     氢化小檗碱合酶位是原小檗碱类生物碱生物合成途径的下游基因,它的功能是将(S)-四氢非洲防己碱( (S)-THC)催化成(S)-四氢小檗碱( (S)-THB),使化合物形成特殊的亚甲基双氧环结构。通过RACE获得了氢化小檗碱合酶cDNA全长序列,其长度为1256bp,含有5'-UTR, 3'-UTR结构以及一个783bp的开放阅读框架,编码261个氨基酸残基。将该基因注册到GenBank,编号为HQ393908。
     第二部分藜芦中甾体生物碱的微生物转化
     藜芦(Veratrum Linn. )为百合科(Liliaceae)多年生草本植物,味辛、苦,性寒,有毒。中医用藜芦(V.nigrum L. )、兴安藜芦(V.dahuricum(Turcz.)Loes.f.)、天目藜芦(V.Schindleri L)等的根和茎共同入药,用于中风痰壅、癫痫、喉痹不通、头痛、疥癣、疟疾。藜芦属植物中的生物碱类成分为其主要的活性成分,现代临床药理研究表明,甾体生物碱具有降血压作用、抗肿瘤作用、杀虫、抗血吸虫、抗真菌及等作用。据统计数据表明从我国所有藜芦属植物中分离得到100余种甾体生物碱。藜芦的毒素同样为生物碱类成分。
     微生物转化反应是利用微生物的酶对底物的某一部位进行特定的化学反应来获得一定的产物,其在药物生产中占有重要地位。因为藜芦属植物中甾体生物碱具有良好的抗肿瘤活性,在实验室前期研究结果的基础上对藜芦中有效的甾体生物碱成分利用微生物转化的方法对其进行结构修饰和改造,合成系列衍生物,以期获得高效、低毒、高特异性的Hedgehog通路抑制剂,为新型抗肿瘤药物的开发提供理论基础。
     本课题利用刺孢小克银汉霉对生物碱藜芦胺进行微生物转化,共得到了5个化合物,都为新化合物。
Corydalis saxicola Bunting (Yanhuanglian) is one of rare medicinal plants for the treatment of hepatic disease which belongs to the Fumariaceae family. C. saxicola grows in south China, such as Guizhou, Yunnan, Szechwan and Guangxi province and only grows in limestone hills in the wild state. It was labeled as endangered plants in southern China because of its hard growth environment. C. saxicola has the effect of clearing away heat, relieve pain and arrest blood.It has been demonstrated to have many pharmacological activities, including antibacterial, antiviral, and anticancer activities. The main active constituent in C. saxicola is berberine alkaloids (e.g. berberine, dehydrocavidine), which has potential activity to treat hepatitis, hepatocirrhosis and liver cancer.
     (S)-tetrahydroberberine oxidase ((S)-THBO) is a key enzyme in the biosynthesis of berberine alkaloids which catalyzes the dehydrogenation of four hydrogen atoms of (S)-Tetrahydroberberine to produce berberine, the final step of berberine biosynthesis. A (S)-THB gene, designated as Cs(S)-THBO (Genbank accession No.HQ393909), was cloned from a C. saxicola cDNA library. The full-length of Cs(S)-THBO was 1127bp contains an open reading frame 699bp and predicted to encode a 232-amino acid polypeptide, with a predicted molecular mass of 25.20 kDa. Cs(S)-THBO was the first (S)-THBO gene found in C. saxicola. Real-time quantitative PCR analysis indicated that Cs(S)-THBO was constitutively expressed in roots, stems, leaves and flowers of C. saxicola, with the highest expression level in roots. The results from treatment experiment for plant defense responses revealed that expression of Cs(S)-THBO had a prominent diversity. Recombinant Cs(S)-THBO protein expressed in E. coli strain BL21 (DE3) was active. The results of feeding experiment and HPLC-DAD-ESI-MSn analysis shown that Cs(S)-THBO had the fuction of catalyzing (S)-Tetrahydroberberine to berberine but it cannot catalyze (R)-etrahydroberberine to berberine.
     (S)-norcoclaurine synthase, the first step of the berberine alkaloids biosynthetic pathways, catalyzes from dopamine and 4-hydroxyphenylhydroxyphenylacetaldehyde (4-HPAA)to (S)-Norcoclaurine. Based on the core sequence obtained by RT-PCR, several gene-specific primers were designed to obtain the sequences of 5'-end and 3'-end by RACE. According to the result of RACE,PCR was performed and a full-length cDNA of Cs(S)-NCS.The full-length cDNA of Cs(S)-NCS was 1003 bp containing 5'-UTR, 3'-UTRand a ORF of 621bp encoding a 207-amino acid polypeptide(Genbank accession No.JF488074).
     Canadine synthase catalyzes the eighth step in the biosynthesis of berberine alkaloids. The enzyme catalyzes the conversion of (S)-tetrahydrocolumbamine ((S)-THC) to (S)-tetrahydroberberine ((S)-THB) and it play an important role in the pathway of berberine. A CSN gene, designated as CsCSN (Genbank accession No.HQ393908), was cloned from a C. saxicola cDNA library. The full-length of Cs(S)-THBO was 1256bp contains 5'-UTR, 3'-UTR and an open reading frame 783bp and predicted to encode a 261-amino acid polypeptide, with a predicted molecular mass of 29.19 kDa.
     Part 2 Microbial transformation of steroidal alkaloids in Veratrum nigrum Linn.
     Veratrum Linn. (Liliaceae) is a kind of Perennial herb which characterizes by acrid and bitter in taste and cold in nature. The roots and rhizomes of several Veratrum species, such as V.nigrum L., V.dahuricum(Turcz.)Loes.f.and V.Schindleri L, are used in traditional Chinese medicine as‘‘Li-Lu’’for treatment of aphasia arising from apoplexy, dysentery, jaundice, headache, scabies and chronic malaria. The main active components in Veratrum Linn. is steroidal alkaloids. Pharmacological research indicated that steroidal alkaloids had cardic, hypotensive and antithrombotic activities , and the stilbenes had antitumor and anticoagulant function. According to the statistical data shows that there are more than 100 kind of steroidal alkaloids had isolated from Veratrum in China. However, it is well-known for V. nigrum L. that the toxic component is also steroidal alkaloids.
     Microbial transformation is the process by which an organism or its isolated enzyme brings out chemical change on molecules that not part of their metabolism. Microbial transformation is important in the production of commercially valuable compounts for the pharmaceutical industry. Because the well antitumor activity of steroidal alkaloids in Veratrum Linn. , we has been done some structure modification of steroidal alkaloids in Veratrum Linn.by microbial transformation with a view to obtaining more new inhibitors(low toxicity, high activity and special mode of action.) of Hedgehog pathway.
     Microbial transformation of veratramin by Cunninghamella echinulata in present study and obtained 4 new compounds.
引文
[1]何金祥,岩黄连茎基腐病的分离鉴定及防治,广西植物, 2003, 23 (5): 473-475.
    [2]吴征镒,新华本草纲要,第一册.上海:上海科学技术出版社, 1988, 4.
    [3]南宁,广西壮族自治区卫生厅编广西中药材标准,第二册.广西科学技术出版杜, 1996, 168: 268.
    [4]文和群,许兆然, J. Villa-Lobos,中国南部石灰岩稀有濒危植物名录,广西植物, 1993, 13 (2): 110-127.
    [5]韦忠福,王冬梅,杨得坡,蒋林,韦贵剑,唐志,陈元生,陆建强,濒危野生药材岩黄连人工栽培技术,时珍国医国药, 2006, 17 (012): 2404-2405.
    [6]柯珉珉,张宪德,吴练中,赵一,朱大元,宋纯青,徐任生,岩黄连有效成分的研究,植物学报, 1982, 24 (3): 289-291.
    [7]王健,张士军,巫世红,蒋伟哲,岩黄连提取物体内抗乙型肝炎病毒作用研究,中国药业, 2009, 18 (011): 7-9.
    [8]李晋芳,廖建兴,李慧梁,张卫东,岩黄连总碱抑制Tca8113细胞及其端粒酶活性的实验研究,口腔颌面外科杂志, 2007, 17 (001): 32-35.
    [9]赵永芳,岩黄连注射液治疗急性黄疸型肝炎疗效观察,临床合理用药杂志, 2009, 2 (008): 20-21.
    [10]方绳新,董咸峰,岩黄连注射液治疗急性黄疸型肝炎40例,医药导报, 2001, 20 (009): 567-567.
    [11]苏国权,王保才,刘素芬,李静,马力伟,岩黄连注射液治疗慢性乙型肝炎近期疗效观察,中华现代中西医杂志, 2004, 2 (2).
    [12]尹华,岩黄连与丹参注射液合用对慢性乙型肝炎纤维化的影响,实用医学杂志, 2001, 17 (008): 782-783.
    [13]孙兆翠,岩黄连注射液配合介入疗法治疗原发性肝癌的疗效观察及护理, QINGHAI MEDICAL JOURNAL, 2003, 33 (4).
    [14] R.A. Dixon, D.R. Gang, A.J. Charlton, O. Fiehn, H.A. Kuiper, T.L. Reynolds, R.S. Tjeerdema, E.H. Jeffery, J.B. German, W.P. Ridley, Applications of metabolomics in agriculture, Journal of agricultural and food chemistry, 2006, 54 (24): 8984-8994.
    [15]陈晓亚,余叔文,汤章城,植物次生代谢及调控[M], in, 1998.
    [16]段传人,王伯初,徐世荣,环境应力对植物次生代谢产物形成的作用,重庆大学学报(自然科学版), 2003, 26 (10): 67-71.
    [17] R. Verpoorte, J. Memelink, Engineering secondary metabolite production in plants, Current opinion in biotechnology, 2002, 13 (2): 181-187.
    [18] A. Namdeo, Plant cell elicitation for production of secondary metabolites: A review, Pharmacognosy reviews, 2007, 1 (1): 69-79.
    [19] R. Verpoorte, R. Van Der Heijden, H. Ten Hoopen, J. Memelink, Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals, Biotechnology letters, 1999, 21 (6): 467-479.
    [20] D. DellaPenna, Plant metabolic engineering, Plant physiology, 2001, 125 (1): 160-163.
    [21]潘夕春,孙敏,张磊,廖志华, RNA干扰及其在药用植物代谢工程中的应用,中草药, 2005, 36 (009): 1281-1284.
    [22] C. Canel, M.I. Lopes-Cardoso, S. Whitmer, L. van der Fits, G. Pasquali, R. van der Heijden, J.H.C. Hoge, R. Verpoorte, Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus, Planta, 1998, 205 (3): 414-419.
    [23] L. Zhang, R. Ding, Y. Chai, M. Bonfill, E. Moyano, K.M. Oksman-Caldentey, T. Xu, Y. Pi, Z. Wang, H. Zhang, Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures, Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 (17): 6786-6791.
    [24] L. van der Fits, J. Memelink, ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism, Science's STKE, 2000, 289 (5477): 295-297.
    [25] R.S. Allen, A.G. Millgate, J.A. Chitty, J. Thisleton, J.A.C. Miller, A.J. Fist, W.L. Gerlach, P.J. Larkin, RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy, Nature biotechnology, 2004, 22 (12): 1559-1566.
    [26] K.M. Oksman-Caldentey, D. Inzé, Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites, Trends in plant science, 2004, 9 (9): 433-440.
    [27] H. Rischer, M. Ore i , T. Sepp nen-Laakso, M. Katajamaa, F. Lammertyn, W. Ardiles-Diaz, M.C.E. Van Montagu, D. Inzé, K.M. Oksman-Caldentey, A. Goossens, Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells, 2006, 103: 5614-5619.
    [28]李慧梁,岩黄连活性成分系统研究及藜芦毒性成分研究, in,第二军医大学, 2006.
    [29]何立文,黄文龙,异喹啉类化合物生物活性研究进展,药学进展, 1996, 20 (004): 193-197.
    [30]郭治彬,抗心律失常生物碱的研究进展,中国药理学通报, 1995, 11 (004): 276-280.
    [31] J.D. Phillipson, M.F. Roberts, M.H. Zenk, P.S.o. Europe, The chemistry and biology of isoquinoline alkaloids, Springer Berlin, 1985.
    [32]后媛媛,祝浩杰,刘国卿,异喹啉类新化合物CPUC1对肿瘤多药耐药性的逆转作用, 2004, 21 (3): 5-6.
    [33]朱坤杰,李涛,小檗碱的药理研究及临床应用进展,中国药业, 2000, 9 (001): 22-23.
    [34] K. Fukuda, Y. Hibiya, M. Mutoh, M. Koshiji, S. Akao, H. Fujiwara, Inhibition by berberine of cyclooxygenase-2 transcriptional activity in human colon cancer cells, Journal of ethnopharmacology, 1999, 66 (2): 227-233.
    [35] S.A. Kim, Y. Kwon, J.H. Kim, M.T. Muller, I.K. Chung, Induction of Topoisomerase II-Mediated DNA Cleavage by a Protoberberine Alkaloid, Berberrubine, Biochemistry, 1998, 37 (46): 16316-16324.
    [36]陈重阳,赵一,岩黄连脱氢卡维丁药理研究,中药通报, 1982, 7 (2): 31-31.
    [37]吴立军,天然药物化学,人民卫生出版社, 2007.
    [38] N. Takeshita, H. Fujiwara, H. Mimura, J.H. Fitchen, Y. Yamada, F. Sato, Molecularcloning and characterization of S-adenosyl-L-methionine: scoulerine-9-O-methyltransferase from cultured cells of Coptis japonica, Plant and Cell Physiology, 1995, 36 (1): 29-36.
    [39] F. Sato, T. Hashimoto, A. Hachiya, K. Tamura, K.B. Choi, T. Morishige, H. Fujimoto, Y. Yamada, Metabolic engineering of plant alkaloid biosynthesis, Proceedings of the National Academy of Sciences of the United States of America, 2001, 98 (1): 367-372.
    [40]周嘉裕,廖海,黄连小檗碱生物合成相关酶类的研究进展,时珍国医国药, 2005, 3 (11): 1083-1087.
    [41]王关林,方宏筠,北京:科学出版社, 1998.
    [42] J.D. Hamill, A.J. Parr, M.J.C. Rhodes, R.J. Robins, N.J. Walton, New routes to plant secondary products, Nature biotechnology, 1987, 5 (8): 800-804.
    [43] G. Ooms, D. Twell, M.E. Bossen, J.H.C. Hoge, M.M. Burrell, Developmental regulation of Ri TL-DNA gene expression in roots, shoots and tubers of transformed potato (Solanum tuberosum cv. Desiree), Plant Molecular Biology, 1986, 6 (5): 321-330.
    [44] W.H. Shen, A. Petit, J. Guern, J. Tempé, Hairy roots are more sensitive to auxin than normal roots, Proceedings of the National Academy of Sciences of the United States of America, 1988, 85 (10): 3417-3421.
    [45] S. Guillon, J. Trémouillaux-Guiller, P.K. Pati, M. Rideau, P. Gantet, Hairy root research: recent scenario and exciting prospects, Current opinion in plant biology, 2006, 9 (3): 341-346.
    [46] A. Lorence, F. Medina-Bolivar, C.L. Nessler, Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots, Plant Cell Reports, 2004, 22 (6): 437-441.
    [47] R. Ayadi, J. Trémouillaux-Guiller, Root formation from transgenic calli of Ginkgo biloba, Tree physiology, 2003, 23 (10): 713-718.
    [48] S. Dhakulkar, T. Ganapathi, S. Bhargava, V. Bapat, Induction of hairy roots in Gmelina arborea Roxb. and production of verbascoside in hairy roots, Plant science, 2005, 169 (5): 812-818.
    [49] C.K. Chang, K.S. Chang, Y.C. Lin, S.Y. Liu, C.Y. Chen, Hairy root cultures of Gynostemma pentaphyllum (Thunb.) Makino: a promising approach for the production of gypenosides as an alternative of ginseng saponins, Biotechnology letters, 2005, 27 (16): 1165-1169.
    [50] H. Lin, K.H. Kwok, P.M. Doran, Development of Linum flavum hairy root cultures for production of coniferin, Biotechnology letters, 2003, 25 (7): 521-525.
    [51] V.L. Flem-Bonhomme, D. Laurain-Mattar, M. Fliniaux, Hairy root induction of Papaver somniferum var. album, a difficult-to-transform plant, by A. rhizogenes LBA 9402, Planta, 2004, 218 (5): 890-893.
    [52] H.P. Shi, S. Kintzios, Genetic transformation of Pueraria phaseoloides with Agrobacterium rhizogenes and puerarin production in hairy roots, Plant Cell Reports, 2003, 21 (11): 1103-1107.
    [53]程华,岩黄连细胞培养合成生物碱研究,华中科技大学, 2006, pp. 53-55.
    [54]汤章城,上海市植物生理学会,中国科学院上海植物生理研究所,现代植物生理学实验指南,科学出版社, 1999.
    [55] E. Richards, M. Reichardt, S. Rogers, Preparation of genomic DNA from plant tissue, in.
    [56]蒋运生,朱鸿杰,蒋水元,唐辉,韦霄,蒋福勇,岩黄连种子繁殖研究,广西科学, 2006, 13 (004): 324-326.
    [57]蒋伟哲,岩黄连的研究进展,中国药业, 2006, 15 (010): 1-3.
    [58] C. Wu-Chang, D. Young, L. Liu, S. Shuenn-Jyi, Liquid chromatographic-electrospray mass spectrometric analysis of Coptidis Rhizoma, Journal of chromatography A, 1996, 755 (1): 19-26.
    [59] C. David, A. Petit, J. Tempé, T-DNA length variability in mannopine hairy root: More than 50 kilobasepairs of pRi T-DNA can integrate in plant cells, Plant Cell Reports, 1988, 7 (2): 92-95.
    [60] V. Kumar, B. Jones, M. Davey, Transformation by Agrobacterium rhizogenes and regeneration of transgenic shoots of the wild soybean Glycine argyrea, Plant Cell Reports, 1991, 10 (3): 135-138.
    [61] A. Giri, S. Banerjee, P. Ahuja, C. Giri, Production of hairy roots in Aconitum heterophyllum Wall. using Agrobacterium rhizogenes, In Vitro Cellular & Developmental Biology-Plant, 1997, 33 (4): 280-284.
    [62]王东,李启任,培养细胞小檗碱的产生及其生物合成研究概况,中草药, 1998, 29 (002): 128-131.
    [63] N. Okada, N. Koizumi, T. Tanaka, H. Ohkubo, S. Nakanishi, Y. Yamada, Isolation, sequence, and bacterial expression of a cDNA for (S)-tetrahydroberberine oxidase from cultured berberine-producing Coptis japonica cells, Proceedings of the National Academy of Sciences of the United States of America, 1989, 86 (2): 534-538.
    [64] M. Hara, K. Morio, K. Yazaki, S. Tanaka, M. Tabata, Separation and characterization of cytokinin-inducible (S)-tetrahydroberberine oxidases controlling berberine biosynthesis in Thalictrum minus cell cultures, Phytochemistry, 1995, 38 (1): 89-93.
    [65] M. Wink, Chemical ecology of alkaloids, Alkaloids: Biochemistry, Ecology, and Medicinal Applications, 1998: 265–300.
    [66]汤德良,植物抗虫的次生代谢物质,世界农业, 1999, (003): 32-33.
    [67]王莉,史玲玲,张艳霞,刘玉军,植物次生代谢物途径及其研究进展,武汉植物学研究, 2007, 25 (005): 500-508.
    [68]程华,余龙江,胡琼月,尹科,敖明章,张永忠,分光光度法测定岩黄连不同部位总生物碱的含量,时珍国医国药, 2006, 17 (003): 364-365.
    [69] A. Mandujano-Chávez, M.A. Schoenbeck, L.F. Ralston, E. Lozoya-Gloria, J. Chappell, Differential Induction of Sesquiterpene Metabolism in Tobacco Cell Suspension Cultures by Methyl Jasmonate and Fungal Elicitor* 1, Archives of Biochemistry and Biophysics, 2000, 381 (2): 285-294.
    [70] M. Rüffer, H. El-Shagi, N. Nagakura, M.H. Zenk, (S)- norlaudanosoline synthase: the first enzyme in the benzylisoquinoline biosynthetic pathway, FEBS Lett. , 1981, 129: 5-9.
    [71] N. Samanani, P.J. Facchini, Isolation and partial characterization of norcoclaurine synthase, the first committed step in benzylisoquinoline alkaloid biosynthesis, from opium poppy, Planta, 2001, 213 (6): 898-906.
    [72] R. Stadler, T. Kutchan, S. Loeffler, N. Nagakura, B. Cassels, M. Zenk, Revision of theearly steps of reticuline biosynthesis, Tetrahedron Letters, 1987, 28 (12): 1251-1254.
    [73] R. Stadler, T.M. Kutchan, M.H. Zenk, (S)-Norcoclaurine is the central intermediate in benzylisoquinoline alkaloid biosynthesis, Phytochemistry, 1989, 28 (4): 1083-1086.
    [74] R. Stadler, M.H. Zenk, A revision of the generally accepted pathway for the biosynthesis of the benzyltetrahydroisoquinoline alkaloid reticuline, Liebigs Annalen der Chemie, 1990, 1990 (6): 555-562.
    [75] N. Samanani, P.J. Facchini, Purification and Characterization of Norcoclaurine Synthase, Journal of Biological Chemistry, 2002, 277 (37): 33878-33883.
    [76] S. Kumar, K. Tamura, I.B. Jakobsen, M. Nei, MEGA2: molecular evolutionary genetics analysis software, Bioinformatics, 2001, 17 (12): 1244-1245.
    [77] N. Saitou, M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Molecular biology and evolution, 1987, 4 (4): 406-425.
    [78] J.D. Thompson, D.G. Higgins, T.J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic acids research, 1994, 22 (22): 4673-4680.
    [79] C. Combet, C. Blanchet, C. Geourjon, G. Deleage, NPS@: network protein sequence analysis, Trends in biochemical sciences, 2000, 25 (3): 147-150.
    [80] K. Arnold, L. Bordoli, J. Kopp, T. Schwede, The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling, Bioinformatics, 2006, 22 (2): 195-201.
    [81] N. Guex, M.C. Peitsch, SWISS‐MODEL and the Swiss‐Pdb Viewer: an environment for comparative protein modeling, Electrophoresis, 1997, 18 (15): 2714-2723.
    [82] T. Schwede, J. Kopp, N. Guex, M.C. Peitsch, SWISS-MODEL: an automated protein homology-modeling server, Nucleic acids research, 2003, 31 (13): 3381-3385.
    [83] N. Ikezawa, M. Tanaka, M. Nagayoshi, R. Shinkyo, T. Sakaki, K. Inouye, F. Sato, Molecular cloning and characterization of CYP719, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family, from cultured Coptis japonica cells, Journal of Biological Chemistry, 2003, 278 (40): 38557-38565.
    [84] D.A. Bird, V.R. Franceschi, P.J. Facchini, A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy, The Plant Cell Online, 2003, 15 (11): 2626-2635.
    [1]魏屹东,巴斯德的科学思想及科学方法,自然杂志, 1999, 21 (003): 170-173.
    [2]褚志义,生物合成药物学,上海医科大学出版社, 1991.
    [3] D. Peterson, H. Murray, S. Eppstein, L. Reineke, A. Weintraub, P. Meister, H. Leigh, Microbiological Transformations of Steroids. 1 I. Introduction of Oxygen at Carbon-11 of Progesterone, Journal of the American Chemical Society, 1952, 74 (23): 5933-5936.
    [4]吴梧桐,丁锡申,刘景晶,基因工程药物:基础与临床,人民卫生出版社, 1996.
    [5] P.J. Davis, Microbial transformation of alkaloids, Microbial transformation of bioactive compounds, 1982, 11.
    [6] H. Davies, Biotransformations in preparative organic chemistry: the use of isolated enzymes and whole cell systems in synthesis, Academic Pr, 1989.
    [7] K. Faber, Biotransformations, Springer Verlag, 2000.
    [8] P. Nikolova, O.P. Ward, Whole cell biocatalysis in nonconventional media, Journal of Industrial Microbiology and Biotechnology, 1993, 12 (2): 76-86.
    [9]陈绍怡,杨秀,秦玉静,手性药物合成中的生物转化,生物工程进展, 2000, 20 (4): 60-63.
    [10] B.N. Zhou, A.S. Gopalan, F. VanMiddlesworth, W.R. Shieh, C.J. Sih, Stereochemical control of yeast reductions. 1. Asymmetric synthesis of L-carnitine, Journal of the American Chemical Society, 1983, 105 (18): 5925-5926.
    [11] C.J. Sih, C.S. Chen, Microbial asymmetric catalysis-enantioselective reduction of ketones, Angew. Chem. Int. Ed. Engl, 1984, 23: 570–578.
    [12] H. Yamada, S. Shimizu, Microbial and enzymatic processes for the production of biologically and chemically useful compounds, Angew. Chem. Int. Ed. Engl, 1988, 27: 622-642.
    [13] E. Abourashed, A. Clark, C. Hufford, Microbial models of mammalian metabolism of xenobiotics: an updated review, Current medicinal chemistry, 1999, 6 (5): 359-374.
    [14] J.P. Rosazza, Microbial transformations of bioactive compounds, CRC Press, 1982.
    [15] J.D. Moody, J.P. Freeman, C.E. Cerniglia, Biotransformation of doxepin by Cunninghamella elegans, Drug metabolism and disposition, 1999, 27 (10): 1157-1164.
    [16] J.D. Moody, D. Zhang, T.M. Heinze, C.E. Cerniglia, Transformation of amoxapine by Cunninghamella elegans, Applied and environmental microbiology, 2000, 66 (8): 3646-3649.
    [17] J. Ferris, M. Fasco, Monooxygenase activity in Cunninghamella bainieri: evidence for a fungal system similar to liver microsomes, Archives of Biochemistry and Biophysics, 1973, 156 (1): 97-103.
    [18] J. Zhan, H. Guo, J. Dai, Y. Zhang, D. Guo, Microbial transformations of artemisinin by Cunninghamella echinulata and Aspergillus niger, Tetrahedron letters, 2002, 43 (25): 4519-4521.
    [19] D. Zhang, J.P. Freeman, J.B. Sutherland, A.E. Walker, Y. Yang, C.E. Cerniglia, Biotransformation of chlorpromazine and methdilazine by Cunninghamella elegans, Applied and environmental microbiology, 1996, 62 (3): 798-803.
    [20] J.X. Zhan, Y.X. Zhang, H.Z. Guo, J. Han, L.L. Ning, D.A. Guo, Microbial Metabolism of Artemisinin by Mucor p olymorphosporus and Aspergillus n iger, Journal of natural products, 2002, 65 (11): 1693-1695.
    [21] D. , S.,吕淑君,重要工业微生物的筛选技术,国外医药:抗生素分册, 1993, 14 (006): 401-405.
    [22] K. Kieslich, Biotransformations of industrial use, Acta biotechnologica, 1991, 11 (6): 559-570.
    [23] P. Lazló, L. Novák, Selective Biocatalysis, A Synthetic Approach, VHC, Weinheim, 1992.
    [24]卢艳花,天然药物的生物转化,化学工业出版社现代生物技术与医药科技出版中心, 2006.
    [25]赵瑜,陆国才,张卫东,袁伯俊,李慧梁,藜芦甾体生物碱药理毒理学研究进展,毒理学杂志, 2007, 21 (004): 310-311.
    [26]梁光义,藜芦属植物中生物碱的研究概况,药学学报, 1984, 4: 309-320.
    [27]杜贵友,方文贤,有毒中药现代研究与合理应用,北京:人民卫生出版社, 2003, 561: 949-953.
    [28]徐国钧,中药辞海,中国医药科技出版社, 1998.
    [29] W. Zhao, Y. Tezuka, T. Kikuchi, Studies on the constituents of Veratrum plants. I: Constituents of Veratrum maackii REG.; isolation and structure determination of a new alkaloid, maackinine, Chemical and pharmaceutical bulletin, 1989, 37 (11): 2920-2928.
    [30]张庆荣,夏光成,有毒中草药彩色图鉴,天津科技翻译出版, 1996.
    [31] S. Kadota, A steroidal alkaloid from Veratrum oblongum, Phytochemistry, 1995, 38 (3): 777-781.
    [32] M.I. Chung, C.M. Teng, K.L. Cheng, F.N. Ko, C.N. Lin, An antiplatelet principle of Veratrum formosanum, Planta Medica (Germany), 1992, 58 (3): 274-275.
    [33]赵伟杰,孟庆伟,王世盛,天目藜芦生物碱的化学研究, CHINA JOURNAL OF CHINESE MATERIA MEDICA, 2003, 28 (10): 985-986.
    [34]毛晓峰,史志诚,王亚洲,我国藜芦属植物研究进展,动物毒物学, 2003, 18 (001): 17-21.
    [35]梁光义,孙南君,狭叶藜芦中活性成分的化学研究——Ⅱ.新降压活性成分狭叶藜芦碱甲的结构研究,药学学报, 1984, 19 (3): 190-194.
    [36]杨崇仁,刘润民,周俊,崔占和,倪凤仪,杨雁宾,蒙自藜芦的甾体生物碱研究,云南植物研究, 1987, 9 (03): 1-3.
    [37] M. Mizuno, T. Ren-Xiang, Z. Pei, M. Zhi-Da, M. Iinuma, T. Tanaka, Two steroidal alkaloid glycosides from Veratrum taliense, Phytochemistry, 1990, 29 (1): 359-361.
    [38] C.X. Zhou, J.Y. Liu, W.C. Ye, C.H. Liu, R.X. Tan, Neoverataline A and B, two antifungal alkaloids with a novel carbon skeleton from Veratrum taliense, Tetrahedron, 2003, 59 (30): 5743-5747.
    [39] Y. Tezuka, T. Kikuchi, W. Zhao, J. Chen, Y. Guo, (+)-Verussurine, a New Steroidal Alkaloid from the Roots and Rhizomes of Veratrum n igrum var. u ssuriense and Structure Revision of (+)-Verabenzoamine 1, Journal of natural products, 1998, 61 (11): 1397-1399.
    [40]吴贻谷,宋立人,中华本草,上海科学技术出版社, 1998.
    [41]全香花,朴惠善,孙向红,王路平,兴安藜芦的化学成分研究, CHINESEPHARMACEUTICAL JOURNAL, 2003, 38 (12): 914-916.
    [42]吴寿金,赵泰,秦永琪,现代中草药成分化学,中国医药科技出版社,北京, 2002, 805: 952-956.
    [43] Y. Tezuka, T. Kikuchi, W. Zhao, J. Chen, Y. Guo, Two New Steroidal Alkaloids, 20-Isoveratramine and Verapatuline, from the Roots and Rhizomes of Veratrum p atulum, Journal of natural products, 1998, 61 (9): 1078-1081.
    [44]徐暾海,徐雅红,藜芦属植物化学成分和药理作用,国外医药.植物药分册, 2002, 17 (5): 185-189.
    [45]李淑媛,赵伟杰,盐酸乌苏里藜芦碱对麻醉犬血流动力学的研究,中国药学杂志, 1997, 32 (007): 407-409.
    [46]王本祥,夏光成,新编中药学辞典,天津科学技朮出版社, 1996.
    [47]李伟,杨铭,王清,付萍,陈颖丽,李国栋,藜芦碱降压作用的实验研究,中华现代中医学杂志, 2006, 2 (4): 292-296.
    [48]刘源源,中药藜芦首次被证明具有降压和抗肿瘤作用,中国中医药信息杂志, 2007, 14 (6): 2.
    [49] M.K. Cooper, J.A. Porter, K.E. Young, P.A. Beachy, Teratogen-mediated inhibition of target tissue response to Shh signaling, Science, 1998, 280 (5369): 16032-16017.
    [50] J. Taipale, J.K. Chen, M.K. Cooper, B. Wang, R.K. Mann, L. Milenkovic, M.P. Scott, P.A. Beachy, Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine, Nature, 2000, 406 (6799): 1005-1009.
    [51]雷革胜,朱俊玲,万业宏,王文挺,胡三觉,小剂量藜芦碱诱发大鼠脑海马CA1区锥体神经元异常放电癫痫脑片模型的特征,中国临床康复, 2005, 9 (025): 238-239.
    [52]卢步峰,鲁友明,藜芦碱对分离的大鼠神经细胞内游离钙的影响,中国药理学通报, 1994, 10 (003): 214-216.
    [53]段建红,段玉斌,韩晟,胡三觉,藜芦碱引起神经元放电峰峰间期慢波振荡, ACTA BIOPHYSICA SINICA, 2002, 18 (1): 49-52.
    [54]段建红,段玉斌,邢俊玲,胡三觉,藜芦碱致使大鼠背根神经节A类神经元产生触发性振荡,生理学报, 2002, 54 (3): 208-212.
    [55]谢勇,段玉斌,徐健学,康艳梅,胡三觉,在大鼠受损坐骨神经上由藜芦碱诱发的抛物线簇放电,生物化学与生物物理学报:英文版, 2003, 35 (009): 806-810.
    [56]赵录英,赵画晨,藜芦混碱对离体心泵功能的效应及其与洋地黄类药物的对比,山西医科大学学报, 2002, 33 (003): 231-232.
    [57]康毅,王国祥,牛磺酸抗藜芦碱实验性心律失常作用,天津医药, 1989, 17 (4): 199-201.
    [58]郭春花,甘草酸钾和阿托品抗藜芦碱实验性心律失常作用,长治医学院学报, 1998, 12 (004): 251-252.
    [59]王建民,魏苑,钟慈声,赵伟杰,郭永田,梁子钧,乌苏里藜芦生物碱对豚鼠心肌细胞动作电位及钙电流的影响,第三军医大学学报, 2001, 23 (12): 1403-1405.
    [60]郑善子,崔春权,申成华,刘永镇,藜芦乳膏对毛囊蠕形螨的体外杀虫作用,延边大学医学学报, 2004, 27 (001): 31-32.
    [61]杨素华,李东宁,孙健,藜芦乳膏治疗疥疮的疗效观察, LIAONING JOURNAL OF TRADITIONAL CHINESE MEDICINE, 2002, 29 (11): 664.
    [62]李太一,申成华,郑善子,崔春权,藜芦乳膏的皮肤毒性实验研究,延边大学医学学报, 2004, 27 (002): 118-120.
    [63] M. Evangelista, H. Tian, F.J. de Sauvage, The hedgehog signaling pathway in cancer, Clinical cancer research, 2006, 12 (20): 5924-5928.
    [64] J. Vestergaard, M. Bak, L. Larsen, The hedgehog signaling pathway in cancer, Developmental Biology of Neoplastic Growth, 2005: 1-28.
    [65] L.L. Rubin, F.J. de Sauvage, Targeting the Hedgehog pathway in cancer, Nature Reviews Drug Discovery, 2006, 5 (12): 1026-1033.
    [66] M. Frank-Kamenetsky, X.M. Zhang, S. Bottega, O. Guicherit, H. Wichterle, H. Dudek, D. Bumcrot, F.Y. Wang, S. Jones, J. Shulok, Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists, Journal of biology, 2002, 1 (2): 10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700