用户名: 密码: 验证码:
显微组织与微量氢对钛合金电子束焊接接头疲劳特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有优良的拉伸、疲劳强度与耐腐蚀性能的优点,钛合金在航空、化学工程及医学等领域广泛应用。对于航天用钛合金,疲劳性能是一个重要的参数,特别是用作结构材料,焊接是一种必不可少的手段,焊接后焊接接头中存在较大组织与力学性能的不均匀性,对其疲劳性能也有深刻的影响。钛与氢具有很好的结合力,焊接接头中微量氢的存在,对焊接接头的性能将产生深刻的影响,许多研究都致力于找出氢对钛合金性能影响的机理。本文对TC4与TA15两种钛合金电子束焊接接头的分区疲劳扩展差异,结合裂纹尖端微区形态分析,探讨了显微组织对合金疲劳行为的影响;并对微量的氢元素对钛合金的疲劳性能进行研究,为钛合金的应用提供理论基础。
     本文的主要研究内容及成果为:
     ①疲劳裂纹扩展速率试验表明:距焊缝上表面5/6处裂纹扩展速率最快,1/6处速率次之,3/6处裂纹扩展最慢,且研究中硬度梯度越大处,裂纹扩展速率越高;焊接接头分区裂纹扩展试验表明:热影响区裂纹扩展速率最高,其次为焊缝区,母材区裂纹扩展最缓慢。母材等轴组织裂纹扩展抗力最大;焊缝区马氏体成束分布且取向各异,导致裂纹扩展路径曲折,裂纹扩展抗力居中;热影响区硬度梯度最大,疲劳过程中,α相与马氏体变形不匹配,裂纹扩展抗力最低。
     ②疲劳裂纹尖端的微区形态研究表明:经历疲劳循环后,位错密度大大增加,α/β相界面位错密度高,易成为位错形核的源区。焊缝区马氏体板条之间的细碎相细碎相易成为疲劳裂纹形核的“软点”,焊缝区较窄的马氏体板条,易成为疲劳裂纹萌生的源区。热影响区软质α相与硬质马氏体相变形不匹配,大大降低了裂纹的扩展抗力。此外,通过分区TEM对比研究,发现了焊缝区相对于母材更易萌生裂纹的相关证据。
     ③微量氢对TC4疲劳性能影响的研究表明:在置氢含量低于0.120 wt.%,氢以固溶形态存在于TC4中,疲劳寿命随平均氢含量增加而急剧下降。氢的加入在一定程度上粗化了β相,β相粗化造成α与β相界面的协调能力下降,缺陷将沿α与β相界面聚集,从而成为二次裂纹源。在应力作用下裂纹尖端聚积了原子氢,加速了裂纹扩展。氢含量的提高在增加TC4硬度的同时,减少了TC4的塑性与韧性。显微组织分析表明,位错在次生的α、β相区聚集,且α/β相界往往是裂纹萌生的根源。固溶的原子氢导致驻留滑移带软化,降低了裂纹扩展的门槛值,从而增加了裂纹的扩展速率。
     ④微量氢对TA15疲劳性能影响的研究表明:置氢含量低于0.105wt.%,氢以固溶形态存在于TA15焊缝中,疲劳寿命及扩展寿命随平均氢含量增加剧烈下降。这是由于氢降低了合金的韧性并增加了裂纹扩展速率。母材比焊接接头具有更高的裂纹扩展抗力。组织分析表明,电子束焊接TA15钛合金生成马氏体α'相,由于马氏体片束取向分布导致扩展后期形成团簇结构;氢沿相界聚集,加速了裂纹沿马氏体团的扩展速率,在断口上留下了“胞状”形态。马氏体团作为一个单元共同承受变形,固溶氢有加速裂纹沿“胞状”组织边界扩展的作用。
     ⑤TA15小裂纹尖端微区形态研究中,测定了TA15的△K-da/dN曲线,拟合得到曲线方程为:da/dN=6.93×10~(-10)(△K)~(2.61),并通过计算得到裂纹尖端循环塑性区尺寸为166.17μm,研究发现TA15α相分布取向接近,加速了疲劳裂纹扩展。对小裂纹阶段的尖端形态进行了研究,发现了裂纹尖端塑性区及滑移带特征;裂纹尖端塑性区对疲劳裂纹扩展影响深刻。裂纹扩展通过尖端锐化-粗化-再锐化的过程实现的,其过程伴随着裂纹尖端位错运动、聚集及滑移带形成,滑移在相界处发生一定角度的偏折,而由于TA15中α相分布取向接近,弱化了相界对裂纹扩展的阻碍作用。
Because of its excellent specific tensile, fatigue strengths and corrosion resistance, Titanium alloy have been mainly used for aircraft structural and engine parts, materials for a petrochemical plants and surgical implants. Since excellent fatigue properties are required from investment titanium alloy to be used for airplane parts, fatigue properties should be taken into critical consideration. Particularly, the fatigue behavior of airplane parts containing welded regions should be closely examined and evaluated before the parts are actually applied, because there were unhomogeneities of microstructure and mechanical property in welded joints. Therefore, it is essentially required to investigate fatigue properties of the welded region which differ in microstructures.
     Addition of hydrogen has a considerable effect on the mechanical properties of titanium alloys because that titanium alloys have a high affinity for hydrogen, hydrogen can be detrimental to the mechanical properties of titanium alloys, especially for the titanium alloy with welded joints. Much work has been done concerning the effects of hydrogen as an alloying element and its corresponding mechanism. In present study, the fatigue growth behavior and micro-morphologies at crack tips of the welded joints in different region and the effects of small amounts of hydrogen on the fatigue properties of electron beam welded TC4 and TA15 alloys were investigated, which is expected to contribute to fundamental understanding of the fatigue mechanism and the role of hydrogen.
     The important outcomes are as follows:
     ①The results of fatigue crack growth revealed that: the fatigue crack growth rate of 5/6 from the welded joint surface was highest, followed by the 1/6 from the surface, the lowest rate was 3/6 from the surface which was the middle of the welded joint. The experiment of fatigue growth in different region of welded joints was based on the fatigue crack growth of micro-hardness, the results also revealed that the gradients of micro-hardness have some relationship with the fatigue crack growth: the bigger of the gradient, the faster of the fatigue growth rate. The base metal whose microstructure was exquilax plasticαphase had best crack growth resistance; the orientation of martensite packets in fusion zone differ with each other, which makes the crack growth tortuously. The heat affected zone whose hardness gradient was the highest of the three groups showed the lowest resistance to cyclic crack growth. Theαphase and martensite lash in heat affact zone deformation dismatched during the fatigue cycle, which induced the resistance to the crack growth decreased.
     ②The research on the micro-morphologies at the crack tips of TC4 welded joints revealed that: experiencing from fatigue crack growth, the dislocations which emitted fromα/βinterfaces reached so densely that they inclined to become a source of the fatigue cracks, from which these dislocations were diverged radioactively under the cyclic stress. Dislocations accumulated badly among the small fatigue phases which lay between two martensite lathes, indicating that these small fatigue phases tended to become the source of fatigue crack. What is more, the more narrow the width of martensite lathes, the easier dislocations accumulated and became the fatigue source. The plasticαphase and martensite lash mixed structure in heat affected zone deformation dismatched which decreased the resistance of fatigue crack growth. By comparing the TEM morphologies of different regions, the corresponding evidence that welded joints were more liable to become the source fatigue cracks than the base metal was found.
     ③The influences of hydrogen on fatigue behaviors of electron beam welded TC4 experiment revealed that: no hydride formed when less than 0.120 wt% hydrogen charged in TC4, and the fatigue lives drop evidently with median hydrogen content increase. The compatible deformation ability of the phase boundaries was decreased because of theβphase became coarser after hydrogen charged, and the defects were accumulated at the phase boundaries, then became a source of second crack. Hydrogen atoms accumulated at the phase boundaries because of the cyclic stress, which accelerate the crack growth. With the increase of the hydrogen content, the micro-hardness of TC4 became higher, while the toughness and plasticity was drop badly. The microstructure analysis revealed that: dislocations accumulated in secondaryα/βphase region, which could be suspected of developing a source of crack. Hydrogen atoms soften the PSB at crack tips, which resulted fatigue threshold of the crack growth was decreased, while the crack growth rate was increased.
     ④The influences of hydrogen on fatigue behaviors of electron beam welded TA15 experiment revealed that: no hydride formed when less than 0.105wt. % hydrogen was charged in TA15 welded joints. Fatigue results revealed that: with hydrogen content increasing, the fatigue life in the welded joints was drop remarkably, because the existed hydrogen reduced the toughness remarkably of the TA15 alloy in the welded joint, and increased the fatigue crack growth rates. The substrates presented better fatigue cracking resistance than the welded joint. The morphology analysis of the fatigue fracture demonstrated that, the hydrogen accumulated along the boundaries, and accelerated crack propagation along the martensite packets in the welded joints, resulting of“colony structure”on the fracture surface, the martensite packets performed as a unit, and hydrogen had some effects on the martensite packet during the crack propagation.
     ⑤In the research on micro-morphologies of the fatigue crack tip in TA15, the△K-da/dN curve of TA15 alloy was determined, the curve equation through regression fitting was: da/dN=6.93×10~(-10)(△K)~(2.61). Through calculation it was found that the size of the plastic zone of the crack tip is 166.17μm. According to findings, the conclusion was finally reached thatαphases of similarly aligned accelerate the crack propagation. Furthermore, the small-crack stage and the micro-morphologies plastic zone of the crack tip was studied by transmission electron microscopy (TEM), indicating that the plastic zone of the crack tip have profound effects on the crack propagation behavior. While the crack propagate through the sharp - blunt - resharp process of the crack tip, the motion and accumulation of dislocation as well as the formation of the slip band were displayed. The slip bands are deflected at the phase or grain boundaries, and the orientation of theαphases of similarly aligned weakes the hindering effects of the phase boundaries.
引文
[1] Hall J A. Fatigue crack initiation in alpha-beta titanium alloys[J].International Journal of Fatigue, 1997,19(1):S23–S37.
    [2]何晓.含氢的新型钛合金的疲劳行为研究[D].四川:四川大学, 2003.
    [3] Teter D F, Robertson I M, Birnbaum H K. The effects of hydrogen on the deformation and fracture of beta-titanium[J]. Acta Materialia, 2001,49(20): 4313-4323.
    [4] Niinomi M, Gong B, Kobayashi T, et al. Fracture characteristics of Ti-6Al-4V and Ti-5Al-2.5Fe with refined microstructure using hydrogen[J]. Metallurgical and Materials Transactions A, 1995,26(5):1141-51.
    [5] Akmoulin I A, Niinomi M, Kobayashi T. Dynamic fracture- behavior of Ti–6Al–4V alloy with various stabilities of beta-phase[J]. Metallurgical and Materials Transactions A, 1994,25(8):1655-66.
    [6] Haque M A, Saif M T A. In-situ tensile testing of nano-scale specimens in SEM and TEM[J]. Experimental Mechanics, 2002,42(1):123-128.
    [7] Boehlert C J, Cowen C J, Tamirisakandala S, McEldowney D J, Miracle D B. In situ scanning electron microscopy observations of tensile deformation in a boron-modified Ti-6Al-4V alloy[J]. Scripta Materialia, 2006,55(5):465-468.
    [8] Maire E, Verdu C, Lormand G, Fougeres R. Study of the damage mechanisms in an OSPREYTM Al alloy-SiCp composite by scanning electron microscope in situ tensile test[J]. Materials Science and Engineering A, 1995,196(1-2):135-44.
    [9] Ismarrubie Z N, Aidy A, Satake T, Sugano M. Influence of microstructures on fatigue damage mechanisms in Ti-15-3 alloy[J]. Materials and Design, 2011,32(3):1456-1461.
    [10] Oguma H, Nakamura T. The effect of microstructure on very high cycle fatigue properties in Ti-6Al-4V[J]. Scripta Materialia, 2010,63(1):32-34.
    [11] Wang H, Sun Q Y, Xiao L, Sun J,Ge P. Low-cycle fatigue behavior and deformation substructure of Ti-2Al-2.5Zr alloy at 298 and 673K[J]. Materials Science and Engineering A, 2010,527(15):3493-3500.
    [12] Bantounas I, Dye D, Lindley T C. The role of microtexture on the faceted fracture morphology in Ti-6Al-4V subjected to high-cycle fatigue[J]. Acta Materialia, 2010,58(11):3908-3918.
    [13] Shanyavskiy A, Banov M. The twisting mechanism of subsurface fatigue cracking in Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy[J]. Engineering Fracture Mechanics, 2010,77(11): 1896-1906.
    [14] Navarro A, De los Rios E R. A model for short fatigue crack propagation with an interpretation of the short-long crack transition[J]. Fatigue and Fracture of Engineering, Materials and Structures. 1987,10(2):169-86.
    [15] Navarro A, de los Rios E R. A microstructurally-short fatigue crack growth equation[J]. Fatigue and Fracture of Engineering Materials and Structures, 1988,11(5):383-96.
    [16]周永峰,胡树兵,肖建中,等. TC4钛合金板材电子束焊接疲劳性能[J].材料科学与工程学报, 2010,28(1):130-135.
    [17]刘昕,巩水利,雷永平. TC4钛合金电子束焊接接头相变的热力学特征[J].焊接学报,2010,31(2):57-60.
    [18]彭周,胡永刚,陈国珠,等.TC4合金电子束焊接接头微观组织研究[J].材料工程, 2010(5):47-50.
    [19] Wang X D, Shi Q Y, Wang X, et al. The influences of precrack orientations in welded joint of Ti-6Al-4V on fatigue crack growth[J]. Materials Science and Engineering A , 2010,527 (4-5):1008-1015.
    [20]吴冰,李晋炜,巩水利,等. TC17钛合金电子束焊接接头的疲劳裂纹扩展规律及疲劳剩余寿命[J].稀有金属材料与工程, 2009(38)3:170-174.
    [21] Casavola C, Pappalettere C. Discussion on local approaches for the fatigue design of welded joints[J]. International Journal of Fatigue, 2009,31(1):41-49.
    [22] Chu R Q, Cai Z, Li S X, et al. Fatigue crack initiation and propagation in anα-iron polycrystal[J]. Materials Science and Engineering, 2001,A313(1-2):64-68.
    [23] Noroozi A H, Glinka G, Lambert S. A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force[J]. International Journal of Fatigue, 2007,29(9-11):1616-1633.
    [24] Sackett E E, Germain L, Bache M R. Crystal plasticity, fatigue crack initiation and fatigue performance of advanced titanium alloys[J]. International Journal of Fatigue, 2007,29(9-11):2015-2021.
    [25] Jinkeun O, Nack J K, Sunghak L, et al. Correlation of fatigue properties and microstructure in investment cast Ti-6Al-4V welds[J]. Materials Science and Engineering A, 2003,340 (1-2):232-242.
    [26] Lefebvre F, Sinclair I. Micromechanical aspects of fatigue in a MIG welded aluminium airframe alloy, Part 2. Short fatigue crack behaviour[J]. Materials Science and Engineering, 2005,A407(1-2):265-272.
    [27] Paolo L, Roberto T. The use of the JV parameter in welded joints: Stress analysis and fatigue assessment[J]. International Journal of Fatigue,2009,31(1):153-163.
    [28] Predan J, Gubeljak N, Kolednik O. On the local variation of the crack driving force in a double mismatched weld[J]. Engineering Fracture Mechanics, 2007,74 (11):1739-1757.
    [29] Fersini D, Pirondi A. Analysis and modelling of fatigue failure of friction stir welded aluminum alloy single-lap joints[J]. Engineering Fracture Mechanics, 2008,75(3-4): 790-803.
    [30] Pirondi A, Collini L. Analysis of crack propagation resistance of Al-Al2O3 particulate-reinforced composite friction stir welded butt joints[J]. International Journal of Fatigue, 2009,31(1):111-121.
    [31] Aidy A, Brown M W, Rodopoulos C A. Modelling of crack coalescence in 2024-T351 Al alloy friction stir welded joints[J]. International Journal of Fatigue, 2008,30(10-11):2030-2043.
    [32] Golestaneh A F, Ali A., Zadeh M. Modelling the fatigue crack growth in friction stir welded joint of 2024-T351 Al alloy[J]. Materials and Design, 2009,30(8): 2928-2937.
    [33] Pakandam F, Varvani-Farahan A. Fatigue damage assessment of various welded joints under uniaxial loading based on energy methods[J]. International Journal of Fatigue, 2010,2(1):2027-2035.
    [34] Atzori B, Lazzarin P, Meneghetti G.. Fatigue strength of welded joints based on local, semi-local and nominal approaches[J]. Theoretical and Applied Fracture Mechanics, 2009, 52(1):55-61.
    [35] Zhang J K, Cheng X Q, Li Z N. Total fatigue life prediction for Ti-alloys airframe structure based on durability and damage-tolerant design concept[J]. Materials and Design, 2010,31(9):4329-4335.
    [36] Casavola C, Pappalettere C, Tattoli F. Experimental and numerical study of static and fatigue properties of titanium alloy welded joints[J]. Mechanics of Materials, 2009,41(3):231-243.
    [37] [37]Carpinteri A, Spagnoli A, Vantadori S. Multiaxial fatigue life estimation in welded joints using the critical plane approach[J]. International Journal of Fatigue, 2009,31 (1):188-196.
    [38] Li M Q, Zhang W F. Effect of hydrogenation content on high temperature deformation behavior of Ti-6Al-4V alloy in isothermal compression[J]. International Journal of Hydrogen Energy, 2008,33(11):2714-20.
    [39] Zong Y Y, Shan D B, Lu Y, Guo B. Effect of 0.3 wt%H addition on the high temperature deformation behaviors of Ti-6Al-4V alloy[J]. International Journal of Hydrogen Energy, 2007,32(16):3936-3940.
    [40] Lu J Q, Qin J N, Lu W J, et al. Hot eformation behavior and microstructure evaluation of ydrogenated Ti-6Al-4V matrix composite[J]. International Journal of Hydrogen Energy, 2009,34(22):9266-9273.
    [41] Gong B, Zhang C B, Lai Z H. Improvement of superplastic properties of Ti-6Al-4V alloy by temporary alloying with hydrogen[J]. Journal of Materials Science Letters, 1994,13(21):1561-1563.
    [42] Nechaev Y S, Iourtchenko D V, Hirschberg J G, et al. On the physics of hydrogen plastification and superplasticity of metallic materials and compounds[J]. International Journal of Hydrogen Energy, 2004,29(13):1421-1423.
    [43] Kolachev B A. Reversible hydrogen alloying of titanium-alloys[J]. Metal Science and Heat Treatment, 1993,35(9-10):586-591.
    [44] Froes F H, Senkov O N, Qazi J O. Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen rocessing[J]. International Materials Reviews, 2004,49(3-4): 227-245.
    [45] Alvarez A M, Robertson I M, Birnbaum H K. Hydrogen embrittlement of a metastable beta-titanium alloy[J]. Acta Materialia, 2004,52(14):4161-4175.
    [46] Briant C L, Wang Z F, Chollocoop N. Hydrogen embrittlement of commercial purity titanium[J]. Corrosion Science, 2002,44(8):1875-1888.
    [47] Rusli R H. Role of hydrogen environment induced hydrogen embrittlement of Ti-8Al-1Mo-2V alloy[J]. Material Science Engineering A, 2008,494(1-2):143-146
    [48]魏成富,曹江,王红研,等.氢对T225NG钛合金冲击韧性的影响机理研究[J].西华大学学报, 2005,24(5):81-84.
    [49]杨彦涛,王禹华,张永洋.氢对钛合金的影响[J].材料的开发与应用, 2009,24(1): 69-72.
    [50]温吉利,华丽,徐宏,王志文,等. 2.25Cr-1Mo钢氢致裂纹扩展行为研究[J].腐蚀与防护, 2008,29(3):121-124.
    [51] Liang C P, Gong H R. Fundamental influence of hydrogen on various properties ofα-titanium[J]. International Journal of Hydrogen Energy, 2010,35(8):3812-3816.
    [52] [52]Yuan B G, Li C F, Yu H P, et al. Influence of hydrogen content on tensile and compressive properties of Ti-6Al-4V alloy at room temperature[J]. Materials Science and Engineering A, 2010,527(16-17):4185-4190.
    [53] Ding Y S, Tsay L W, Chen C. The effects of hydrogen on fatigue crack growth behaviour of Ti-6Al-4V and Ti-4.5Al-3V-2Mo-2Fe alloys[J]. Corrosion Science, 2009,51(6):1413-1419.
    [54] Zhu T K, Li M Q. Effect of hydrogen addition on the microstructure of TC21 alloy[J]. Materials Science and Engineering A, 2010,527(26):7080–7085.
    [55] Liu L W, Su Y Q, Luo L S, et al. Effect of hydrogen on hot deformation behaviors of TiAl alloys[J]. International Journal of Hydrogen Energy, 2010,35(24): 13322-13328.
    [56]周军,李中奎,张建军,等.含氢NZ2锆合金疲劳裂纹扩展行为[J].稀有金属材料与工程, 2009,38 (10): 1797-1800.
    [57] Zong Y Y, Shan D B, LüY, et al. Effect of 0.3wt%H addition on the high temperature deformation behaviors of Ti-6Al-4V alloy[J]. International Journal of Hydrogen Energy, 2007, 32(16):3936-3940.
    [58] Han X L, Wang Q, Sun D L, et al. First-principles study of hydrogen diffusion in alpha Ti[J]. International Journal of Hydrogen Energy, 2009,34(9):3983-3987
    [59] Luo L S, Su Y Q, Guo J J, et al. Formation of titanium hydride in Ti-6Al-4V alloy[J]. Journal of Alloys and Compounds, 2006,425(1):140-144.
    [60] Tal-Gutelmacher E, Eliezer D. Hydrogen cracking in titanium-based alloys[J]. Journal of Alloys and Compounds, 2005,404-406,621-625.
    [61] Li M Q , Zhang W F, Zhu T K, et al. Effect of hydrogen on microstructure of Ti-6Al-4V alloys[J]. Rare Metal Materials and Engineering, 2010,39(1):1-5.
    [62] Zhu T K, Li M Q. Effect of 0.770wt% H addition on the microstructure of Ti-6Al-4V alloy and mechanism ofδhydride formation[J]. Journal of Alloys and Compounds, 2009,481(1-2):480-485.
    [63] Chen C Q, Li S X, Zheng H, et al. An investigation on structure, deformation and fracture of hydrides in titanium with a large range of hydrogen contents[J]. Acta Materialia, 2004,52(12):3697-3706.
    [64] Taha A, Sofronis P. A micromechanics approach to the study of hydrogen transport and embrittlement[J]. Engineering Fracture Mechanics, 2001,68(6):803-937.
    [65] Liu Y Z, Qiu S Y, Kang P, et al. Effects of hydrogen on the mechanical properties of Ti-Al-Zr alloy[J]. Journal of Alloys and Compounds, 2004,384 (1-2):145-151.
    [66] Yuan B G, Yu H P, Li C F, et al. Effect of hydrogen on fracture behavior of Ti-6Al-4V alloy by in-situ tensile test[J]. Journal of Alloys and Compounds, 2010,35(4): 1829-1838.
    [67] Pao P S, Feng C R, Gill S G. Hydrogen-assisted fatigue crack growth in beta-annealed Ti-6Al-4V[J]. Scripta Materialia, 1999,40(1):19-26.
    [68]曹春晓.我国航空用钛工业面临的21世纪的挑战[J].钛工业进展,1999(5):1-5.
    [69]陈芙蓉,霍立兴,张玉凤.电子束焊接技术及其接头质量评定[J].焊接,2001, (11):21-24.
    [70] Taylor K, Bowen P, Rugg D. Effects of microstructure on high cycle fatigue behavior of Ti-6Al-4V alloys.In:Ti-2003 science and techonology; Proceedings of 10th international conference on titanium. CHH-Cogress Center Hamburg, Germany: Wiley-VCH;2003.
    [71] Morrissey R J, McDowell D L, Nicholas T. Strain accumulation in Ti-6Al-4V during fatigue at high mean stress[J]. Mechanics of Time-Dependent Materials, 1998, 2(3):195-210.
    [72] Bellows R S, Muju S, Nicholas T. Validation of the step test method for generating Haigh diagrams for Ti-6Al-4V[J]. International Journal of Fatigue, 1999,21(7): 687-697.
    [73] Morrissey R J, McDowell D L, Nicholas T. Frequencey and stress ratio effects in high cycle fatigue of Ti-6Al-4V[J]. International Journal of Fatigue, 1999,7(21): 679-685.
    [74] Morrissey R J, McDowell D L, Nicholas T. Microplasticity in HCF of Ti-6Al-4V[J]. International Journal of Fatigue, 2001,23(suppl.1):55-64.
    [75]黄新跃,胡本润,吴学仁.钛合金Ti-6Al-4V两种微观结构的裂纹扩展行为研究[J].机械强度, 2002,24(4):584-587.
    [76] Choi R.O, Mayama H, Misawa H. Characteric of fatigue crack initiation and propagation on Ti-6Al-4V alloy heat treated in beta-fild, The 7th International Fatigue Conference,1999:427-432.
    [77] Ravichandran K S . Near threshold fatigue crack growth behavior of a titanium alloy: Ti-6A1-4V[J]. Acta Metallurgica et Materialia, 1991,39(3):401-410.
    [78] Baxter G J, Rainforth W M, Grabowski L. TEM obserbations of fatigue damage accumulation at the surface of the near alpha titanium alloy IMI 834[J]. Acta Materialia, 1996,9(44):3453-3463.
    [79] Bantounas I, Lindley T C, Rugg D, et al. Effect of microtexture on fatigue cracking in Ti-6Al-4V[J]. Acta Materialia, 2007, 55(16):5655-5665.
    [80] Nalla R K, Campbell J P , Ritchie R O. Mixed-mode, high-cycle fatigue-crack growth thresholds in Ti-6Al-4V: Role of small cracks[J]. Internationnal Journal of Fatigue, 2002,24(10):1047-1062.
    [81] Shademan S, Soboyejo W O. An investigation of short fatigue crack growth in Ti-6Al-4V with colony microstructures[J]. Materials Science and Engineering A , 2002 , A335 (1-2):116-127.
    [82] Lin C W, Ju C P, Chern Lin J H. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys[J]. Biomaterials, 2005,26(16):2899-2907.
    [83] Le Biavant K, Pommier S, Prioul C. Local texture and fatigue crack initiation in a Ti-6Al-4V titanium alloy[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002,25 (6):527-545.
    [84] Castany P, Pettinari-Sturmel F, Crestou J, et al. Experimental study of dislocation mobility in a Ti-6Al-4V alloy[J]. Acta Materialia, 2007,55(18):6284-6291.
    [85] Shademan S., Sinha V., Soboyejo A.B.O.,et al. An investigation of the effects of microstructure and stress ratio on fatigue crack growth in Ti-6Al-4V with colonyα/βmicrostructures[J]. Mechanics of Materials, 2004,36 (1-2) :161-175.
    [86] Zuo J.H, Wang Z G, Han E H. Effect of microstructure on ultra-high cycle fatigue behavior of Ti-6Al-4V[J]. Materials Science and Engineering A , 2008 ,473(1-2): 147-152.
    [87] Ari-Gur P, Semitin S L. Evolution of microstrcture ,macrotexture and microtexture during hot rolling of Ti-6Al-4V[J]. Materials Science and Engineering A, 1998,257(1):118-127.
    [88] Germain L, Gey N, Humbert M, et al. Analysis of sharp microtexture heterogeneities in a bimodal IMI 834 billet[J]. Acta Materialia, 2005,53(13):3535-3543.
    [89] Bache M R,Tasleem M. Fatigue life prediction techniques for notch geometries in titanium alloys[J]. International Journal of Fatigue, 1999,21(Suppl.):187-197.
    [90] Evans W J. Microstructure and the development of fatigue fatigue crack at notches[J]. Materials Science and Engineering A, 1999,263(2):160-175.
    [91] Lütjering G. Influence of processing on microstructure and mechanical properties of alpha+beta titanium alloys[J]. Materials Science and Engineering A, 1998,243(1-2): 32-45.
    [92] Tal-Gutelmacher E, Eliezer D, Eylon D. The effects of low fugacity hydrogen in duplex- and beta-annealed Ti-6Al-4V alloy[J]. Materials Science and Engineering A, 2004, A381(1-2):230-236.
    [93] Liu H, Cao J, He P, et al. Effect of hydrogen on diffusion bonding of commercially pure titanium and hydrogenated Ti6Al4V alloys[J]. International Journal of Hydrogen Energy, 2009,34(2):1108-1113.
    [94] Shan D B, Zong Y Y, Lv Y, et al. The effect of hydrogen on the strengthening and softening of Ti-6Al-4V alloy[J]. Scripta Materialia, 2008,58(6):449-452
    [95] Boyer R R, Spurr W F. Characteristics of sustained-load cracking and hydrogen effects in Ti-6Al-4V[J]. Metallurgical Transactions A, 1978,9A (1):23-29.
    [96] Moody N R, Gerberich W W. Effect of stress state on internal hydrogen-induced crack growth in Ti-6Al-6V-2Sn[J]. Metallurgical Transactions A, 1982,13A(6): 1055-1061.
    [97] Shih D S, Robertson I M, Birnbaum H K. Hydrogen embrittlement of alpha titanium: in situ TEM studies [J]. Acta Metallurgica, 1998, 36(1):111-124.
    [98]郭隆,白秉哲,侯红亮.置氢TC4钛合金超塑性研究[J].稀有金属,2009,33(4): 467-471.
    [99]李晓华,侯红亮,李志强.置氢Ti6Al4V合金的微观组织演变规律[J].材料科学与工艺, 2009,17(3):185-388.
    [100] Meyn D A. Effect of hydrogen and inert-environment sustained load cracking resistance of alpha - bata titanium alloys[J]. Metallurgical and Materials Transactions B, 1974,5(11):2405-2414.
    [101] Senkov O N, Froes F H. Thermohydrogen processing of titanium alloys[J]. International Journal of Hydrogen, 1999;24 (6) : 565-576.
    [102] Senkov O N, Jonas J J , Froes F H. Recent advances in the thermohydrogen processing of titanium alloys[J]. JOM, 1996,48 (7): 42-47
    [103] Senkov O N, Jonas J J. Effect of phase composition and hydrogen level on the deformation behavior of titanium-hydrogen alloys. Metallurgical and Materials Transactions A, 1995,27(7):1869-1876
    [104] Senkov O N, Dubois M, Jonas J J. Elastic moduli of titanium-hydrogen alloys in the temperature range 20℃to 1100℃[J]. Metallurgical and Materials Transactions A, 1996,27(12):3963-3970.
    [105] Yoshimura H, Kimura K, Hayashi M, et al. Ultra-fine equiaxed grain refinement and improvement of mechanical properties ofα+βtype titanium alloys by hydrogenation, hot working, heat treatment and dehydrogenation[J]. Materials Transactions, JIM, 1994,35(4):266-272.
    [106] Niinomi M, Gong B, Kobayashi T, et al. Fracture characteristics of Ti-6Al-4V and Ti-5Al-2.5Fe with refined microstructure using hydrogen. Metallurgical and Materials Transactions A, 1995; 26(5):1141-1151.
    [107]刘彦章,黄新泉,邱绍宇,等. Ti-Al-Zr合金的氢致脆性研究[J].核动力工程, 2005,26(5):456-460.
    [108] Zhao J W, Ding H, Zhao W J, et al. Influence of hydrogenation on microstructures and microhardness of Ti6Al4V alloy[J]. Transactions of Nonferrous Metals Society of China, 2008,18(3):506-511.
    [109]何晓,岳俊,沈保罗,等.氢对Ti-4Al-2V钛合金疲劳寿命的影响[J].核动力工程, 2003, 24(4):297-301.
    [110] Evans W J., Bathe M R. Hydrgen and fatigue behavior in a near alpha titanium alloy[J]. Scripta Metallurgicae t Materialia, 1995,32(7):1019-1024.
    [111] Senkov O N, Jonas J J. Dynamic strain aging and hydrogen-induced softening in alpha titanium [J]. Metallurgical and Materials Transactions, 1996,27A(7): 1877-1887.
    [112] Thompson N, Wadsworth N J, Louat N. The origin of fatigue fracture in copper [ J ]. Philosophical Magazine, 1956,1(2):113-126.
    [113] Williams D P, Nelson H G. Gaseous hydrogen-induced cracking of Ti-5Al-2.5Sn [J]. Metallurgical Transactions A, 1972,3(8):2107-2113.
    [114]何晓,沈保罗,岳俊,等.氢对Ti-2Al-2.5Zr钛合金疲劳性能的影响[J].金属热处理, 2002, 27(12):10-13.
    [115]李晓华,孙中刚,侯红亮.置氢Ti-6Al-4V合金组织与室温变形行为的相关性[J].北京科技大学学报. 2008,8(30):888-892.
    [116] Sarrazin-Baudoux C, Lesterlin S, Petit J. Atmospheric influence on fatigue crack , prpagation in titanium alloys at elevated temperature [C]. Proceedings of the 27th National Symposium on Fatigue and Fracture Mechanics,West Conshohoken, PA, ASTM Special Technical Publication,1997:117-139.
    [117] Pao P S, Feng C R, Gill S J. Hydeogen-assisted fatugue crack growth beta-annealed Ti-6Al-4V[J]. Scripta Materialia, 1999,40(1):19-26.
    [118] Sumida M, Nakazawa K, Hamano R, et al. Study on improvements in fretting fatigue characteristics of high strength structuralmember[J]. Japan Society of Materials Science,1992,41(467):1248-1254.
    [119]唐志平,彭楚峰,何晓,等.氢对Ti-2Al-2.5Zr钛合金疲劳裂纹扩展速率的影响[J].核动力工程, 2003,24(6):555-558.
    [120] Lee C S, Margolin H. Deformation of bimetallic bicrystals of alpha-beta (Ti-13Mn)[J]. Metallurgical Transactions, Physical Metallurgy and Materials Science, 1986,3(17A): 451-460.
    [121] Kolachev B A, Sadkov V V, Bylov B B, et al. Effect of hydrogen on the fatigue resistance of titanium alloy VT6Ch under various loading conditions[J]. Metal Science and Heat Treatment, 2003,3-4(45):127-130.
    [122] Mal’kov A V, Kolachev B A, Mishanova M G, et al. Effect of hydrogen on VT6 alloy fatigue[J]. Problemy Prochnosti, 1984,3:73-76.
    [123] Datta P K, Strafford K N, Dowson A L. Environment/mechanical interaction processes and hydrogen embrittlement of titanium[A]. Light Metals: Science and Technology, Proceedings of an International Symposium[C]. Varanasi, India 1985. Trans Tech Publ, Aedermannsdorf, Switz, 1985: 203-216.
    [124] Evans W J, Bache M R. The role of hydrogen in the fatigue response of a near alpha titanium alloy[A]. Proceedings of 2nd International Conference on Fundamental Physical Aspects of the Strength of Crystalline Materials[C]. Sandai, Japan, 21-26 1994. Japan Inst. Metals, 1994 :493-496.
    [125] Pao P S, Wille G W. Hydrogen-enhanced fatigue crack growth in Ti-6Al-2Sn-4Zr-2Mo- 0.1Si[A]. Proceedings of the Fifth International Conference on Titanium[C], Munich,Germany, September 10-14,1984. Volume 4 (A86-2720111-26). Oberursel, West Germany, Deutsche Gesellschaft fuer metallkunde,1985: 2503-2510.
    [126] Bavarian B, Wahi V, Canzona G, et al. Evaluation of the environmentally assisted cracking of beta-2ls tiyanium alloy[A]. TMS Annual Meeting[C]. Denver, Colorado, USA, Warrendale:The Minerals, Metal and Materials Soeiety, 1993:105-114.
    [127] Sommer A W, Froes F H, Eylon D. Fatigue crack growth rate acceleration of alpha+beta Ti alloys[A]. Proeeedings of the 1987 TMS-AIME Annual Symposium[C]. Denver, CO, Feb.24,25, 1987(A89-10059 01-26). Warrendale, PA, Metallurgical Society, Inc., 1987 :55-64.
    [128] Christ H J, Alvarez A M, Birnbaum H K, et al. Influence of hydrogen on the fatigue Behavior of the beta-titanium alloy Ti-3Al-8V-6Cr-4Mo-4Zr[J]. Fatigue and Fracture of Engineering Materials and Structures, 1996,12(19):1421-1434.
    [129] Shipilov S A. Hydrogen-affected intensified crack propagation under corrosion fatigue of Ti alloys[J]. Metallovedenie i Termicheskaya Obrabotka Metallovb Metalloved, 2001, l:31-37.
    [130] [140] Sarrazin-Baudoux C, Lesterlin S, Petit J. Atmospheric influence on fatigue crack propagation in titanium alloys at elevated temperature[A]. Proeeedings of the 27th National Symposium on Fatigue and Fracture Mechanies[C]. West Conshohoken, PA, Ameriean Society for Testing and Materials,1997:117-139.
    [131] Kolman D G, Scully J R. On the requirement for a sharp notch or precraek to cause environmentally assisted crack initiation in beta-titanium alloys exposed to aqueous chloride environments[A]. Proeeedings of the Symposium of Effcets of the Environment on the Initiation of Crack Growth[C]. Conshohoken, PA, American Soeiety for Testing and Materials , 1997:61-73.
    [132] Yeh M S, Huang J H. Hydrogen-induced subcritical crack growth in Ti-6Al-4V alloy[J]. Materials Science and Engineering A, 1998,242(1-2):96-107.
    [133] Lang M. Explanation of an apparent abnormality in fatigue crack growth rate curves in titanium alloys[J]. Acta Materialia, 1999,11(47):3247-3261.
    [134] Fishgoit A V, Kolachev B A. The effect of hydrogen on fatigue-crack growth in titanium and its alloys[J]. Soviet Materials Science,1983,5(19) :29-35.
    [135]郭隆,白秉哲,侯红亮.置氢Ti-6Al-4V钛合金超塑性研究[J].稀有金属,2009,4(33):467-471.
    [136] Yoder G R, Cooley L A, Crooker T W. Quantitative analysis of microstructural effects on fatigue crack growth in Widmanstatten Ti-6Al-4V and Ti-8Al-1Mo-1V[J]. Engineering Fracture Mechanics,1979,4(11):805-816.
    [137] Baeslack III W A, Banas C M. Comparative evaluation of laser and gas tungsten arc weldments in high-temperature titanium alloys[J]. Welding Journal, 1981,7(60): 121s-130s.
    [138] Harvey S E, Marsh P G, Gerberich W W. Atomic force microscopy and modeling of fatigue crack initiation in metals[J], Acta Metallurgica et Materialia, 1994,10(42): 3493-3502.
    [139] Kim Y H, Mura T, Fine M E. Fatigue crack initiation and microcrack growth in 4140 steel[J]. Metall Trans A. Metallurgical Transactions A, 1978,11(9A): 1679-1683.
    [140] Hack J E, Leverant G R. The influence of microstructure on the susceptibility of titanium alloys to internal hydrogen embrittlement[J]. Metallurgical Transactions A, 1982,10 (13A):1729-1738.
    [141] Evans W J, Bache M R. Hydrogen and fatigue behaviour in a near alpha titanium alloy[J]. Scripta Metallurgica et Materialia,1995,32(7):1019-1024.
    [142]李晓华,牛勇,侯红亮,等.置氢Ti-6Al-4V合金显微组织演变与高温变形行为[J].中国有色金属学报, 2008,18(8):1414-1420.
    [143] Liu H J, Zhou L, Liu Q W. Microstructural evolution mechanism of hydrogenated Ti-6Al-4V in the friction stir welding and post-weld dehydrogenation process[J]. Scripta Materialia, 2009,66(11):1008-1011.
    [144]王清,徐然,孙东立.氢处理对TA15钛合金焊缝组织和性能的影响[J].焊接学报, 2008,29(10):17-20.
    [145] Chan K S. Changes in fatigue life mechanism due to soft grains and hard particles[J]. International Journal of Fatigue, 2010, 32(3):526-534.
    [146] Nakasa K, Horita M, Satoh H. Effect of hydrogen-charging on the fatigue crack propagation behavior of Ti-13V-llCr-3Al alloy[J]. Japan Society of Materials Science, 1992, 41(476):1248-1254.
    [147] Tasleem M, Evans W J. Effect of hydrogen on fatigue behaviour of Ti-6Al-4V alloy. Proeeedings of the 4th International Symposium of Advanced materials-95, Islamabad, Rawalpindi, Pakistan, Khan Research Laboratories, 1996:599-604.
    [148] Harvey S E, Marsh P G, Gerberich W W. Atomic force microscopy and modeling of fatigue crack initiation in metals[J], Acta Metallurgica et Materialia, 1994,42(10):3493-3502.
    [149] Lynch S P, Hole B, Pasang T. Failures of welded titanium aircraft ducts[J]. Engineering Failure Analysis, 1995,2(4):257-73.
    [150] Wilson R J, Randle V, Evans W J. The influence of the Burgers relation on crack propagation in a near alpha-titanium alloy[J]. Philosophical Magazine A, 1997,76(2): 471-80.
    [151] Babu N K, Raman S G S, Srinivasa Murthy C V, et al. Effect of beam oscillation on fatigue life of Ti-6Al-4V electron beam weldments[J]. Materials Science and Engineering A , 2007,471(1-2):113-119.
    [152] Nishimura T, Satoh H A. Titanium alloy for marine propeller shafts[J]. Titanium Zirconium (Jpn.), 1985,33(2):73-81.
    [153] Eylon D, Bania P J. Fatigue cracking characteristic of beta-annealed large colony Ti-11 alloy[J]. Metallurgical Transactions A, 1978, 9A(9):1273-1279.
    [154] Dey S R, Hazotte A, Bouzy E, et al. Development of Widmanst?tten laths in a near-γTiAl alloy[J]. Acta Materialia, 2005,53(14):3783-3794.
    [155] Chan K S, Wojcik C C, Koss D A. Deformation of an alloy with a lamellar microstructure: experimental behavior of individual Widmanstatten colonies of an alpha-beta titanium alloy[J]. Metallurgical transactions A, Physical metallurgy and materials science, 1981,12A(11):1899-1907.
    [156] Ward-Close C M, Beevers C J. Influence of grain orientation on the mode and rate of fatigue crack growth in alpha -titanium[J]. Metallurgical transactions A, Physical metallurgy and materials science, 1980,11A(6):1007-1017.
    [157] Prasad K, Kamat S V. Dynamic fracture toughness of a near alpha titanium alloy Timetal 834[J]. Alloys and Compounds, 2010,491 (1-2):237-241.
    [158] Saleh Y, Margolin H. Low cycle fatigue of Ti-Mn alloys: microstructural aspects of fatigue crack growth[J]. Metallurgical transactions A, Physical metallurgy and materials science,1983,14A(7):1481-1486.
    [159] Bathe M R, Evans W J, Randle V, et al. Characterization of mechanical anisotropy in titanium alloys[J]. Materials Science and Engineering, 1998,A257(1):139-144.
    [160]马英杰,刘建荣,雷家峰,等. TC4ELI合金疲劳裂纹尖端塑性区对裂纹扩展的影响[J].中国有色金属学报, 2009,19(10): 1789-1794.
    [161] Soboyejo W O, Lederich R J, Sastry S M L. Mechanical behavior of damage tolerant TiB whiske-reinforced in situ titanium matrix composites[J]. Acta Metallurgica et Materialia, 1994,42(8):2579-2591.
    [162] Takahashi Y, Tanaka M, Higashid K, et al. An intrinsic effect of hydrogen on cyclic slip deformation around a {110} fatigue crack in Fe-3.2wt.% Si alloy[J]. Acta Materialia, 2010,58(6):1972-1981.
    [163] Sadananda K, Vasidevan A K. Fatigue crack growth behavior of titanium alloys[J]. International Journal of Fatigue, 2005,27(10-12):1255-1266.
    [164] Benedetti M, Fontanari V, Lütjering G, et al. The effect of notch plasticity on the behaviour of fatigue cracks emanating from edge-notches in high-strengthβ-titanium alloys[J]. Engineering Fracture Mechanics, 2008,75(2):169-187.
    [165] Chan K S. Roles of microstructure in fatigue crack initiation[J]. International Journal of Fatigue, 2009,32(9):1428-1447.
    [166] Pililchak A L, Bhattacharjee A, Rosenberger A H, et al. LowΔK faceted crack growth in titanium alloys[J]. International Journal of Fatigue, 2009,31(5):989-994.
    [167] Korsunsky A M, Song X, Belnoue J, et al. Crack tip deformation fields and fatigue crack growth rates in Ti-6Al-4V[J]. International Journal of Fatigue, 2009,31(11-12): 1771-1779.
    [168] Savage F, Tatalovich J, Zupan M, et al. Deformation mechanisms and microtensile behavior of single colony Ti-6242Si[J]. Materials Science and Engineering A, 2001, A319-321:398-403.
    [169]李士凯,惠松骁,叶文君,等.微观组织对TA15ELI钛合金损伤容限性能的影响[J].中国有色金属学报, 2007,17(7):1119-1123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700