用户名: 密码: 验证码:
中国华东农村地区耐药结核病流行和传播的分子流行病学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国早在上世纪90年代就开始实施以直接督导下的短程化疗(Directlyobserved treatment,short course,DOTS)策略为基础的国家结核病控制项目。到目前为止,已经免费治疗了大约一千三百万传染性肺结核病人,治疗成功率高达94%以上,基本完成了世界卫生组织制定的治疗和发现结核病病人的目标。但是就结核病的疾病负担(病例数)而言,中国仍然是全球结核病第二大高负担国家。我国拥有世界上16%的结核病人,2004年我国的涂阳结核病和活动性结核病报告率分别为46/100,000和101/100,000。
     近几年来,中国结核病控制面临的一个更为严峻的问题是耐药(尤其是耐多药)结核病的流行。耐多药结核病是指结核病患者感染的结核杆菌体外被证实至少对异烟肼、利福平这两种抗结核一线药物耐药。目前全球新发结核病病人中的耐多药结核病率(Multidrug-resistant tuberculosis,MDR-TB)平均为2.7%,有即往结核病治疗史的病人中MDR-TB发生率为4.3%。而我国2004年报告的MDR-TB发生率高于全球平均水平,初治病人为5.3%,复治病人为27.2%。全国第四次结核病流调发现,结核病病人中的初始总耐药率为18.7%,MDR-TB率为6%。
     不同来源的监测数据和研究结果显示,我国部分地区已成为全球耐药结核病的高流行区,耐药结核菌株的传播和流行已经成为影响中国结核病控制项目顺利实施的主要障碍之一。MDR-TB可以直接导致结核病的高患病率、高病死率,并可造成治疗过程延长和治疗成本增加,还可在社区人群中传播引起MDR-TB的暴发流行。本研究以江苏省和浙江省农村两个实施DOTS策略的结核病控制项目县为研究现场,采用现场流行病学与现代分子生物学技术相结合的方法,对两县研究期间的初治和复治结核病病人进行了系统的研究。本研究运用横断面调查方法,描述耐药结核病的流行现状、耐药结核病类型及其在不同人口学和社会经济水平人群中的分布,分析影响农村地区耐药结核病流行的生物、人口学和社会经济因素。并在现场流行病学研究的基础上,运用MIRU,Spoligotyping,IS6110等基因分型技术对收集的结核分枝杆菌(mycobacteria tuberculosis,M.TB)进行基因分型,确定其所属细菌家族,采用成簇性分析比较不同耐药类型分离株中近期感染和复燃比例:利用直接测序法,描述所有与一线抗结核药物耐药有关的已知基因突变热点区、基因突变型及其与耐药表型的关系;借助社会学和流行病学调查手段,深入探讨耐药结核病在农村的传播模式,分析北京家族及其主要成员对于中国耐药结核病基因型和表型的贡献并初探可能的潜在机制,为控制结核病在中国农村地区的传播提供线索。
     主要研究方法和结果如下:
     1.耐药结核病发生率和耐药结核病分布的横断面研究。通过对农村人群耐药结核病的现况调查,了解江苏和浙江两个社会经济发展水平不同样本县的结核病总耐药率,初/复治病人耐药率,MDR-TB率和各耐药专率。研究对象为浙江省德清县(2004年4月1日到2005年3月31日)和江苏省灌云县(2004年6月1日至2005年5月31日)县结核病防治所一年内痰培养阳性的肺结核病人。两县结核病防治所共登记结核病人784人,其中痰培养阳性结核病人399人(德清县182人,灌云县217人),包括283例新发结核病病人和116例复治结核病病人。经对分离获得的结核菌株进行抗结核一线药物的敏感试验检测发现,药物全敏感、MDR-TB和耐其他抗结核药物的病人数分别为148、58和193人。德清县和灌云县初治结核病人耐药情况分别为:总耐药率:50.4%(67人)和63.3%(95人);MDR-TB率:3.8%(5人)和14.7%(22人)。复治病人耐药情况分别为:总耐药率:67.3%(33人)和83.6%(56人);MDR-TB率:16.3%(8人)和34.3%(23人)。
     进一步分析生物学、社会人口学和行为等因素与耐药结核病的关系发现:病人的既往治疗史(≥4周/<4周:德清县:OR=4.980;95%CI:1.509-8.031;灌云县:OR=3.941;95%CI:2.043-12.48)、病例接触史(是/否:德清县:OR=7.841;95%CI:1.712-25.30;灌云县:OR=4.801;95%CI:1.321-7.243)以及个人收入(高/低收入:德清县:OR=0.794;95%CI:0.038-0.927;灌云县:OR=0.150;95%CI:0.043-0.891)与MDR-TB人群分布有关。在灌云县,病人年龄(30~岁/60岁组:OR=2.748;95%CI:1.047-6.974),痰涂片结果(阳性/阴性:OR:5.721;95%CI:2.107-17.17)也与MDR-TB发生有关,男性是发生耐多药结核病的主要人群(男性/女性:OR=2.084,95%CI:1.061-6.349)。
     2.中国耐药结核菌基因型及其与耐药表型的相互关系的研究。本研究以351份可获得DNA的M.TB分离株及其宿主为研究对象,对与一线药物耐药有关基因rpoB、katG、inhA、rpsL和embB进行测序研究。研究发现,131株异烟阱(INH)耐药株中有81株(61.8%)在katG315位存在基因突变,主要的耐药相关基因型为315ACC(Thr)。利福平(RIF)耐药的分离株中,92.3%由rpoB基因核心区的突变所致,516、526和531密码子位的突变分别占RIF耐药菌株的12.3%、29.2%和56.9%;81.0%rpoB531Ser分离株为MDR-TB。115株链霉素(SM)耐药分离株中,60株出现了rpsL43AGG突变。另外42株乙胺丁醇(EMB)耐药分离株中有20株包含了embB306位的突变,85%embB306突变发生在多个药物耐药结核菌中。
     3.结核分枝杆菌(M.TB)尤其是耐药M.TB基因型的分布和成簇特征分析。采用MIRU、Spoligotyping和RFLP-IS6110作为基因分型手段,对已获得结核分枝杆菌DNA的351位病人及其M.TB分离株进行研究。首先采用Spoligotyping和MIRU进行基因分型和成簇性判别,然后对所有MIRU分型判断为成簇的分离株进行RFLP-IS6110二次分型。Spligotyping识别了15个簇和35株“唯一”分离株。在351株分离株中,243株分离株(69.2%)属于M.TB北京家族。MIRU基因分型识别了220种基因型,包括183种“唯一”基因型以及37个簇(包括168株分离株)。最大的一组MIRU簇包含38(10.8%)株分离株,拥有相同的MIRU基因型223325173533(山东簇)。RFLP进一步在MIRU簇分离株中定义了31个簇,尤其将最大MIRU簇细分成9个亚组,其中最大亚组包括4个分离株。
     4.耐药M.TB成簇性影响因素分析。本部分研究以MIRU和IS6110-RFLP联合基因分型定义的62株耐药“成簇”M.TB分离株和161株“唯一性”耐药M.TB分离株及其宿主为研究对象,比较成簇组和非成簇组耐药病人的人口学、社会经济水平特征及其就医行为。结果发现,灌云县病人比德清县病人更容易发生耐药菌株成簇现象(34.1%.vs.18.2%;OR=3.311:95%CI:1.498-7.319)。30-60岁年龄组相比60岁以上人群所感染的M.TB更容易成簇(30~岁/60~岁年龄组:34.7%.vs.19.0%;OR=2.326;95%CI:1.039-5.393)。另外痰涂片阳性的耐药M.TB比涂阴耐药M.TB更易出现成簇(涂阳/涂阴:32.2%.vs.18.9%:OR=2.242;95%CI:1.010-4.977)。北京家族中山东簇分离株更加容易成簇(山东簇/非北京家族:67.7%.vs.15.3%;OR=6.681;95%CI:3.258-15.02)。
     5.中国农村地区耐药结核病传播模式研究。本部分研究以MIRU和RFLP联合基因分型定义的成簇病人为研究对象,通过案例追踪,探讨农村耐药结核病传播的可能途径。研究发现,中国农村地区耐药结核病传播呈现以村落为单位的小范围、散发特点。30-60岁人群和复发病人可能是结核病尤其是耐药结核病的主要传染源。同时,偶然接触导致的疾病传播在结核菌传播中占有较大比重。
     6.北京家族及其成员高耐药基因表型和基因型特征的潜在原因初探。通过比较243株Spoligotyping定义的北京株M.TB和108株非北京株耐药基因型和表型,研究北京家族分离株尤其是其中流行优势成员山东簇与耐药基因表型和基因型的关系,并尝试从北京家族修复基因SNP多态性以及IS6110的插入片段数分析北京家族及其成员高耐药基因表型和基因型特征的潜在原因。研究发现,北京株及其成员山东簇与MDR-TB(北京家族/非北京家族:18.5%.vs.7.4%:OR=2.723,95%CI:1.351-6.733;山东簇/其他北京家族:44.7%.vs.13.7%;OR=6.18;95%CI:2.68-14.23)和相应的rpoB和katG联合基因突变(北京家族/非北京家族:13.6%.vs.5.6%;OR=2.553,95%CI:1.031-6.324;山东簇/其他北京家族:34.2%.vs.9.8%;OR=5.901;95%CI:2.581-13.46)之间存在明显的联系。修复基因多态性变化以及IS6110插入数量可能与北京株以及山东簇发生耐药基因型变化、获得耐药表型有关。
Since 1990s,DOTS based strategy has been expanded to most of areas in China, providing the free anti-YB therapy to more than 1,300 million infectious pulmonary tuberculosis patients and subsequently helping China reaching the 70%of cure rate set by WHO in 2006.But considering the disease burden,China remains to be one of countries with the highest TB burden,only second to India.China has owned 16%of incident TB cases(1.58/9.88million) worldwide,with smear positive TB rate and active TB rate being respectively 46/100,000 and 101/100,000 in 2004.
     The control of tuberculosis in China has been further complicated and threatened by an increasing incidence of drug-resistant tuberculosis especially including mulit-drug-resistant tuberculosis(MDR-TB) in last ten years.MDR-TB is the pattem of drug resistance to at least isoniazid and rifampicin.A recent global survey of MDR-TB incidence estimated that an average of 2.7%of all new cases with no TB history,18.5%of previously treated and 4.3%of all cases had MDR-TB in 2004[2].Indeed,the MDR-TB incidence estimates for China in 2004 was considerably higher than the global average with 5.3%among cases with no history of TB,27.2%among previous treated cases.The 4~(th) TB epidemiological study reported that 18.7%patients were resistant to at least one of the first-line anti-TB drugs and 6% of TB patients had MDR-TB.
     The monitoring data from different sources has demonstrated the hotspot of drug resistant TB in some Chinese areas.Drug resistant TB could directly cause the high prevalence and mortality of TB and meanwhile the elongation of treatment period and increase in treatment cost.Setting in two DOTS covered rural counties respectively from Jiangsu and Zhejiang provinces,this study attempted to describe the prevalence and transmission of drug resistant TB in rural area of Eastem China from multi-displinary perspective in terms of field epidemiology and molecular epidemiology:to describe the prevalence of drug resistant TB and socioeconomic factors influencing its occurrence by the cross sectional study;to investigate the genetic diversity of prevailing M.TB strain and explore the transmission mechanism of drug resistant TB by combining all the available genotyping methods including MIRU, Spoligotying and IS6110;to identify the drug resistance genotype and its association with phenotype by direct DNA sequencing;to determine the transmission pattern of drug resistant TB strain in rural China through tracing the clustered cases:to study the contribution of Beijing genotype and its predominant member to the genotype and phenotype of drug resistant TB in rural China and uncover the mechanism behind them.
     1.A cross-sectional study was conducted in two rural counties in Eastern China: Deqing with over 10 years' DOTS implementation and Guanyun under its second year of DOTS.The subjects were all culture-positive pulmonary TB patients newly diagnosed or retreated during 12 months of 2004 to 2005.The proportion method was used for drug susceptibility testing.Among the 399 subjects,283 were new TB cases and 116 were previously treated.The rates of overall resistance in new cases were 50.4%(67) and 63.3%(95) respectively in Deqing and Guanyun,and 67.3%(33) and 83.6%(56) respectively in previously treated cases.The rates of MDR-TB in new cases were 3.8%(5) in Deqing and 14.7%(22) in Guanyun(p=0.0018),and 16.3% (8) and 34.3%(23) in previously treated cases(p=0.0305).
     Furthermore,the comparision of socio-demographic and medical characteristics was made between 58 MDR-TB patients,193 other drug resistant and 148 pan-drug sensitive TB patients.Compared to pan-drug sensitive patients,both in two counties, previous treatment history(≥4weeks/<4weeks:Deqing:OR:4.980;95%CI:1.509-8.031;Guanyun:OR:3.941;95%CI:2.043-12.48),case contact(yes/no:Deqing: OR:7.841;95%CI:1.712-25.30;Guanyun:OR:4.801;95%CI:1.321-7.243) and individual income(high/low income:Deqing:OR:0.794;95%CI:0.038-0.927; Guanyun:OR:0.150;95%CI:0.043-0.891) were associated with MDRTB.Only in Guanyun with shorter duration NTP-DOTs,were age(30~year/60~year group:OR: 2.748;95%CI:1.047-6.974) and smear positive(smear positive/negative:OR:5.721; 95%CI:2.107-17.17) related to MDRTB.There was higher proportion of MDRTB among male patients(male/female:OR:2.084,95%CI:1.061-6.349).It was concluded that Socioeconomic(age,sex and individual income) and clinic(case contact and previous treatment history) characteristics were risk factors related to presence of drug resistance TB.The vulnerable population(the poor and the elder) should become the concern of the TB control.
     2.DNA sequencing on the hotspot of resistance related genes was applied to investigate the drug-resistance genotype and its association with the corresponding drug resistance phenotype.81(61.8%) of 131 INH resistant isolates had single-nucleotide substitution in codon 315 of katG with 315ACC(Thr) responsible for 49.6%of INH-resistance.Drug resistance to RIF was mostly due to the genetic mutation of rpoB gene,where the single-nucleotide substitution in codon 516,526 and 531 took account respectively for 12.3%,29.2%and 56.9%.81.0%isolates with rpoB531Set were MDR-TB.Meanwhile,the DNA sequencing analysis of rpsL43, revealed resistance mutations in 60 of 115 SM resistant isolates totally due to a single base change(43rpsLAGG).While spot mutation related to mono-drug SM resistance represented a largest proportion(51.3%).Among 20 of 42 EMB-resistant isolate containing the genetic mutation in embB306,most of embB306 mutations were observed in the EMB-resistant M.TB isolate simultaneously resistant to other first-line anti-TB drugs.
     3.Three genotyping methods,including mycobacterial interspersed repetitive unit(MIRU) typing,Spoligotyping,and IS6110 restriction fragment length polymorphism(RFLP) typing,were used in this study.All 351 MTB isolates were first molecularly characterized by Spoligotyping and MIRU.Each MIRU cluster was further genotyping by IS6110 RFLP(i.e.MIRU plus IS6110) for clustering analysis. Spoligotyping identified 243 isolates(69.2%) that presented the Beijing family Spoligotype.MIRU typing determined 220 genotypes from all isolates in this study, including 183 unique patterns and 37 clusters(including 168 isolates).The largest MIRU cluster contained 38(10.8%) isolates,sharing an identical MIRU genotype 223325173533,which has been referred to as the "Shandong cluster" in a previous study.Again,all isolates from the "Shandong cluster" were members of the Beijing family.Shandong cluster was further distinguished into 9 sub-clusters by IS6110 RFLP.The largest MIRU/IS6110 cluster had 4 isolates.
     4.Based on the MIRU-IS6110 pattern,the 62 isolates was defined as the clustered and 161 as the unique.The comparison of host's socio-demographic and medical characteristics between these two groups revealed the drug resistant isolates in Guanyun were more likely to be clustered compared to Deqing(34.1%.vs.18.2%; OR:3.311;95%CI:1.498-7.319).In addition,the population aged 30-60 year was in high risk of recent transmission causing the disease(30~year/60~year age group: 34.7%.vs.19.0%;OR:2.326;95%CI:1.039-5.393).The smear positive was the factor independent of disease due to the recent transmission((Postive/Negative.32.2%.vs. 18.9%;OR:2.242;95%CI:1.010-4.977).The Shandong cluster was more likely to develop the disease through the recent transmission(67.7%.vs.15.3%;OR:6.681; 95%CI:3.258-15.02).
     5.Those with the clustered isolated was investigated to describe the transmission pattern of drug resistant TB through case tracing.The transmission pattern of drug resistant TB was presented by the sporadic distribution in small group.The population aged 30-60 years and the previously treated patients were the main sources of infection.Meanwhile,the causal contact contributed a lot to the recent transmission of TB.
     6.Targeting the 243 Beijing isolates available,this part of study was to investigate the contribution of Beijing family and its predominant member to drug resistance genotype and phenotype.The attempt was made to explore the mechanism behind the connection between Beijing family and drug resistance in terms of the polymorphism of repair gene and bands of IS6110 insertion.The Binary Logistic Regression Model adjusted by age,sex,county of the subjects was applied to analyze the association between drug resistance,gene mutation and genotypes.Beijing family isolates presented increased risks to be MDR-TB(OR:2.723,95%CI:1.351-6.733) and have katG and rpoB mutations(OR:2.553,95%CI:1.031-6.324) compared with non-Beijing family isolates.Clustering analysis by MIRU plus IS6110 RFLP revealed that Beijing family isolates were more likely to be clustered.The repair gene and bands of IS6110 insertions proven to play a role in the acquiring the genotype and phenotype of drug resistance.
引文
[1].Abate G.Drug-resistant tuberculosis in Ethiopia:problem scenarios and recommendation.Ethiop Med J 2002;40:79-86.
    [2].Zignol M,Hosseini MS,Wright A,et al.Global incidence of multidrug-resistant tuberculosis.J Infect Dis 2006;194:479-85.
    [3].Ma X,Wang H,Deng Y,et al.rpoB Gene mutations and molecular characterization of rifampin-resistant Mycobacterium tuberculosis isolates from Shandong Province,China.J Clin Microbiol 2006;44:3409-12.
    [4].Kamholz SL.Drug resistant tuberculosis.J Assoc Acad Minor Phys 2002;13:53-6.
    [5].Cohn DL,Bustreo F,Raviglione MC.Drug-resistant tuberculosis:review of the worldwide situation and the WHO/IUATLD Global Surveillance Project.International Union Against Tuberculosis and Lung Disease.Clin Infect Dis 1997;24 Suppl 1:S121-30.
    [6].WHO.Anti-tuberculosis drug resistance in the world report no.3.WHO 2004;343.
    [7].Tansuphasiri U,Vathanophas K,Pariyanonda A,et al.Rapid detection of polioviruses in environmental water samples by one-step duplex RT-PCR.Southeast Asian J Trop Med Public Health 2000;31:47-56.
    [8].Coninx R,Pfyffer GE,Mathieu C,et al.Drug resistant tuberculosis in prisons in Azerbaijan:case study.Bmj 1998;316:1423-5.
    [9].Palmero D,Ritacco V,Ruano S,et al.Multidrug-resistant tuberculosis outbreak among transvestite sex workers,Buenos Aires,Argentina.Int J Tuberc Lung Dis 2005;9:1168-70.
    [10].Espinal MA,Laserson K,Camacho M,et al.Determinants of drug-resistant tuberculosis:analysis of 11 countries.Int J Tuberc Lung Dis 2001;5:887-93.
    [11].Robert J,Trystram D,Truffot-Pernot C,Jarlier V.Multidrug-resistant tuberculosis:eight years of surveillance in France.Eur Respir J 2003;22:833-7.
    [12].Timperi R,Hun LL,Sloutsky A,et al.Drug resistance profiles of Mycobacterium tuberculosis isolates:five years' experience and insight into treatment strategies for MDR-TB in Lima,Peru.Int J Tuberc Lung Dis 2005;9:175-80.
    [13].Augustynowicz-Kopec E,Zwolska Z,Jaworski A,et al.[Frequency of drug resistant tuberculosis in Poland in 2000 as compared to 1997].Pneumonol Alergol Pol 2002;70:193-202.
    [14].王民.,刘宇红.,刘洋.我国结核病耐药性监测结果与评价.结核病与胸部肿瘤2004:193-197.
    [15].全国结核病流行病学抽样调查技术指导组.2000年全国结核病流行病学抽样调查报告.中国防痨杂志2002;24:65-108.
    [16].王甦民,张福生,,端木宏谨.山东省耐药结核病流行状况研究.中华结核和呼吸杂志1999;22:728-730.
    [17].修燕,,徐飚,.卫生服务公平性研究.中国卫生事业管理2002:328-329.
    [18]. Martin C, Timm J, Rauzier J, Gomez-Lus R, Davies J, Gicquel B. Transposition of an antibiotic resistance element in mycobacteria. Nature 1990;345:739-43.
    [19]. Martin DJ, Schoub BD, Miller GB, Sim JG. AIDS and tuberculosis. S Afr Med J 1990;78:533-5.
    [20]. Heym B, Honore N, Truffot-Pernot C, et al. Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet 1994;344:293-8.
    [21]. Klein JL, Brown TJ, French GL. Rifampin resistance in Mycobacterium kansasii is associated with rpoB mutations. Antimicrob Agents Chemother 2001;45:3056-8.
    [22]. Johansen IS, Lundgren B, Sosnovskaja A, Thomsen VO. Direct detection of multidrug-resistant Mycobacterium tuberculosis in clinical specimens in low- and high-incidence countries by line probe assay. J Clin Microbiol 2003 ;41:4454-6.
    [23]. Mikhailovich V, Lapa S, Gryadunov D, et al. Identification of rifampin-resistant Mycobacterium tuberculosis strains by hybridization, PCR, and ligase detection reaction on oligonucleotide microchips. J Clin Microbiol 2001 ;39:2531-40.
    [24]. Mikhailovich VM, Lapa SA, Gryadunov DA, et al. Detection of rifampicin-resistant Mycobacterium tuberculosis strains by hybridization and polymerase chain reaction on a specialized TB-microchip. Bull Exp Biol Med 2001;131:94-8.
    [25]. Kim BJ, Kim SY, Park BH, et al. Mutations in the rpoB gene of Mycobacterium tuberculosis that interfere with PCR-single-strand conformation polymorphism analysis for rifampin susceptibility testing. J Clin Microbiol 1997;35:492-4.
    [26]. Ahmad S, Mokaddas E, Fares E. Characterization of rpoB mutations in rifampin-resistant clinical Mycobacterium tuberculosis isolates from Kuwait and Dubai. Diagn Microbiol Infect Dis 2002;44:245-52.
    [27]. Hofling CC, Pavan EM, Giampaglia CM, et al. Prevalence of katG Ser315 substitution and rpoB mutations in isoniazid-resistant Mycobacterium tuberculosis isolates from Brazil. Int J Tuberc Lung Dis 2005;9:87-93.
    [28]. Viader-Salvado JM, Luna-Aguirre CM, Reyes-Ruiz JM, et al. Frequency of mutations in rpoB and codons 315 and 463 of katG in rifampin- and/or isoniazid-resistant Mycobacterium tuberculosis isolates from northeast Mexico. Microb Drug Resist 2003;9:33-8.
    [29]. Sunni S, Bishop SP, Kent SP, Geer JC. Diabetic cardiomyopathy. A morphological study of intramyocardial arteries. Arch Pathol Lab Med 1986;110:375-81.
    [30]. Aktas E, Durmaz R, Yang D, Yang Z. Molecular characterization of isoniazid and rifampin resistance of Mycobacterium tuberculosis clinical isolates from Malatya, Turkey. Microb Drug Resist 2005; 11:94-9.
    [31]. Baker LV, Brown TJ, Maxwell O, et al. Molecular analysis of isoniazid-resistant Mycobacterium tuberculosis isolates from England and Wales reveals the phylogenetic significance of the ahpC-46A polymorphism.Antimicrob Agents Chemother 2005;49:1455-64.
    [32].Lee AS,Tang LL,Lim IH,Ling ME,Tay L,Wong SY.Lack of clinical significance for the common arginine-to-leucine substitution at codon 463 of the katG gene in isoniazid-resistant Mycobacterium tuberculosis in Singapore.J Infect Dis 1997;176:1125-7.
    [33].Hazbon MH,Brimacombe M,Bobadilla del Valle M,et al.Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis.Antimicrob Agents Chemother 2006;50:2640-9.
    [34].Titov LP,Zakerbostanabad S,Slizen V,Surkova L,Taghikhani M,Bahrmand A.Molecular characterization of rpoB gene mutations in rifampicine-resistant Mycobacterium tuberculosis isolates from tuberculosis patients in Belarus.Biotechnol J 2006;1:1447-52.
    [35].Zhang SL,Qi H,Qiu DL,et al.Genotypic analysis of multidrug-resistant Mycobacterium tuberculosis isolates recovered from central China.Biochem Genet 2007;45:281-90.
    [36].Ahmad S,Udo EE,Chugh TD.Molecular diagnosis of antimicrobial resistance.J Med Liban 2000;48:203-7.
    [37].Okamoto-Hosoya Y,Okamoto S,Ochi K.Development of antibiotic-overproducing strains by site-directed mutagenesis of the rpsL gene in Streptomyces lividans.Appl Environ Microbiol 2003;69:4256-9.
    [38].Sreevatsan S,Stockbauer KE,Pan X,et al.Ethambutol resistance in Mycobacterium tuberculosis:critical role of embB mutations.Antimicrob Agents Chemother 1997;41:1677-81.
    [39].Belanger AE,Besra GS,Ford ME,et al.The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol.Proc Natl Acad Sci U S A 1996;93:11919-24.
    [40].Telenti A,Philipp W J,Sreevatsan S,et al.The emb operon,a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol.Nat Med 1997;3:567-70.
    [41].Moore M,Onorato IM,McCray E,Castro KG.Trends in drug-resistant tuberculosis in the United States,1993-1996.Jama 1997;278:833-7.
    [42].Moniruzzaman A,Elwood RK,Schulzer M,FitzGerald JM.A population-based study of risk factors for drug-resistant TB in British Columbia.Int J Tuberc Lung Dis 2006;10:631-8.
    [43].Pablos-Mendez A,Knirsch CA,Barr RG,Lerner BH,Frieden TR.Nonadherence in tuberculosis treatment:predictors and consequences in New York City.Am J Med 1997;102:164-70.
    [44].杨本付,徐飚,蒋伟利,周佩源,蒋庆五.苏北农村耐药结核病现状及影响因素的研究.中华流行病学杂志2004:25:582-585.
    [45].Rad ME,Bifani P,Martin C,et al.Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg Infect Dis 2003;9:838-45.
    [46]. Lari N, Rindi L, Bonanni D, Tortoli E, Garzelli C. Mutations in mutT genes of Mycobacterium tuberculosis isolates of Beijing genotype. J Med Microbiol 2006;55:599-603.
    [47]. Palmero D, Cusmano L, Bucci Z, Romano M, Ruano S, Waisman J. [Infectiousness and virulence of multidrug-resistant and drug susceptible tuberculosis in adult contacts]. Medicina (B Aires) 2002;62:221-5.
    [48]. Dye C, Williams BG, Espinal MA, Raviglione MC. Erasing the world's slow stain: strategies to beat multidrug-resistant tuberculosis. Science 2002;295:2042-6.
    [49]. Ordway DJ, Sonnenberg MG, Donahue SA, Belisle JT, Orme IM. Drug-resistant strains of Mycobacterium tuberculosis exhibit a range of virulence for mice. Infect Immun 1995;63:741-3.
    [50]. Mitchison DA, Wallace JG, Bhatia AL, Selkon JB, Subbaiah TV, Lancaster MC. A comparison of the virulence in guinea-pigs of South Indian and British tubercle bacilli. Tubercle 1960;41:l-22.
    [51]. Bifani PJ, Mathema B, Kurepina NE, Kreiswirth BN. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol 2002;10:45-52.
    [52]. Jacobs WR, Zaroukian MH. Coughing and central venous catheter dislodgement. JPEN J Parenter Enteral Nutr 1991; 15:491 -3.
    [53]. Baker L, Brown T, Maiden MC, Drobniewski F. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg Infect Dis 2004; 10:1568-77.
    [54]. Lopez B, Aguilar D, Orozco H, et al. A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin Exp Immunol 2003;133:30-7.
    [55]. Zhang M, Gong J, Yang Z, Samten B, Cave MD, Barnes PR Enhanced capacity of a widespread strain of Mycobacterium tuberculosis to grow in human macrophages. J Infect Dis 1999; 179:1213-7.
    [56]. van Soolingen D, Qian L, de Haas PE, et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol 1995;33:3234-8.
    [57]. Li WM, Wang SM, Li CY, et al. Molecular epidemiology of Mycobacterium tuberculosis in China: a nationwide random survey in 2000. Int J Tuberc Lung Dis 2005;9:1314-9.
    [58]. Edlin BR, Tokars JI, Grieco MH, et al. An outbreak of multidrug-resistant tuberculosis among hospitalized patients with the acquired immunodeficiency syndrome. N Engl J Med 1992;326:1514-21.
    [59]. Alland D, Kalkut GE, Moss AR, et al. Transmission of tuberculosis in New York City. An analysis by DNA fingerprinting and conventional epidemiologic methods. N Engl J Med 1994;330:1710-6.
    [60]. Small PM, Hopewell PC, Singh SP, et al. The epidemiology of tuberculosis in San Francisco. A population-based study using conventional and molecular methods. N Engl J Med 1994;330:1703-9.
    [61]. Dale JW, Nor RM, Ramayah S, Tang TH, Zainuddin ZF. Molecular epidemiology of tuberculosis in Malaysia. J Clin Microbiol 1999;37:1265-8.
    [62]. Kremer K, van Soolingen D, Frothingham R, et al. Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol 1999;37:2607-18.
    [63]. Kamerbeek J, Schouls L, Kolk A, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 1997;35:907-14.
    [64]. van Soolingen D, de Haas PE, Hermans PW, Groenen PM, van Embden JD. Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol 1993 ;31:1987-95.
    [65]. Warren R, Richardson M, Sampson S, et al. Genotyping of Mycobacterium tuberculosis with additional markers enhances accuracy in epidemiological studies. J Clin Microbiol 1996;34:2219-24.
    [66]. Alito A, Morcillo N, Scipioni S, et al. The IS6110 restriction fragment length polymorphism in particular multidrug-resistant Mycobacterium tuberculosis strains may evolve too fast for reliable use in outbreak investigation. J Clin Microbiol 1999;37:788-91.
    [67]. de Boer AS, Borgdorff MW, de Haas PE, Nagelkerke NJ, van Embden JD, van Soolingen D. Analysis of rate of change of IS6110 RFLP patterns of Mycobacterium tuberculosis based on serial patient isolates. J Infect Dis 1999; 180:1238-44.
    [68]. Yeh RW, Ponce de Leon A, Agasino CB, et al. Stability of Mycobacterium tuberculosis DNA genotypes. J Infect Dis 1998; 177:1107-11.
    [69]. Cronin WA, Golub JE, Magder LS, et al. Epidemiologic usefulness of spoligotyping for secondary typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110. J Clin Microbiol 2001;39:3709-11.
    [70]. Goguet de la Salmoniere YO, Li HM, Torrea G, Bunschoten A, van Embden J, Gicquel B. Evaluation of spoligotyping in a study of the transmission of Mycobacterium tuberculosis. J Clin Microbiol 1997;35:2210-4.
    [71]. Kwara A, Schiro R, Cowan LS, et al. Evaluation of the epidemiologic utility of secondary typing methods for differentiation of Mycobacterium tuberculosis isolates. J Clin Microbiol 2003;41:2683-5.
    [72]. Sreevatsan S, Pan X, Stockbauer KE, et al. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A 1997;94:9869-74.
    [73]. Maguire H, Dale JW, McHugh TD, et al. Molecular epidemiology of tuberculosis in London 1995-7 showing low rate of active transmission. Thorax 2002;57:617-22.
    [74]. Moro ML, Gori A, Errante I, et al. An outbreak of multidrug-resistant tuberculosis involving HIV-infected patients of two hospitals in Milan, Italy. Italian Multidrug-Resistant Tuberculosis Outbreak Study Group. Aids 1998;12:1095-102.
    [75]. Chaves F, Dronda F, Alonso-Sanz M, Noriega AR. Evidence of exogenous reinfection and mixed infection with more than one strain of Mycobacterium tuberculosis among Spanish HIV-infected inmates. Aids 1999;13:615-20.
    [76]. Kenyon TA, Ridzon R, Luskin-Hawk R, et al. A nosocomial outbreak of multidrug-resistant tuberculosis. Ann Intern Med 1997; 127:32-6.
    [77]. Small PM, McClenny NB, Singh SP, Schoolnik GK, Tompkins LS, Mickelsen PA. Molecular strain typing of Mycobacterium tuberculosis to confirm cross-contamination in the mycobacteriology laboratory and modification of procedures to minimize occurrence of false-positive cultures. J Clin Microbiol 1993;31:1677-82.
    [78]. Yang ZH, de Haas PE, van Soolingen D, van Embden JD, Andersen AB. Restriction fragment length polymorphism Mycobacterium tuberculosis strains isolated from Greenland during 1992: evidence of tuberculosis transmission between Greenland and Denmark. J Clin Microbiol 1994;32:3018-25.
    [79]. Gillespie SH, Kennedy N, Ngowi FI, Fomukong NG, al-Maamary S, Dale JW. Restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolated from patients with pulmonary tuberculosis in northern Tanzania. Trans R Soc Trop Med Hyg 1995;89:335-8.
    [80]. Hermans PW, Messadi F, Guebrexabher H, et al. Analysis of the population structure of Mycobacterium tuberculosis in Ethiopia, Tunisia, and The Netherlands: usefulness of DNA typing for global tuberculosis epidemiology. J Infect Dis 1995; 171:1504-13.
    [81]. Samper S, Iglesias MJ, Rabanaque MJ, et al. The molecular epidemiology of tuberculosis in Zaragoza, Spain: a retrospective epidemiological study in 1993. Int J Tuberc Lung Dis 1998;2:281-7.
    [82]. Das S, Chan SL, Allen BW, Mitchison DA, Lowrie DB. Application of DNA fingerprinting with IS986 to sequential mycobacterial isolates obtained from pulmonary tuberculosis patients in Hong Kong before, during and after short-course chemotherapy. Tuber Lung Dis 1993; 74:47-51.
    [83]. Small PM, Shafer RW, Hopewell PC, et al. Exogenous reinfection with multidrug-resistant Mycobacterium tuberculosis in patients with advanced HIV infection. N Engl J Med 1993;328:1137-44.
    [84]. van Rie A, Warren R, Richardson M, et al. Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N Engl J Med 1999;341:1174-9.
    [85]. Wenger PN, Otten J, Breeden A, Orfas D, Beck-Sague CM, Jarvis WR. Control of nosocomial transmission of multidrug-resistant Mycobacterium tuberculosis among healthcare workers and HIV-infected patients. Lancet 1995;345:235-40.
    [86]. 黄捷晖,吴波,张艳.182例结核病分支杆菌耐药结果的临床分析.医学理 论与实践2001;14:1088-1091.
    [87].程志忠.耐多药肺结核病患者相关因素分析.中国健康教育2007;23:308-309.
    [88].李爽,,张正.对万古霉素耐药的11株肠球菌的药敏表型及基因检测.中华检验医学杂志2005;28:426-429.
    [89].WHO.Treatment of tuberculosis:guidelines for national programmes.Geneva 1997:201.
    [90].Mendoza MT,Gonzaga AJ,Roa C,et al.Nature of drug resistance and predictors of multidrug-resistant tuberculosis among patients seen at the Philippine General Hospital,Manila,Philippines.Int J Tuberc Lung Dis 1997;1:59-63.
    [91].Espinal MA,Laszlo A,Simonsen L,et al.Global trends in resistance to antituberculosis drugs.World Health Organization-International Union against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance.N Engl J Med 2001;344:1294-303.
    [92].Sevim T,Aksoy E,Atac G,et al.Treatment adherence of 717 patients with tuberculosis in a social security system hospital in Istanbul,Turkey.Int J Tuberc Lung Dis 2002;6:25-31.
    [93].Christy L.Poverty and inequity:a review of the literature and discussion of issues.Tuberculosis 1994;23:231.
    [94].Ahlburg DA.The economic impacts of tuberculosis.The stop TB Initiative 2000 Series.Geneva,Switzerland.2000.
    [95].Barr RG,Diez-Roux AV,Knirsch CA,Pablos-Mendez A.Neighborhood poverty and the resurgence of tuberculosis in New York City,1984-1992.Am J Public Health 2001;91:1487-93.
    [96].Karyadi E,West CE,Nelwan RH,Dolmans WM,Schultink JW,van der Meer JW.Social aspects of patients with pulmonary tuberculosis in Indonesia.Southeast Asian J Trop Med Public Health 2002;33:338-45.
    [97].Xu B,Fochsen G,Xiu Y,Thorson A,Kemp JR,Jiang QW.Perceptions and experiences of health care seeking and access to TB care—a qualitative study in rural Jiangsu Province,China.Health Policy 2004;69:139-49.
    [98].Pozzi G,Meloni M,Iona E,et al.rpoB mutations in multidrug-resistant strains of Mycobacterium tuberculosis isolated in Italy.J Clin Microbiol 1999;37:1197-9.
    [99].Matsiota-Bernard P,Vrioni G,Marinis E.Characterization of rpoB mutations in rifampin-resistant clinical Mycobacterium tuberculosis isolates from Greece.J Clin Microbiol 1998;36:20-3.
    [100].March F,Garriga X,Rodriguez P,et al.Acquired drug resistance in Mycobacterium tuberculosis isolates recovered from compliant patients with human immunodeficiency virus-associated tuberculosis.Clin Infect Dis 1997;25:1044-7.
    [101].Kapur V,Li LL,Iordanescu S,et al.Characterization by automated DNA sequencing of mutations in the gene(rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J Clin Microbiol 1994;32:1095-8.
    [102]. Williams DL, Waguespack C, Eisenach K, et al. Characterization of rifampin-resistance in pathogenic mycobacteria. Antimicrob Agents Chemother 1994;38:2380-6.
    [103]. Drobniewski FA, Wilson SM. The rapid diagnosis of isoniazid and rifampicin resistance in Mycobacterium tuberculosis—a molecular story. J Med Microbiol 1998;47:189-96.
    [104]. Wengenack NL, Uhl JR, St Amand AL, et al. Recombinant Mycobacterium tuberculosis KatG(S315T) is a competent catalase-peroxidase with reduced activity toward isoniazid. J Infect Dis 1997; 176:722-7.
    [105]. Rouse DA, DeVito JA, Li Z, Byer H, Morris SL. Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis: effects on catalase-peroxidase activities and isoniazid resistance. Mol Microbiol 1996;22:583-92.
    [106]. Johnsson K, Froland WA, Schultz PG. Overexpression, purification, and characterization of the catalase-peroxidase KatG from Mycobacterium tuberculosis. J Biol Chem 1997;272:2834-40.
    [107]. Rouse DA, Morris SL. Molecular mechanisms of isoniazid resistance in Mycobacterium tuberculosis and Mycobacterium bovis. Infect Immun 1995;63:1427-33.
    [108]. Pym AS, Saint-Joanis B, Cole ST. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect Immun 2002;70:4955-60.
    [109]. Saint-Joanis B, Souchon H, Wilming M, Johnsson K, Alzari PM, Cole ST. Use of site-directed mutagenesis to probe the structure, function and isoniazid activation of the catalase/peroxidase, KatG, from Mycobacterium tuberculosis. Biochem J 1999;338 ( Pt 3):753-60.
    [110]. Li Z, Kelley C, Collins F, Rouse D, Morris S. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J Infect Dis 1998;177:1030-5.
    [111]. Pretorius GS, van Helden PD, Sirgel F, Eisenach KD, Victor TC. Mutations in katG gene sequences in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis are rare. Antimicrob Agents Chemother 1995;39:2276-81.
    [112]. Querol JM, Minguez J, Garcia-Sanchez E, Farga MA, Gimeno C, Garcia-de-Lomas J. Rapid diagnosis of pleural tuberculosis by polymerase chain reaction. Am J Respir Crit Care Med 1995; 152:1977-81.
    [113]. Stoeckle MY, Guan L, Riegler N, et al. Catalase-peroxidase gene sequences in isoniazid-sensitive and -resistant strains of Mycobacterium tuberculosis from New York City. J Infect Dis 1993; 168:1063-5.
    [114]. Morris S, Bai GH, Suffys P, Portillo-Gomez L, Fairchok M, Rouse D. Molecular mechanisms of mulitple drug resistance in clinical isolates of Mycobacterium tuberculosis. J Infect Dis 1995;171:954-60.
    [115]. van Soolingen D, de Haas PE, van Doom HR, Kuijper E, Rinder H, Borgdorff MW. Mutations at amino acid position 315 of the katG gene are associated with high-level resistance to isoniazid, other drug resistance, and successful transmission of Mycobacterium tuberculosis in the Netherlands. J Infect Dis 2000;182:1788-90.
    [116]. Sugawara I, Yamada H, Kazumi Y, et al. Induction of granulomas in interferon-gamma gene-disrupted mice by avirulent but not by virulent strains of Mycobacterium tuberculosis. J Med Microbiol 1998;47:871-7.
    [117]. Dobner P, Bretzel G, Rusch-Gerdes S, et al. Geographic variation of the predictive values of genomic mutations associated with streptomycin resistance in Mycobacterium tuberculosis. Mol Cell Probes 1997; 11:123-6.
    [118]. Brzostek A, Sajduda A, Sliwinski T, et al. Molecular characterisation of streptomycin-resistant Mycobacterium tuberculosis strains isolated in Poland. Int J Tuberc Lung Dis 2004;8:1032-5.
    [119]. Shi R, Zhang J, Li C, Kazumi Y, Sugawara I. Detection of streptomycin resistance in Mycobacterium tuberculosis clinical isolates from China as determined by denaturing HPLC analysis and DNA sequencing. Microbes Infect 2007;9:1538-44.
    [120]. Khoo KH, Douglas E, Azadi P, et al. Truncated structural variants of Iipoarabinomannan in ethambutol drug-resistant strains of Mycobacterium smegmatis. Inhibition of arabinan biosynthesis by ethambutol. J Biol Chem 1996;271:28682-90.
    [121]. Khoo KH, Tang JB, Chatterjee D. Variation in mannose-capped terminal arabinan motifs of lipoarabinomannans from clinical isolates of Mycobacterium tuberculosis and Mycobacterium avium complex. J Biol Chem 2001 ;276:3863-71.
    [122]. Rinder H, Mieskes KT, Tortoli E, et al. Detection of embB codon 306 mutations in ethambutol resistant Mycobacterium tuberculosis directly from sputum samples: a low-cost, rapid approach. Mol Cell Probes 2001; 15:37-42.
    [123]. Hazbon MH, Bobadilla del Valle M, Guerrero MI, et al. Role of embB codon 306 mutations in Mycobacterium tuberculosis revisited: a novel association with broad drug resistance and IS6110 clustering rather than ethambutol resistance. Antimicrob Agents Chemother 2005;49:3794-802.
    [124]. Mokrousov I, Otten T, Vyshnevskiy B, Narvskaya O. Detection of embB306 mutations in ethambutol-susceptible clinical isolates of Mycobacterium tuberculosis from Northwestern Russia: implications for genotypic resistance testing. J Clin Microbiol 2002;40:3810-3.
    [125]. Takiff HE, Salazar L, Guerrero C, et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 1994;38:773-80.
    [126]. van Doom HR, Kuijper EJ, van der Ende A, et al. The susceptibility of Mycobacterium tuberculosis to isoniazid and the Arg→Leu mutation at codon 463 of katG are not associated. J Clin Microbiol 2001;39:1591-4.
    [127]. Nikolayevsky V, Brown T, Balabanova Y, Ruddy M, Fedorin I, Drobniewski F. Detection of mutations associated with isoniazid and rifampin resistance in Mycobacterium tuberculosis isolates from Samara Region, Russian Federation. J Clin Microbiol 2004;42:4498-502.
    [128]. Brown TJ, Herrera-Leon L, Anthony RM, Drobniewski FA. The use of macroarrays for the identification of MDR Mycobacterium tuberculosis. J Microbiol Methods 2006;65:294-300.
    [129]. Parsons LM, Salfinger M, Clobridge A, et al. Phenotypic and molecular characterization of Mycobacterium tuberculosis isolates resistant to both isoniazid and ethambutol. Antimicrob Agents Chemother 2005;49:2218-25.
    [130]. Cheng VC, Yew WW, Yuen KY. Molecular diagnostics in tuberculosis. Eur J Clin Microbiol Infect Dis 2005;24:711-20.
    [131]. Fang Z, Doig C, Rayner A, Kenna DT, Watt B, Forbes KJ. Molecular evidence for heterogeneity of the mulitple-drug-resistant Mycobacterium tuberculosis population in Scotland (1990 to 1997). J Clin Microbiol 1999;37:998-1003.
    [132]. Care FBoH. Report on HIV cases notified in Yugoslavia from 1985 to 30.06.2002. Federal Bureau of Health Care, Belgrade, Serbia. 2002.
    [133]. Braden CR, Templeton GL, Cave MD, et al. Interpretation of restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolates from a state with a large rural population. J Infect Dis 1997;175:1446-52.
    [134]. Burman WJ, Reves RR, Hawkes AP, et al. DNA fingerprinting with two probes decreases clustering of Mycobacterium tuberculosis. Am J Respir Crit Care Med 1997; 155:1140-6.
    [135]. Genewein A, Telenti A, Bernasconi C, et al. Molecular approach to identifying route of transmission of tuberculosis in the community. Lancet 1993;342:841-4.
    [136]. Safi H, Aznar J, Palomares JC. Molecular epidemiology of Mycobacterium tuberculosis strains isolated during a 3-year period (1993 to 1995) in Seville, Spain. J Clin Microbiol 1997;35:2472-6.
    [137]. van Deutekom H, Gerritsen J J, van Soolingen D, van Ameijden EJ, van Embden JD, Coutinho RA. A molecular epidemiological approach to studying the transmission of tuberculosis in Amsterdam. Clin Infect Dis 1997;25:1071-7.
    [138]. Kubin M, Riley LW, Havelkova M, Poltoratskaia N, Kocova A. Molecular epidemiology of tuberculosis in Prague: analysis by restriction fragment length polymorphism. Int J Infect Dis 1998;2:155-8.
    [139]. Gutierrez MC, Vincent V, Aubert D, et al. Molecular fingerprinting of Mycobacterium tuberculosis and risk factors for tuberculosis transmission in Paris, France, and surrounding area. J Clin Microbiol 1998;36:486-92.
    [140]. Diel R, Schneider S, Meywald-Walter K, Ruf CM, Rusch-Gerdes S, Niemann S. Epidemiology of tuberculosis in Hamburg, Germany: long-term population-based analysis applying classical and molecular epidemiological techniques. J Clin Microbiol 2002;40:532-9.
    [141]. Ferrazoli L, Palaci M, Marques LR, et al. Transmission of tuberculosis in an endemic urban setting in Brazil. Int J Tuberc Lung Dis 2000;4:18-25.
    [142]. Murray M, Alland D. Methodological problems in the molecular epidemiology of tuberculosis. Am J Epidemiol 2002; 155:565-71.
    [143]. Glynn JR, Vynnycky E, Fine PE. Influence of sampling on estimates of clustering and recent transmission of Mycobacterium tuberculosis derived from DNA fingerprinting techniques. Am J Epidemiol 1999; 149:366-71.
    [144]. Gutierrez M, Samper S, Jimenez MS, van Embden JD, Marin JF, Martin C. Identification by spoligotyping of a caprine genotype in Mycobacterium bovis strains causing human tuberculosis. J Clin Microbiol 1997;35:3328-30.
    [145]. Yang ZH, de Haas PE, Wachmann CH, van Soolingen D, van Embden JD, Andersen AB. Molecular epidemiology of tuberculosis in Denmark in 1992. J Clin Microbiol 1995;33:2077-81.
    [146]. Prikazsky V, Kubin M, Pikhartova J. Selected results of the tuberculosis control program in the Czech Republic. Cent Eur J Public Health 1999;7:116-21.
    [147]. Lockman S, Sheppard JD, Braden CR, et al. Molecular and conventional epidemiology of Mycobacterium tuberculosis in Botswana: a population-based prospective study of 301 pulmonary tuberculosis patients. J Clin Microbiol 2001 ;39:1042-7.
    [148]. Haas WH, Engelmann G, Amthor B, et al. Transmission dynamics of tuberculosis in a high-incidence country: prospective analysis by PCR DNA fingerprinting. J Clin Microbiol 1999;37:3975-9.
    [149]. Holmes CB, Hausler H, Nunn P. A review of sex differences in the epidemiology of tuberculosis. Int J Tuberc Lung Dis 1998;2:96-104.
    [150]. Beck-Sague C, Dooley SW, Hutton MD, et al. Hospital outbreak of multidrug-resistant Mycobacterium tuberculosis infections. Factors in transmission to staff and HIV-infected patients. Jama 1992;268:1280-6.
    [151]. Frieden TR, Fujiwara PI, Washko RM, Hamburg MA. Tuberculosis in New York City-turning the tide. N Engl J Med 1995;333:229-33.
    [152]. Snider DE, Jr., Kelly GD, Cauthen GM, Thompson NJ, Kilburn JO. Infection and disease among contacts of tuberculosis cases with drug-resistant and drug-susceptible bacilli. Am Rev Respir Dis 1985;132:125-32.
    [153]. Torrea G, Offredo C, Simonet M, Gicquel B, Berche P, Pierre-Audigier C. Evaluation of tuberculosis transmission in a community by 1 year of systematic typing of Mycobacterium tuberculosis clinical isolates. J Clin Microbiol 1996;34:1043-9.
    [154]. Theus S, Eisenach K, Fomukong N, Silver RF, Cave MD. Beijing family Mycobacterium tuberculosis strains differ in their intracellular growth in THP-1 macrophages. Int J Tuberc Lung Dis 2007; 11:1087-93.
    [155]. Fang Z, Doig C, Kenna DT, et al. IS6110-mediated deletions of wild-type chromosomes of Mycobacterium tuberculosis. J Bacteriol 1999;181:1014-20.
    [156]. Beggs ML, Eisenach KD, Cave MD. Mapping of IS6110 insertion sites in two epidemic strains of Mycobacterium tuberculosis. J Clin Microbiol 2000;38:2923-8.
    [157]. Safi H, Barnes PF, Lakey DL, et al. IS6110 functions as a mobile, monocyte-activated promoter in Mycobacterium tuberculosis. Mol Microbiol 2004;52:999-1012.
    [158]. Bifani PJ, Plikaytis BB, Kapur V, et al. Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. Jama 1996;275:452-7.
    [159]. Perumal VK, Gangadharam PR, Heifets LB, Iseman MD. Dynamic aspects of the in vitro chemotherapeutic activity of ansamycin (rifabutine) on mycobacterium intracellulare. Am Rev Respir Dis 1985; 132:1278-80.
    [160]. Sesin GP, Manzi SF, Pacheco R. New trends in the drug therapy of localized and disseminated Mycobacterium avium complex infection. Am J Health Syst Pharm 1996;53:2585-90.
    [161]. Bodmer T, Zurcher G, Imboden P, Telenti A. Mutation position and type of substitution in the beta-subunit of the RNA polymerase influence in-vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother 1995;35:345-8.
    [162]. Canetti G, Sutherland I, Svandova E. Endogenous reactivation and exogenous reinfection: their relative importance with regard to the development of non-primary tuberculosis. Bull Int Union Tuberc 1972;47:116-34.
    [163]. Vynnycky E, Fine PE. The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiol Infect 1997;119:183-201.
    [1].Stylbo,K.,Epidemiology of tuberculosis.Jena:Gustav Fischer Verlag,1984.
    [2].Maguire,H.,et al.,Molecular epidemiology of tuberculosis in London 1995 to 1997demonstrating low rate of active transmission.Thorax,2002.57:p.617-622.
    [3].Edlin,B.R.,et al.,An outbreak of multidrug-resistant tuberculosis among hospitalized patients with the acquired immunodeficiency syndrome.New England Juornal of Medicine,1992.326:p.1514-1521.
    [4].Alland,D.,G.E.Kalkut,and A.S.Moss,Transmission of tuberculosis in New York City.An analysis by DNA fingerprinting and conventional and molecular methods.N Engl J Med,1994.330:p.1703-9.
    [5].Moro,M.L.,et al.,An outbreak of multidrug-resistant tuberculosis involving HIV-infected patients of two hospitals inMilan,Italy.Italian Multidrug-resistant tuberculosis outbreak study group.AIDS,1998.12:p.1095-1102.
    [6].Chaves,F.,et al.,Evidence of exogenous reinfection and mixed infection with more than one strain of Mycobacterium tuberculosis among Spanish HIV-infected inmates.AIDS,1999.13:p.615-620.
    [7].Kenyon,T.A.,et al.,A nosocomial outbreak of multidrug-resistant tuberculosis.Annals of internal Medicine,1997.127:p.32-36.
    [8].Small,P.M.,et al.,Molecular typing of Mycobacterium tuberculosis to confirm cross-contamination in the mycobacterial laboratory and modification of procedures to minimize occurance of false-positive results.Journal of Clinical Microbiology,1993.31:p.1677-1682.
    [9].Bauer,J.,et al.,False positive results from cultures of M.tuberculosis due to laboratory cross-contamination confirmed by restriction fragment length polymorphism.Journal of Clinical Microbiology,1997.35:p.988-991.
    [10].Yang,Z.H.,P.E.De Haas,and D.Van Soolingen,Restriction fragment length polymorphism of M.tuberculosis strains isolated from Greenland during 1992:evidence of tuberculosis transmission between Greenland and Denmark.Journal of Clinical Microbiology,1994.32:p.3018-3025.
    [11].Gillespie,S.H.,et al.,Restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolated from patients with pulmonary tuberculosis in northern Tanzania.Trans R Soc Trop Med Hyg,1995.89(3):p.335-8.
    [12].Hermans,P.W.,et al.,Analysis of the population structure of M.tuberculosis in Ethiopia,Tunisia and the Netherlands:usefulness of DNA typing for global tuberculosis epidemiology.Journal of Infectious disease,1995.171:p.1504-1513.
    [13].Samper,S.,et al.,The molecular epidemiology of tuberculosis in Zaragoza,Spain:a retrospective epidemiology study in 1993.International Journal of Tuberculosis and Lung Disease,1998.2:p.281-287.
    [14].Das,S.,et al.,Application of DNA fingerprinting with IS986 to sequential mycobacterial isolates obtained from pulmonary tuberculosis patients in Hong Kong before,during and alter short-course chemotherapy,tuber lung dis,1993.74(1):p.47-51.
    [15].Small,P.M.,R.W.Shaler,and P.C.Hopewell,Exogenous reinfection with multidrug-resistant Mycobacterium tuberculosis in patients with advanced HIV infection.N.Engl J Med,1993.328(16):p.1137-44.
    [16].Van Rie,A.,R.Warren,and M.Richardson,Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment.New England Juornal of Medicine,1999.341:p.1174-1179.
    [17].Wenger,P.N.,J.Otten,and A.Breeden,Control on nosocomial transmission of multidrug-resistant M.tuberculosis among healthcare workers and HIV-infected patients.The lancet,1995.345:p.235-239.
    [18].Wayne,L.G.,Mycobacterial Speciation.In:Kubica GP,Wayne LG eds.New York:Marcel Dekker.1984:p.25-65.
    [19].Grange.J.M.,The biology of the genus Mycobacterium.Soc Appl Bacteriol SYmp Ser,1996.25:p.1-9s.
    [20].Imaeda,T.,Deoxyribonulceic acid relatedness among selected strains of Mycobacterium tuberculosis,Mycobacterium bovis,Mycobacterium bovis BCG Mycobacterium microti,and Mycobacterium africanum,Int J Syst Bacteriol,1985.35:p.147-50.
    [21].Collins,D.M.and G.W.De Lisle,DNA restriction endonuclease analysis of Mycobacterium bovis and other members of the tuberculosis complex.J Clin Microbiol,1985.21:p.562-64.
    [22].D,V.S.,T.Hoogenboezem,and P.E.de Haas,A novelpathogenic taxon of the Mycobacterium tuberculosis complex,Canetti;characterization of an exceptional isolate from Africa.Int J Syst Bacteriol,1997.47:p.1236-45.
    [23].Goulding,J.N.,et al.,Genome-sequence-based fluorescent amplified-fragment length polymorphism anlaysis of Mycobacterium tuberculosis.J Clin Microbioi,2000.38:p.1121-26.
    [24].van Soolingen D,et al.,Insertion element IS1081-associated restriction fragment length polymorphism in Mycobacterium tuberculosis complex species,a reliable tool for recognizing Mycobacterium bovis BCG.J Clin Microbiol,1992.30(7):p.1772-7.
    [25].D,V.S.,A.G.van der Zanden,and P.E.de Haas,Diagnosis of Mycobacterium microti infections among humans by using novel genetic markers.J Clin Microbiol,1998.36:p.1840-45.
    [26].Runyon,E.H.,Anonymous mycobacteria in pulmonary disease.Med Clin North Am,1959.43:p.273-90.
    [27].Horsburgh,C.R.J.,Anonymous mycobacteria in pulmonary disease.Med Clin North Am,1992.43:p.273-90.
    [28].Horsburgh,C.R.J.,J.R.Schoenfelder,and F.M.Gordin,Geographic and seasonal variation in Mycobacterium avium bacteremia among North American patients with AIDS.Am J Med Sci,1997.313:p.341-45.
    [29].Nightingale,S.D.,L.T.Byrd,and P.M.Sourthem,Incidence of Mycobacterium avium-intracellulare complex bacteremia in human immunodeficiency virus-positive patients.J Infect Dis,1992.165:p.1082-85.
    [30].Havlik-JAJ.,B.Metchock,and S.E.Thompson,A prospective evaluation of Mycobacterium avium complex colonization of the respiratory and gastrointestinal tracts of persons with human immunodeficiency virus infection.J Infect Dis,1993.168:p.1045-48.
    [31].Boddinghaus,B.,et al.,Detection and identification of mycobacteria by amplification of rRNA.J Clin Microbiol,1990.28:p.1751-59.
    [32].Bottger,E.C.,Rapid determination of bacterial ribosomal RNA sequences by direct sequencing ofenzymatically amplified DNA.FEMS Microbiol Lett,1989.53:p.171-76.
    [33].Edwards,U.,et al.,Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium.Int J Syst Bacteriol,1990.40:p.323-30.
    [34].Cole,S.T.,R.Brosch,and J.Parkhill,Decphering the biology of Mycobacterium tuberculosis from the complete genome sequence.Nature,1998.393:p.537-44.
    [35].Sreevatsan,S.,X.Pan,and K.E.Stockbauer,Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evoluntionarily recent global dissemination.Proc Natl Acad Sci USA,1997.94:p.9869-74.
    [36].Van Soolingen,D.,et al.,Occurance and stability of insertion sequences in Mycobacterium tuberculosis complex strains,evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis.J Clin Microbiol,1991.29(11):p.2578-86.
    [37].Stryer,L.,Biochemistry,4th edn.New York,NY.'W.H.Freeman.1995:p.829-31.
    [38].Kanduma,E.,T.D.MchHugh,and S.H.Gillespie,Molecular methods for Mycobacterium tuberculosis strain typing:a user guide.Journal of Applied Micrbiology,2003.94:p.781-791.
    [39].Hermans,P.W.,D.van Soolingen,and E.M.Bik,Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains.Infect Immun,1991.59:p.2695-705.
    [40].Groenen,P.M.,A.E.Bunschoten,and D.van Soolingen,Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis complex strains.Infect Immun,1993.59:p.2695-705.
    [41].Van Embden,J.D.,v.Gorkom.T.,and K.Kremer,Genetic variation and evolutionary origin of the direct repeat locus of Mycobacterium tuberculosis complex bacteria.J Bacteriol,2000.182:p.1057-65.
    [42].Legrand,E.,I.Filliol,and C.Sola,Use of Spoligotyping to Study the Evolution of the Direct Repeat Locus by IS6110 Transposition in Mycobacterium tuberculosis.J Clin Microbiol,2001.39:p.1595-9.
    [43].Fang,Z.and K.J.Forges,A Mycobacterium tuberculosis IS6110 preferential locus(ipl) for insertion into the genome.J Ciin Microbiol,1997.39:p.1595-9.
    [44].Sampson,S.L.,R.Warren,and M.Richardson,Disruption of coding regions by IS6110insertion in Mycobacterium tuberculosis.Tuber lung dis,1999.79:p.349-59.
    [45].Warren,R.M.,S.L.Sampson,and M.Richardson,Mapping of IS6110 flanking regions in clinical isolates of Mycobacterium tuberculosis demonstrates genome plasticity.Mol Microbioi,2000.37:p.1405-16.
    [46].Van Embden,J.,D.Van Soolingen,and J.Dale,Genetic markers for the epidemiology of tuberculosis.Res Microbiol,1990.143(4):p.385-91.
    [47].Moss,A.R.,et al.,A city-wide outbreak of a mulitple-drug-resistant strain of Mycobacterium tuberculosis in New York.Int J Tuberc Lung Dis,1997.1(2):p.115-21.
    [48].Small,P.M.,P.C.Hopewell,and S.P.Singh,The epidemiology of tuberculosis in San Francisco.A population-based study using conventional and molecular methods see comments.N Engl J Med,1997.330(24):p.1703-9.
    [49].Yuen,Y.K.,et al.,Characterization of Mycobacterium tuberculosis strains from Vietnamese patients by Southern blot hybridization.J Clin Microbiol,1993.31(6):p.1615-8.
    [50].Fomukong,N.G.,et al.,Use of gene probes based on the insertion sequence IS986 to differentiate between BCG vaccine strains.J Appl Bacteriol,1992.72(2):p.126-33.
    [51].Van Soolingen,D.,et al.,Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of M.tuberculosis.Journal of Clinical Microbiology,1993.31:p.1987-1995.
    [52].Goguet de la Salmoniere,Y.O.,H.M.Li,and G.Torrea,Evaluation of spoligotyping in a study of the transmission of Mycobacterium tuberculosis.J Clin Microbiol,1997.35:p.2210-4.
    [53].Kamerbeek,J.,L.Schouls,and A.Kolk,Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology J Clin Microbiol,1997.35:p.907-14.
    [54].Chan,M.Y.,M.W.Borgdorff,and C.W.Yip,Seventy percent of the Mycobacterium tuberculosis for diagnosis andepidemiology.J Clin Microbiol,2001.35:p.907-14.
    [55].Gillespie,S.H.,A.Dickens,and T.D.McHuge,False molecular clusters due to nonrandom association of IS6110 with Mycobacterium tuberculosis.J Clin Microbiol,2000.38:p.2081-6.
    [56].Supply,P.,S.Lesjean,and E.Savine,Automated High-Throughout Genolypingfor study of Global Epidemiology of Mycobacterium tuberculosis Based on Mycobacterial Interspersed Repetitive Units.J Clin Microbiol,2001.39:p.3563-71.
    [57].Yuen,K.Y.,et al.,IS6110 based amplityping assay and RFLP fingerprinting of clinical isolates of Mycobacterium tuberculosis.J Clin Pathol,1995.48(10):p.924-8.
    [58].Strassle,A.,et al.,Molecular epidemiology of Mycobacterium tuberculosis strains isolated from patients in a human imunodeficiency virus cohort in Switzerland J Clin Microbiol,1997.35(2):p.374-8.
    [59].Otal,I.,et al.,Restriction fragment length polymorphism analysis using IS6110 as an epidemiological marker in tuberculosis.J Clin Microbiol,1991.29(6):p.1252-4.
    [60].Tanaka,M.M.and N.A.Rosenberg,Optimal estimation of transposition rates of insertion seqencesfor molecular epidemiology.Stat Med,2001.20:p.2409-20.
    [61].De Boer,A.S.,M.W.Borgdorff,and P.E.De Haas,Analysis of rate of change of IS6110 RFLP patterns of Mycobacterium tuberculosis based on serial patients isolates.J Infect Dis,1999.180:p.1238-44.
    [62].Mazurek,G.H.,et al.,Chromosomal DNA fingerprint patterns produced with IS6110 as strain-specific markers for epidemiological study of tuberculosis.J Clin Microbiol,1991.29(9):p.2030-3.
    [63].Yeh,R.W.,A.Ponce de Leon,and C.B.Agasino,Stability of Mycobacterium tuberculosis DNAgenotypes.J Infect Dis,1998.177:p.1107-11.
    [64].Alito,A.,et al.,The IS6110 restriction fragment length polymorphism in particular multidrug-resistant Mycobacterium tuberculosis strains may evolve too fast for reliable use in outbreak investigation.J Clin Microbiol,1999.37(3):p.788-91.
    [65].Collins,D.M.,et al.,INvestigation of Mycobacterium paratuberculosis in sheep by facal culturae.DNA characterization and the polymerase chain reaction.Vet Rec,1993.133(24):p.599-600.
    [66].Yang,Z.H.,et al.,Restriction fragment length polymorphism Mycobacterium tuberculosis strains isolated from Greenland during 1992,evidence of tuberculosis transmission between Greenland and Denmark.J Clin Microbioi,1994.32(12):p.3018-25.
    [67].Beggs,M.L.,M.D.Cave,and C.Marlowe,Characterization of Mycobacterium tuberculosis complex direct repeat spequence for use in cycling probe reaction.J Clin Microbiol,1996.34:p.2985-9.
    [68].Fronthingham,R.and W.A.Meeker-O'Connell,Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats.Microbiology.144:p.1189-96.
    [69].Hermans,P.W.,D.van Soolingern,and J.D.Van Embden,Characterization of a major polymorphic tandem repeat in Mycobacterium tuberculosis and its potential use in the epidemiology of Mycobacterium kansasii and Mycobacterium gordonae.J Bacteriol,1992.174:p.4157-65.
    [70].Shinnick,T.M.,The 65-kilodalton antigen of Mycobacterium tuberculosis.J Bacteriol,1987.169:p.1080-8.
    [71].Goyal,M.,D.Yong,and Y.Zhang,PCR amplification of variable sequence upstream of katG gene to subdivide strains of Mycobacterium tuberculosis complex.J Clin Microbiol,1994.32:p.3070-1.
    [72].Fronthingham,R.,Discrimination of M.tuberculosis strains by PCR.Journal of Clinical Microbiology,1995.33:p.2801-2802.
    [73].Tanaka,M.M.,P.M.Small,and H.Salomon,The dynamics of repeated elements,applications to the epidemiology of tuberculosis.97,2000(3532-7).
    [74].Supply,P.,S.Lesjean,and E.Savine,Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome.Mol Microbiol,2000.36:p.762-71.
    [75].Nowak,R.,Mining treasures from 'junk DNA'.Science,1994.263:p.608-10.
    [76].Nadir,E.,H.Margalit,and T.Gallily,Microsatellite spreading in the human genome:evolutionary mechnisms and structural implications.Proc Natl Acad Sci USA,1996.93:p.6470-5.
    [77].Supply,P.,S.Mazars,and V.Lesjean,Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome.Mol Microbiol,2000.36:p.762-771.
    [78].Jaccard,P.,Bull.Soc.VaudoiseSci.Nat.,1908.44:p.223-270.
    [79].Torrea,G.,C.Offredo,and M.Simonet,Evaluation of tuberculosis transmission in a community by 1 year of systematic typing of Mycobacterium tuberculosis clinical isolates.J.Clin,Microbiol,1996.34:p.1043-1049.
    [80].Sneath,P.H.A.and R.R.Sokal,Numerical taxonomy.Nature.193:p.855-60.
    [81].Abed,Y.,C.Bolted,and P.Mica,Identification and strain differentiation of Mycobacterium species on the basis of DNA 16S-23S spacer region polymorphism.Research Microbiology,1995.146:p.405-413.
    [82].Glennon,M.and T.Smith,Can random amplified polymorphic DNA analysis of the 16S-23S spacer region of M.tuberculosis differentiate between isolates? Journal of Clinical Microbiology,1995.33:p.3359-3360.
    [83].Haas,W.H.,W.R.Butler,and C.L.Woodley,Mixed-linker polymerase chain reaction:a new method for rapid fingerprinting of isolates of the Mycobacterium tuberculosis complex.J Clin Microbiol,1993.31:p.1293-8.
    [84].Glynn,J.R.,J.Bauer,and A.S.de Boer,Interpreting DNA fingerprint clusters of Mycobacterium tuberculosis.European Concerted Action on Molecular Epidemiology and Control of Tuberculosis.Int J Tuberc Lung Dis,1999.3:p.1055-60.
    [85].Murray,M.B.,Sampling bias in the molecular epidemiology of tuberculosis.Emerg infect dis(in press).
    [86].Small,P.M.,et ai.,The epidemiology of tuberculosis in San Francisco;a population-based study using conventional and molecular methods.N Engl J Med,1994.330:p.1703-9.
    [87].Barnes,P.E.,Z.Yang,and S.Preston-Martin,Patterns of tuberculosis transmission in Central Los Angles.JAMA,1997.278:p.1159-63.
    [88].Weis,S.E.,J.M.Pogoda,and Z.Yang,Transmission dynamics of tuberculosis in Tarrant County,Texas.Am J Respir Crit Care Med,2002.166:p.36-42.
    [89].Bishai,W.R.,N.M.H.Graham,and S.Harrington,Molecular and geographic patterns of tuberculosis transmission after 15 years of directly observed therapy.JAMA,1998.280:p.1679-84.
    [90].Kline,S.E.,L.L.Hedrnark,and S.F.Davies,Outbreak of tuberculosis among regular patrons of a neighbourhood bar N Engl J Med,1995.333(4):p.222-7.
    [91].Golub,J.E.,W.A.Cronin,and O.O.Obasanjo,Transmission of Mycobacterium tuberculosis through casual contact with an infectious case.Arch Intern Med,2001.161:p.2254-8.
    [92].Friedman,C.R.,M.Y.Stoeckle,and B.N.Kreiswirth,Transmission of mulit-drug resistant tuberculosis in a large urban setting.Am J Respir Crit Care Med,1995.152(1):p.355-9.
    [93].Barnes,P.E.,Reducing ongoing transmission of tuberculosis.JAMA,1998.338:p.1783.
    [94].John,J.F.,A.S.Craig,and S.E.Valway,Transmission of tuberculosis in jail.Ann Intern Med,1999.131:p.557-63.
    [95].Godlrey-Faussett,P.,W.Githui,and B.Batchelor,Recurrence of HIV-related tuberculosis in an endemic area may be due to relapse or reinfection.Tuber lung dis,1994.75(3):p.199-202.
    [96].Sahadevan,R.,S.Narayanan,and C.N.Paramasivan,Restriction fragment length polymorphism typing of clinical isolates of Mycobacterium tuberculosis from patients with pulmonary tuberculosis in Madras,India,by use of direct-repeat probe.J Clin Microbiol,1995.34(4):p.1017-9.
    [97].Nakamura,Y.,et al.,A small outbreak of pulmonary tuberculosis in non-close contact patrons of a bar.Intern Med,2004.43(3):p.263-7.
    [98].Wurtz,R.,P.Demarais,and W.Trainor,Specimen contamination in mycobacteriology laboratory detected by pseudo-outbreak of multidrug-resistant tuberculosis analysis by routine epidemiology and confirmed by molecular technique.J Clin Microbiol,1996.34(4):p.1017-9.
    [99].McSwiggan,D.A.and C.H.Collins,The isolation of M.kansasii and M.Xenopi from water systems.Tubercle,1974.55:p.291-97.
    [100].Wright,E.P.,C.H.Collins,and M.D.Yates,Mycobacterium xenopi and Mycobacterium kansasii in a hospitalwatersupply.J Hosp Infect,1985.6:p.175-78.
    [101].Steadham,J.E.,High-catalase strains of Mycobacterium kansasii isolated from water in Texas.J Clin Microbiol,1980.11:p.496-98.
    [102].Picardeau,M.,et al.,Genotypic characterization of five subspecies of Mycobacterium kansasii.J Clin Microbiol,1997.35:p.25-32.
    [103].Abed,Y.,C.Bollet,and B.Dwyer,Demonstration of Mycobacterium kansasii species heterogeneity by the amplification of the 16s-23s spacer region.J Med Microbiol,1995.43:p.156-58.
    [104].linuma,Y.,S.lchiyama,and Y.Hasegawa,Large-restriction-fragment analysis of Mycobacterium kansasii genomic chain reaction and restriction enzyme analysis.J Clin Microbiol,1997.35:p.596-99.
    [105].Telenti,A.,F.Marchesi,and M.Balz,Rapid identification ofmycobacteria to the species level by polymerase chain reaction and restrication enzyme analysis.J Clin Microbiol,1993.31:p.175-78.
    [106].Collins,D.M.and D.M.Stephens,Identification of an insertion sequence,IS1081,in Mycobacterium bovis.FEMS Microbiol Lett,1991.67:p.11-15.
    [107].Picardeau,M.,et ai.,Mycobacterium xenopi IS1395;a novel insertion sequence expanding the IS256family.Microbiology,1996.142:p.2453-61.
    [108].Behr,M.A.,et al.,Predictive value of contact investigation for identifying recent transmission of Mycobacterium tuberculosis.Am J Respir Crit Care Med,1998.158(2):p.465-9.
    [109].Behr,M.A.,S.A.Warren,and H.Salomon,Transmission of mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli.Lancet,1999.6353(9151):p.444-9.
    [110].Mckenna,M.T.,E.McCray,and 1.Onorato,The epidemiology of tuberculosis among foreign-born persons in the United states,1986-1993.N.Engl J Med,1995.332(16):p.1071-6.
    [111].Jasmer,R.M.,A.Ponce de Leon,and P.C.Hopewell,Tuberculosis in Mexican-born persons in San Francisco,reactivation,acquired infection and transmission.Int J Tuberc Lung Dis,1997.1(6):p.536-41.
    [112].Borgdorff,M.W.,et al.,Analysis of tuberculosis transmission between nationalities in the Netherlands in the period 1993-1995 using DNA fingerprinting.Am J Epidemiol,1998.147(2):p.187-95.
    [113].Guerrero,A.,J.Cobo,and J.Fortun,Nosocomial transmission of Mycobacterium bovis resistant to Ⅱ drugs in people with advanced HIV-1 infection.Lancet,1997.350:p.1738-42.
    [114].Long,R.,E.Nober,and S.Chomyc,Transcontinental spread of multidrug-resistant Mycobacterium bovis.Am J Respir Crit Care Med,1999.159:p.2014-17.
    [115].Abe,C.,[The mode of infection of tuberculosis--analysis using molecular epidemiologic methods].Kekkaku,1995.70(11):p.645-50.
    [116].van Rie,A.,et al.,Transmission of a multidrug-resistant Mycobacterium tuberculosis strain resembling "strain W" among noninstitutionalized,human immunodeficiency virus-seronegative patients.J Infect Dis,1999.180(5):p.1608-15.
    [117].Crawford,J.T.,Epidemiology of tuberculosis:the impact of HIV and multidrug-resistant strains,Immunobiology,1994.191(4-5):p.337-43.
    [118].Toungoussova,O.S.,et al.,Spread of drug-resistant Mycobacterium tuberculosis strains of the Beijing genotype in the Archangel Oblast,Russia.J Clin Microbiol,2002.40(6):p.1930-7.
    [119].Samper,S.,et al.,Systematic molecular characterization of multidrug-resistant Mycobacterium tuberculosis complex isolates from Spain.J Clin Microbiol,2005.43(3):p.1220-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700