用户名: 密码: 验证码:
金属/介质亚波长结构的超分辨特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当微细加工技术应需而从微米尺寸迈向纳米尺寸时,在纳米尺度上,材料和结构展现出了新颖的宏观领域无法比拟的特性,打破了许多研究领域的传统限制,迅速激起人们对在纳米尺度控制物质的光电结构及其与光场相互作用的研究热潮。光学与纳米技术的碰撞一时之间将纳光子学推至研究的前沿,而表面等离子体光子学(Plasmonics)也从纳光子学研究领域脱颖而出。由于光学衍射极限的存在,传统光刻分辨率一般限制在半个波长。主要因为传统透镜只能捕获来自光源或物体的传播波,或者说研究限于远场,然而携带有物体更细节信息的表面消逝波(evanescent wave)却无法被获得。而自从由负折射率的超材料构成的超透镜(Superlens)被提出后,基于表面等离子体的亚波长结构可同时捕获传播波和表面消逝波,实现了近场的信息提取,获得了超衍射极限的成像。由于表面等离子激元是一种近场表面波且具有超衍射极限的光学特性,因而基于表面等离子体的纳米光刻技术理论上分辨率可以无限小,有望实现光子学、电子学元件在纳米尺度上的完美结合,集成于同一芯片上,从而使其成为下一代纳米制造技术的强有力的备选者之一。然而目前基于表面等离子体激元的纳米光刻技术尚存在纳米光斑对称性差、工作距离难以控制、加工效率低下等问题,难以达到芯片生产所要求的技术和装备标准。
     为了克服或解决以上技术难点,本研究对表面等离子体激元超聚焦亚波长结构进行了设计,主要做的研究内容有:
     首先,设计出一种基于银膜的同心圆环结构的表面等离子体透镜,利用FDTD严格数值计算方法,分析该透镜各个参数对聚焦特性的影响。
     其次,为克服线性偏振光入射情况下聚焦光斑椭圆化问题,提出采用径向偏振入射光,获得圆对称的聚焦光斑,并且发现了近场Talbot效应。而且该效应只发生在入射波长小于透镜周期一半时。
     再者,为了考察不同偏振光对聚焦特性的影响,又进一步模拟了相似的铝膜结构在线性偏振光照明下的聚焦特性,同样发现了Talbot效应。利用聚焦离子束技术(FIB)在铝膜上制作了表面等离子体透镜,并借助近场扫描显微镜(NSOM)测试得到了其近场光场分布,进而从理论和实验两方面验证了线性偏振光下的表面等离子体纳米透镜的Talbot效应。
     随后,为进一步提高光刻分辨率,对浸入式表面等离子纳米透镜的聚焦特性进行了研究,对浸入介质为H2O、SiO2和Al2O3等情况进行了具体分析。还对铝、金纳米透镜聚焦效果与入射波长的相关性进行了深入的分析研究,获得了突破衍射极限的圆形纳米焦斑。焦斑尺寸仅为入射波长的四分之一,即较传统分辨率限制来说,理论上分辨率提高了一倍。研究结果不仅给后续研究提供了参考,还对纳米光刻、超分辨成像及数据存储等潜在应用领域具有一定的影响。
The ever-increasing demand for faster information transport and processingcapabilities has driven enormous progress in the microfabrication technology. Wehave witnessed a contiuous progression towards smaller, faster, and more efficientelectronic devices. The scaling of these devices has also brought about a myriad ofchallenges associated with electronic interconnection. On the other hand, a candidatetechnology has recently emerged and has been termed plasmoncis‘. As we know,due to the diffraction limit, the resolving power of traditional lithography waslimited at half of wavelength. However, for plasmonic nanolithography based onmetal-dielectric subwavelength structure, surface plasmon polaritons (SPPs) as aspecial type of light wave would be excitated and propagate along themetal-dielectric interface. Even the novel optical properties show that plasmonicnanostructure could break the diffraction limit. It means that the resolving power ofplasmonic nanolithography can be infinitesimal theoretically. Thereby mergingphotonics and electronic at nanoscale dimensions can be attained by integratingplasmonic, electric, and conventional photonic devices on the same chip, whichshould facilitate manufacture. Unfortunately, plasmonic nanolithography technologypresents some challenges, such as focal spot being not perfectly symmetrical, spacebetween the direct write array and wafer stage hardly being controled at nanometeraccuracy, and low efficiency in the production process.
     For these problems, we are interesting to propose a metallic subwavelength structure, which was called plasmonic nanolens. In the beginning, the influence ofstructural parameters on focusing properties was analysed by using finite differencetime domain (FDTD).
     Generally, an elliptical focal spot is obtained under linear ploarized light, toovercome this problem, the radially polarized light was used in our FDTD numericalsimulation for obtaining circular focal spot, and the Talbot effect of plasmonicnanolens was discovered. Then it is found that the Talbot effect can be observed onconditon that the incident wavelength is smaller than half of the period of thenanolens.
     Subsequently, an Al nanolens was fabricated by focused ion beam (FIB)technology, and by near-field scanning optical microscopy (NSOM) the plasmonicTalbot effect was proved iulluminating by linearly polarized light.
     Finally, to improve the resolving power, we considered an immersion plasmonicstructure. The focusing properties of nanolens being immersed in H2O, SiO2, andAl2O3were studied. Moreover, the influence of metal material and incidentwavelength on super focusing properties was researched. And a circular focal spotwith diameter of a quarter of incident wavelength was obtained, which break throughdiffraction limit.The super resolution properties of plasmonic nanolens could beexpected to apply in various fields including nanolithgraphy, near field microscopy,sensing, and data storage.
引文
[1] Wood R W. XLII. On a remarkable case of uneven distribution of light in adiffraction grating spectrum[J]. The London, Edinburgh, and Dublin PhilosophicalMagazine and Journal of Science,1902,4(21):396-402.
    [2] Garnett J C M. Colours in metal glasses and in metallic films[J]. PhilosophicalTransactions of the Royal Society of London. Series A, Containing Papers of aMathematical or Physical Character,1904:385-420.
    [3] Mie G. Contributions to the optics of turbid media, particularly of colloidal metalsolutions[J]. Contributions to the optics of turbid media, particularly of colloidal metalsolutions Transl. into ENGLISH from Ann. Phys.(Leipzig), v.25, no.3,1908p377-445,1976,1:377-445.
    [4] Pines D. Collective energy losses in solids[J]. Reviews of modern physics,1956,28(3):184-198.
    [5] Fano U. Atomic theory of electromagnetic interactions in dense materials[J].Physical Review,1956,103(5):1202-1218.
    [6] Ritchie R H. Plasma losses by fast electrons in thin films[J]. Physical Review,1957,106(5):874-881.
    [7] Ritchie R H, Arakawa E T, Cowan J J, et al. Surface-plasmon resonance effect ingrating diffraction[J]. Physical Review Letters,1968,21(22):1530-1533.
    [8] Otto A. Excitation of nonradiative surface plasma waves in silver by the methodof frustrated total reflection[J]. Zeitschrift für Physik,1968,216(4):398-410.
    [9] Kretschmann E, Raether H. Radiative decay of non radiative surface plasmonsexcited by light(Surface plasma waves excitation by light and decay into photonsapplied to nonradiative modes)[J]. Zeitschrift Fuer Naturforschung, Teil A,1968,23:2135.
    [10]Kreibig U, Zacharias P. Surface plasma resonances in small spherical silver andgold particles[J]. Zeitschrift f r Physik,1970,231(2):128-143.
    [11]Cunningham S L, Maradudin A A, Wallis R F. Effect of a charge layer on thesurface-plasmon-polariton dispersion curve[J]. Physical Review B,1974,10(8):3342-3355.
    [12]Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbedat a silver electrode[J]. Chemical Physics Letters,1974,26(2):163-166.
    [13]Brongersma M L, Hartman J W, Atwater H A. Electromagnetic energy transferand switching in nanoparticle chain arrays below the diffraction limit[J]. PhysicalReview B,2000,62(24): R16356-16359.
    [14]Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmissionthrough sub-wavelength hole arrays[J]. Nature,1998,391(6668):667-669.
    [15]Pendry J B. Negative refraction makes a perfect lens[J]. Physical review letters,2000,85(18):3966-3969.
    [16]Zhang X, Liu Z. Superlenses to overcome the diffraction limit[J]. Naturematerials,2008,7(6):435-441.
    [17]Kawata S, Inouye Y, Verma P. Plasmonics for near-field nano-imaging andsuperlensing[J]. nature photonics,2009,3(7):388-394.
    [18]Vinson, V, Chin, G. Introduction to special issue Lights, Camera, Action.Science,2007,316(5828):1143.
    [19]Ni X, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonicnanoantennas[J]. Science,2012,335(6067):427-427.
    [20]Batson P E. Plasmonic modes revealed[J]. science,2012,335(6064):47-48.
    [21].[M].,2007.224-227.
    [22]Smith H I, Menon R, Patel A, et al. Zone-plate-array lithography: a low-costcomplement or competitor to scanning-electron-beam lithography[J]. Microelectronicengineering,2006,83(4):956-961.
    [23]Srituravanich W, Pan L, Wang Y, et al. Flying plasmonic lens in the near field forhigh-speed nanolithography[J]. Nature Nanotechnology,2008,3(12):733-737.
    [24]Wang Y, Srituravanich W, Sun C, et al. Plasmonic nearfield scanning probe withhigh transmission[J]. Nano letters,2008,8(9):3041-3045.
    [25]Murphy-DuBay N, Wang L, Kinzel E C, et al. Nanopatterning using NSOMprobes integrated with high transmission nanoscale bowtie aperture[J]. Optics express,2008,16(4):2584-2589.
    [26]Uppuluri S, Kinzel E C, Li Y, et al. Parallel optical nanolithography usingnanoscale bowtie aperture array[J]. Optics express,2010,18(7):7369-7375.
    [27]Kim Y, Kim S, Jung H, et al. Plasmonic nano lithography with a high scan speedcontact probe[J]. Optics express,2009,17(22):19476-19485.
    [28]Pan L, Park Y S, Xiong Y, et al. Flying plasmonic lens at near field for high speednanolithography[C]//SPIE Advanced Lithography. International Society for Opticsand Photonics,2010:763713-763713-6.
    [29]Pan L, Park Y, Xiong Y, et al. Maskless plasmonic lithography at22nmresolution[J]. Scientific reports,2011,1(175).
    [30]Wang L, Uppuluri S M, Jin E X, et al. Nanolithography using high transmissionnanoscale bowtie apertures[J]. Nano letters,2006,6(3):361-364.
    [31]Liu Z W, Wei Q H, Zhang X. Surface plasmon interference nanolithography[J].Nano Letters,2005,5(5):957-961.
    [32]Srituravanich W, Fang N, Sun C, et al. Plasmonic nanolithography[J]. Nanoletters,2004,4(6):1085-1088.
    [33]Jak i Z, Maksimovi M, Vasiljevi-Radovi D, et al. Subwavelength HoleArrays with Nanoapertures Fabricated by Scanning Probe Nanolithography[J].Science of Sintering,2006,38(2).
    [34]Shi S, Zhang Z, Du J, et al. Surface-plasmon-polaritons-assisted nanolithographywith dual-wavelength illumination for high exposure depth[J]. Optics letters,2012,37(2):247-249.
    [35]Xiong W, Du J, Fang L, et al.193nm interference nanolithography based onSPP[J]. Microelectronic Engineering,2008,85(5):754-757.
    [36]Luo X, Ishihara T. Surface plasmon resonant interference nanolithographytechnique[J]. Applied Physics Letters,2004,84(23):4780-4782.
    [37]Luo X, Ishihara T. Subwavelength photolithography based on surface-plasmonpolariton resonance[J]. Optics express,2004,12(14):3055-3065.
    [38]Guo X, Du J, Guo Y, et al. Large-area surface-plasmon polariton interferencelithography[J]. Optics letters,2006,31(17):2613-2615.
    [39]Xu T, Zhao Y, Ma J, et al. Sub-diffraction-limited interference photolithographywith metamaterials[J]. Optics express,2008,16(18):13579-13584.
    [40]Liu C, Guo X, Gao F, et al. Imaging simulation of maskless lithography using aDMD[C]//Photonics Asia2004. International Society for Optics and Photonics,2005:307-314.
    [41]Wang L, Uppuluri S M, Jin E X, et al. Nanolithography using high transmissionnanoscale bowtie apertures[J]. Nano letters,2006,6(3):361-364.
    [42]Baida F I, Van Labeke D. Three-dimensional structures for enhanced transmissionthrough a metallic film: annular aperture arrays[J]. Physical Review B,2003,67(15):155314.
    [43]Baida F I, Poujet Y, Salvi J, et al. Extraordinary transmission beyond the cut-offthrough sub-λ annular aperture arrays[J]. Optics Communications,2009,282(7):1463-1466.
    [44]Ye Y H, Zhang J Y. Enhanced light transmission through cascaded metal filmsperforated with periodic hole arrays[J]. Optics letters,2005,30(12):1521-1523.
    [45]Haftel M I, Schlockermann C, Blumberg G. Enhanced transmission with coaxialnanoapertures: Role of cylindrical surface plasmons[J]. Physical Review B,2006,74(23):235405.
    [46]Ruan Z, Qiu M. Enhanced transmission through periodic arrays of subwavelengthholes: the role of localized waveguide resonances[J]. Physical review letters,2006,96(23):233901.
    [47]Zhang Z, Du J, Guo X, et al. High-efficiency transmission of nanoscaleinformation by surface plasmon polaritons from near field to far field[J]. Journal ofApplied Physics,2007,102(7):074301.
    [48]Bonod N, Enoch S, Li L, et al. Resonant optical transmission through thinmetallic films with and without holes[J]. Optics express,2003,11(5):482-490.
    [49]Li D, Gordon R. Electromagnetic transmission resonances for a single annularaperture in a metal plate[J]. Physical Review A,2010,82(4):041801.
    [50]Kofke M J, Waldeck D H, Fakhraai Z, et al. The effect of periodicity on theextraordinary optical transmission of annular aperture arrays[J]. Applied PhysicsLetters,2009,94(2):023104.
    [51]Steele J M, Liu Z, Wang Y, et al. Resonant and non-resonant generation andfocusing of surface plasmons with circular gratings[J]. Optics express,2006,14(12):5664-5670.
    [52]García-Vidal F J, Martín-Moreno L, Lezec H J, et al. Focusing light with a singlesubwavelength aperture flanked by surface corrugations[J]. Applied physics letters,2003,83(22):4500-4502.
    [53]García-Vidal F J, Martín-Moreno L. Transmission and focusing of light inone-dimensional periodically nanostructured metals[J]. Physical Review B,2002,66(15):155412.
    [54]Kim H C, Ko H, Cheng M. High efficient optical focusing of a zone platecomposed of metal/dielectric multilayer[J]. Optics express,2009,17(5):3078-3083.
    [55]Huang F M, Chen Y, de Abajo F, et al. Focusing of light by a nano-hole array[J].arXiv preprint physics/0611056,2006.
    [56]Li J H, Cheng Y W, Chue Y C, et al. The influence of propagating and evanescentwaves on the focusing properties of zone plate structures[J]. Optics express,2009,17(21):18462-18468.
    [57]Feng L, Tetz K A, Slutsky B, et al. Fourier plasmonics: Diffractive focusing ofin-plane surface plasmon polariton waves[J]. Applied Physics Letters,2007,91(8):081101.
    [58]Wang C, Zhao Y, Gan D, et al. Subwavelength imaging with anisotropic structurecomprising alternately layered metal and dielectric films[J]. Optics express,2008,16(6):4217-4227.
    [59]Casse B D F, Lu W T, Huang Y J, et al. Super-resolution imaging using athree-dimensional metamaterials nanolens[J]. Applied Physics Letters,2010,96(2):023114.
    [60]Kawata S, Ono A, Verma P. Subwavelength colour imaging with a metallicnanolens[J]. Nature Photonics,2008,2(7):438-442.
    [61]Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J].Physical review letters,2003,91(23):233901.
    [62]Baida F I, Belkhir A. Superfocusing and light confinement by surface plasmonexcitation through radially polarized beam[J]. Plasmonics,2009,4(1):51-59.
    [63]Yanai A, Levy U. Plasmonic focusing with a coaxial structure illuminated byradially polarized light[J]. Optics express,2009,17(2):924-932.
    [64]Chen W, Abeysinghe D C, Nelson R L, et al. Plasmonic lens made of multipleconcentric metallic rings under radially polarized illumination[J]. Nano letters,2009,9(12):4320-4325.
    [65]Chang C K, Lin D Z, Yeh C S, et al. Experimental analysis of surface plasmonbehavior in metallic circular slits[J]. Applied physics letters,2007,90(6):061113.
    [66]Wang J, Zhou W, Asundi A K. Effect of polarization on symmetry of focal spot ofa plasmonic lens[J]. Optics express,2009,17(10):8137-8143.
    [67]Wróbel P, Pniewski J, Antosiewicz T J, et al. Focusing radially polarized light bya concentrically corrugated silver film without a hole[J]. Physical review letters,2009,102(18):183902.
    [68]Fu Y, Zhou W, Lim L E N, et al. Plasmonic microzone plate: Superfocusing atvisible regime[J]. Applied Physics Letters,2007,91(6):061124.
    [69]Liu Y, Fu Y, Zhou X. Polarization dependent of plasmonic lenses with variantperiods on superfocusing[J]. Plasmonics,2010,5(2):117-123.
    [70]Fu Y, Zhou W, Lim L E N. Near-field behavior of zone-plate-like plasmonicnanostructures[J]. JOSA A,2008,25(1):238-249.
    [71]Fu Y, Zhou X. Plasmonic lenses: a review[J]. Plasmonics,2010,5(3):287-310.
    [72]Fu Y, Zhou X, Zhao W. Unique Beaming Properties of Plasmonic ZonePlate-Like Subwavelength Metallic Structures[J]. Journal of Computational andTheoretical Nanoscience,2009,6(3):617-624.
    [73]Fu Y, Liu Y, Zhou X, et al. Experimental investigation of superfocusing ofplasmonic lens with chirped circular nanoslits[J]. Optics express,2010,18(4):3438-3443.
    [74]Fu Y, Zhou W, Lim L E N. Propagation properties of plasmonic micro-zone plateswith and without fractals[J]. Applied Physics B,2008,90(3-4):421-425.
    [75]Shi H, Wang C, Du C, et al. Beam manipulating by metallic nano-slits withvariant widths[J]. Optics express,2005,13(18):6815-6820.
    [76]Gao H, Shi H, Wang C, et al. Surface plasmon polariton propagation andcombination in Y-shaped metallic channels[J]. Optics express,2005,13(26):10795-10800.
    [77]Shi H, Du C, Luo X. Focal length modulation based on a metallic slit surroundedwith grooves in curved depths[J]. Applied Physics Letters,2007,91(9):093111.
    [78]Hu C, Zhao Z, Chen X, et al. Realizing near-perfect absorption at visiblefrequencies[J]. Optics express,2009,17(13):11039-11044.
    [79]Xu T, Zhao Y, Gan D, et al. Directional excitation of surface plasmons withsubwavelength slits[J]. Applied Physics Letters,2008,92(10):101501.
    [80]Xu T, Wu Y K, Luo X, et al. Plasmonic nanoresonators for high-resolution colourfiltering and spectral imaging[J]. Nature communications,2010,1:59.
    [81]Wang C, Du C, Lv Y, et al. Surface electromagnetic wave excitation anddiffraction by subwavelength slit with periodically patterned metallic grooves[J].Optics express,2006,14(12):5671-5681.
    [82]Wang C, Du C, Luo X. Refining the model of light diffraction from asubwavelength slit surrounded by grooves on a metallic film[J]. Physical Review B,2006,74(24):245403.
    [83]Yan M, Yan W, Qiu M. Cylindrical superlens by a coordinate transformation[J].Physical Review B,2008,78(12):125113.
    [84]W. Yu, Y. Fu, L. Li, H. Zhang, H. Liu, Z. Lu, and Q. Sun, Computational study ofinfluence of structuring of plasmonic nanolens on superfocusing[J]. Plasmonics,2011,6(1):35-42.
    [85]Raether H. Surface plasmons on smooth surfaces[M]. Springer Berlin Heidelberg,1988.4-13.
    [86]Dykhne A M, Sarychev A K, Shalaev V M. Resonant transmittance through metalfilms with fabricated and light-induced modulation[J]. Physical Review B,2003,67(19):195402.
    [87]Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J].Nature,2003,424(6950):824-830.
    [88]Ung B. Study of the interaction of surface waves with a metallic nano-slit via thefinite-difference time-domain method[D]. UniversitéLaval,2007.39-46.
    [89]Zayats A V, Smolyaninov I I, Maradudin A A. Nano-optics of surface plasmonpolaritons[J]. Physics reports,2005,408(3):131-314.
    [90]Kittel C, McEuen P. Introduction to solid state physics[M]. New York: Wiley,1986.394-397.
    [91]Maier S A. Plasmonics: Fundamentals and Applications: Fundamentals andApplications[M]. Springer,2007.39-50.
    [92]Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmissionthrough sub-wavelength hole arrays[J]. Nature,1998,391(6668):667-669.
    [93]Thio T, Pellerin K M, Linke R A, et al. Enhanced light transmission through asingle subwavelength aperture[J]. Optics Letters,2001,26(24):1972-1974.
    [94]Lezec H J, Degiron A, Devaux E, et al. Beaming light from a subwavelengthaperture[J]. Science,2002,297(5582):820-822.
    [95]Martin-Moreno L, Garcia-Vidal F J, Lezec H J, et al. Theory of highly directionalemission from a single subwavelength aperture surrounded by surface corrugations[J].Physical Review Letters,2003,90(16):167401.
    [96]Hibbins A P, Sambles J R, Lawrence C R. Gratingless enhanced microwavetransmission through a subwavelength aperture in a thick metal plate[J]. AppliedPhysics Letters,2002,81(24):4661-4663.
    [97]Caglayan H, Bulu I, Ozbay E. Extraordinary grating-coupled microwavetransmission through a subwavelength annular aperture[J]. Optics express,2005,13(5):1666-1671.
    [98]Fang N, Lee H, Sun C, et al. Sub–diffraction-limited optical imaging with a silversuperlens[J]. Science,2005,308(5721):534-537.
    [99]Liu Z, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifyingsub-diffraction-limited objects[J]. science,2007,315(5819):1686-1686.
    [100] Jia B, Shi H, Li J, et al. Near-field visualization of focal depth modulation bystep corrugated plasmonic slits[J]. Applied Physics Letters,2009,94(15):151912.
    [101] Yuan H X, Xu B X, Lukiyanchuk B, et al. Principle and design approach offlat nano-metallic surface plasmonic lens[J]. Applied Physics A,2007,89(2):397-401.
    [102] Ko H, Kim H C, Cheng M. Light transmission through a metallic/dielectricnano-optic lens[J]. Journal of Vacuum Science&Technology B,2008,26(6):2188-2191.
    [103] Fu Y, Zhou X, Zhu S. Ultra-Enhanced Lasing Effect of Plasmonic LensStructured with Elliptical Nanopinholes Distributed in Variant Periods[J]. Plasmonics,2010,5(2):111-116.
    [104] Liu Z, Steele J M, Srituravanich W, et al. Focusing surface plasmons with aplasmonic lens[J]. Nano letters,2005,5(9):1726-1729.
    [105] Liu Z, Steele J M, Lee H, et al. Tuning the focus of a plasmonic lens by theincident angle[J]. Applied physics letters,2006,88(17):171108.
    [106] Xiu-Li Z, Yong-Qi F, Shi-Yong W, et al. Funnel-shaped arrays of metalnano-cylinders for nano-focusing[J]. Chinese Physics Letters,2008,25(9):3296.
    [107] Zhan Q. Cylindrical vector beams: from mathematical concepts toapplications[J]. Advances in Optics and Photonics,2009,1(1):1-57.
    [108] Lerman G M, Levy U. Generation of a radially polarized light beam usingspace-variant subwavelength gratings at1064nm[J]. Optics letters,2008,33(23):2782-2784.
    [109] Levy U, Tsai C H, Pang L, et al. Engineering space-variant inhomogeneousmedia for polarization control[J]. Optics letters,2004,29(15):1718-1720.
    [110] Fu Y, Zhou W, Lim L E N, et al. Influence of V-shaped plasmonicnanostructures on beam propagation[J]. Applied Physics B,2007,86(3):461-466.
    [111] Fu Y, Bryan N K A. Investigation of physical properties of quartz afterfocused ion beam bombardment[J]. Applied Physics B,2005,80(4-5):581-585.
    [112] Talbot H F. LXXVI. Facts relating to optical science. No. IV[J]. The Londonand Edinburgh Philosophical Magazine and Journal of Science,1836,9(56):401-407.
    [113] Rayleigh L. XXV. On copying diffraction-gratings, and on some phenomenaconnected therewith[J]. The London, Edinburgh, and Dublin Philosophical Magazineand Journal of Science,1881,11(67):196-205.
    [114] Case W B, Tomandl M, Deachapunya S, et al. Realization of optical carpetsin the Talbot and Talbot-Lau configurations[J]. Optics Express,2009,17(23):20966-20974.
    [115] Dennis M R, Zheludev N I, GarcYa de Abajo F J. The plasmon Talboteffect[J]. Optics express,2007,15(15):9692-9700.
    [116] Lu Z. Plasmon-Enhanced Light-Trapping for Thin-Film Solar Cells[C]//56thAnnual Report on Research Under Sponsorship of The American Chemical SocietyPetroleum Research Fund. Petroleum Research Fund.
    [117] Wan X, Wang Q, Tao H. Quasi-Talbot effect of the sub-wavelength Aggrating[J]. Optics Communications,2010,283(24):5231-5235.
    [118] Maradudin A A, Leskova T A. The Talbot effect for a surface plasmonpolariton[J]. New Journal of Physics,2009,11(3):033004.
    [119] Cherukulappurath S, Heinis D, Cesario J, et al. Local observation of plasmonfocusing in Talbot carpets[J]. Optics express,2009,17(26):23772-23784.
    [120] Van Oosten D, Spasenovic M, Kuipers L. Nanohole chains for directionaland localized surface plasmon excitation[J]. Nano letters,2009,10(1):286-290.
    [121] Isoyan A, Jiang F, Cheng Y C, et al. Talbot lithography: self-imaging ofcomplex structures[J]. Journal of Vacuum Science&Technology B,2009,27(6):2931-2937.
    [122] Hua Y, Suh JY, Zhou W, Huntington MD, Odom TW. Talbot effect beyondthe paraxial limit at optical frequencies[J]. Optics express,2012,20(13):14284-14291.
    [123] Smolyaninov I I, Davis C C. Apparent superresolution in near-field opticalimaging of periodic gratings[J]. Optics letters,1998,23(17):1346-1347.
    [124] Moon E E, Chen L, Everett P N, et al. Nanometer gap measurement andverification via the chirped-Talbot effect[J]. Journal of Vacuum Science&TechnologyB,2004,22(6):3378-3381.
    [125] Garcia-Sucerquia J, Alvarez-Palacio D C, Kreuzer H J. High resolutionTalbot self-imaging applied to structural characterization of self-assembledmonolayers of microspheres[J]. Applied optics,2008,47(26):4723-4728.
    [126] Quabis S, Dorn R, Müller J, et al. Radial polarization minimizes focal spotsize[C]//International Quantum Electronics Conference. Optical Society of America,2004: IWG3.
    [127] Moser T, Balmer J, Delbeke D, et al. Intracavity generation of radiallypolarized CO2laser beams based on a simple binary dielectric diffraction grating[J].Applied optics,2006,45(33):8517-8522.
    [128] Oron R, Blit S, Davidson N, et al. The formation of laser beams with pureazimuthal or radial polarization[J]. Applied Physics Letters,2000,77(21):3322-3324.
    [129] Kozawa Y, Sato S. Generation of a radially polarized laser beam by use of aconical Brewster prism[J]. Optics letters,2005,30(22):3063-3065.
    [130] Phua P B, Lai W J. Simple coherent polarization manipulation scheme forgenerating high power radially polarized beam[J]. Optics express,2007,15(21):14251-14256.
    [131] Quabis S, Dorn R, Leuchs G. Generation of a radially polarized doughnutmode of high quality[J]. Applied Physics B,2005,81(5):597-600.
    [132] De Abajo F J G. Colloquium: Light scattering by particle and hole arrays[J].Reviews of Modern Physics,2007,79(4):1267-1290.
    [133] Huang F M, Chen Y, de Abajo F, et al. Focusing of light by a nano-holearray[J]. arXiv preprint physics/0611056,2006.
    [134] De Angelis F, Patrini M, Das G, et al. A hybrid plasmonic-photonicnanodevice for label-free detection of a few molecules[J]. Nano letters,2008,8(8):2321-2327.
    [135] Lerman G M, Yanai A, Levy U. Demonstration of nanofocusing by the use ofplasmonic lens illuminated with radially polarized light[J]. Nano letters,2009,9(5):2139-2143.
    [136] Reyntjens S, Puers R. A review of focused ion beam applications inmicrosystem technology[J]. Journal of Micromechanics and Microengineering,2001,11(4):287.
    [137] Lindquist N C, Nagpal P, McPeak K M, et al. Engineering metallicnanostructures for plasmonics and nanophotonics[J]. Reports on Progress in Physics.Physical Society (Great Britain),2012,75(3):036501.
    [138] Volkert C A, Minor A M. Focused ion beam microscopy andmicromachining[J]. MRS bulletin,2007,32(05):389-399.
    [139] Giannuzzi, Lucille A., and Fred A. Stevie, eds. Introduction to focused ionbeams: instrumentation, theory, techniques and practice[M]. Springer,2005.
    [140] Jon Orloff, Lynwood Swanson, Mark Utlaut. High resolution focused ionbeams: FIB and its applications: the physics of liquid metal ion sources and ion opticsand their application to focused ion beam technology[M]. Springer,2003.
    [141] Heinzelmann H, Pohl D W. Scanning near-field optical microscopy[J].Applied Physics A,1994,59(2):89-101.
    [142] Lombard E, Drezet A, Genet C, et al. Polarization control of non-diffractivehelical optical beams through subwavelength metallic apertures[J]. New Journal ofPhysics,2010,12(2):023027.
    [143] Hooke R. Lectures and collections; Microscopium[J]. J. Martyn, Printer tothe Royal Society, London.1678.
    [144] Moore G E. Cramming more components onto integrated circuits[J].Electronics,1965,38(8).
    [145] Moore G E. Cramming more components onto integrated circuits[J].Proceedings of the IEEE,1998,86(1):82-85.
    [146] Hibbins A P, Lockyear M J, Sambles J R. The resonant electromagnetic fieldsof an array of metallic slits acting as Fabry-Pérot cavities[J]. Journal of appliedphysics,2006,99(12):124903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700