用户名: 密码: 验证码:
两血管闭塞联合高Cu~(2+)喂养法致大鼠痴呆模型的MR成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的1.研究双侧颈总动脉结扎联合高喂养法诱导大鼠阿尔茨海默病样行为学和病理学的特征性改变。
     2.使用临床型MR活体观察AD模型大鼠不同时期脑的改变,对不同脑区使用T_2 map进行定量分析,同时运用MR序列进行老年斑可视化的可行性研究。
     方法随机选择SD大鼠66只,进行双侧颈总动脉结扎术,术中死亡6只,剩余60只。分为两组,2VO+高Cu~(2+)组(30只):饮用水为蒸馏水+Cu~(2+)+5%蔗糖喂养(3月后停止Cu~(2+)喂养,给予蒸馏水),又分为术后3月、6月、9月三组;2VO组(30只):饮用水为蒸馏水+5%蔗糖,也分为术后3月、6月、9月三组;另设正常组24只,采用同样方法分配到各组中,饮用水为蒸馏水+5%蔗糖。分别于术后3月、6月、9月2VO+高Cu~(2+)组、2VO组各组取10只、正常组取8只,进行Morris测试评价行为学改变,然后对大鼠大脑使用T_1WI、T_2WI、T_2*WI、SWI序列进行MR成像研究,使用T_2 map进行大鼠大脑不同脑区的T_2弛豫时间定量分析。最后处死大鼠,进行相关病理学研究(HE染色、银染、Aβ免疫组织化学染色、铁染色、Thioflavine S染色)。三组大鼠不同时间点的平均逃避潜伏时间和T_2磁豫时间比较用两因素测量资料的方差分析。组间比较使用ANOVA方差分析。
     结果通过永久性双侧颈总动脉结扎联合高Cu~(2+)法建立了一种新的复合型痴呆模型。Morris水迷宫试验发现术后3、6、9月2VO+Cu~(2+)组、2VO组平均逃避潜伏时间较对照组明显延长(P<0.05或p<0.01),说明与正常组相比出现记忆学习能力缺陷,2VO+Cu~(2+)组与2VO组间比较差异无统计学意义。该模型组病理学研究出现了类似人类AD的神经病理学改变,特别是6月2VO+Cu~(2+)组、9月2VO+Cu~(2+)组及2VO组大鼠出现了类似SPs的结构,皮质和海马区出现Aβ免疫反应阳性细胞。Thioflavine S染色、铁染色、银染都有阳性发现,一些部位出现重叠。6月2VO+Cu~(2+)组、9月2VO+Cu~(2+)组及2VO组皮质和海马区的T_2弛豫时间明显减低,与正常组比较,差异有统计学意义,部分差异显著,2VO+Cu~(2+)组、2VO组海马、颞叶、顶叶皮质的T_2弛豫时间随着年龄的增长,呈下降趋势,差异有统计学意义。而纹状体、丘脑、胼胝体等脑区未见明显差别。使用T_1WI、T_2WI、T_2*WI、SWI序列对模型大鼠进行MR成像,可以发现6月2VO+Cu~(2+)组、9月2VO+Cu~(2+)组及2VO组皮质和海马发现类圆形的低信号区,部分病灶与Aβ免疫组化、Thioflavine S及铁染色阳性发现区域相重叠。对该病灶的显示能力,以T_2*WI最好,T_2WI次之,T_1WI作用不大,SWI虽然对比度好,但是信噪比差,不能排除血管等的影响。
     结论两血管闭塞联合高Cu~(2+)喂养法致大鼠痴呆模型是研究AD影像学改变的一种有用的动物模型,它不仅模拟出AD相关的行为学改变,而且亦出现类似人类AD的神经病理学及病理生理学改变。铜的引入,可能通过多种机制加速AD的病理进程。使用MR对这种模型进行影像评价是可行的,该模型大鼠早期海马及皮质的T_2弛豫时间的减低可能提示AD的病理进程,有可能成为AD生物学的标记。同时使用临床型MRI对老年斑的可视化有一定价值,值得进一步探讨。
Objective 1.To study the characteristic behavioral and pathological findings of Alzheimer’s disease induced by 2-vessel occlusion and copper exposure.2. To observed MR findings of brain of the Alzheimer’s disease model rats with clinical 1.5T MR imager in vivo at different stage, T_2 map was used to assess quantitatively the rat brain in different encephalic regions. To investigate the feasibility that plaques can be detected by MRI in this AD rat model in vivo.
     Methods Sixty-six SD rats, aged 7~8weeks, were performed by permanent occlusion of bilateral common carotid arteries(2VO). Six rates dead during operation, the surviving 60 rats were divided into two groups randomly. Group 2VO+Cu~(2+) (n=30) and group 2VO. Group 2VO+Cu~(2+)were food with 250ppm copper chloride(CuCl2) in drinking water ( rcontained 5% sucrose ) for 3 months.Control groups included 24 same age rates which were received the same operation but without occlusion of the arteries,The drinking water contained 5% sucrose. At 3th month, 6th month and 9th month after operation, 10 rates selected randomly from each test group and 8 rates from control group were tested by Morris water maze experiment to observe their behavior changes, then performed MR examination using T_1WI、T_2WI、T_2*WI、SWI. T_2 map was used to assess quantitatively T_2 value of the rat brain in different regions. After MR scanning, rates were sacrificed, Whole brains of rates were removed immediately for pathological study (HE staining,thioflavin S staining, immunohistochemistical staining for Aβ,histochemical staining of iron and silver staining ). The SPSS17.0 statistical package (SPSS, Chicago, USA) was used for all calculations.,Mean latent phase and T_2 value of the whole sample at different time-points were evaluated with two-factor measures analysis of variance. Comparison between groups was evaluatated with one-way anova(ANOVA). The results are indicated with mean+standard deviation( x±s) which had a significance level of 0.05.
     Results A novel complex rat model of dementia were established by permanent occlusion of bilateral common carotid arteries(2VO) and copper exposure for research of AD. After Morris water maze experiment, mean latent phase of VD+Cu~(2+) group and VO group were longer than that of the sham-operated rats(control group)(p<0.05),but there was no significant difference between 2VO+Cu~(2+)group and 2VO group(p>0.05). The brains of AD rat model appeared pathological changes of Alzheimer’s disease in Group 2VO+CU2+ at the 6th month and the 9th month, group 2VO at the 9th month, which appeared a similar SPs structure, Aβpositive immunoreaction in the cortex and hippocampus .Thioflavin S staining, iron staining and silver staining appeared positive result.some positive appeared in the same brain region. In groups 2VO+Cu~(2+) at the 6th month and the 9th month and groups2VO at 9th month,T_2 value in the cortex and hippocampus of the rat brain descend, there was significant difference compared with control groups. T_2 value had no significant difference in corpus striatum, thalamus and corpus callosum in the rat brain between test group and control group. On MR images with T_1WI、T_2WI、T_2*WI、SWI sequence, some round hypointensity focus can be detected in the cortex and hippocampus of the rat brain in group 2VO+Cu~(2+)at the 6th month and the 9th month, group 2VO at 9th month, Preliminary results indicate that T_2*WI acquisition best accurately reflects plaque,T_2WI inferior to T_2*WI,T_1WI have no effect. SWI have best CNR, but it can not remove the effect of blood vessels.
     Conclusion Dementia Rats induced by 2-vessel occlusion and copper exposure is good model for MR imaging. This rat model appeared the behavioral and pathological changes of Alzheimer’s disease. Copper, it can accelerate pathological process of AD. The rat model can be evaluated with MR imaing in vivo.T_2 value descend in the cortex and hippocampus of the rat brain initially, which suggested pathological process of AD.T_2 value may become biological markers of AD. To detect senile plaques with MR imaging in vivo is feasible and deserves further exploration.
引文
1. Kitazawa M, Cheng D, Laferla FM. Chronic copper exposure exacerbates both amyloid and tau pathology and selectively dysregulates cdk5 in a mouse model of AD. Neurochem. 2009 Mar;108(6):1550-60.
    2. de la Torre JC,Fortin T,Park G A,et al.Chronic cerebrovascular insufficiency induces dementia-like deficits in aged rats,Brain Res,1992,582:186~195.
    3.刘之荣,李露斯,范文辉.环抱霉素A对老年大鼠慢性脑灌注不足脑损害的防护作用.现代康复杂志,2000,11:1664~1665.
    4. Tanaka K,Wada N,Ogawa N.Chronic cerebral hypoperfusion induces transient reversible monoaminergic changes in the rat brain.Neurochem Res,2000,25:313~320.
    5. Ni J,Ohta H,Matsumoto K,et al.Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats. Brain Research,1994,653(1-2):231-236.
    6. Naritomi H. Experimental basis of multi-infaret dementia:memory impairment in rodent models of ischemia .Alcheimer Arch Pathol 1969;87:315
    7.刘汇波,叶翠飞,李斌,等。双侧颈总动脉结扎对大鼠学习记忆功能和海马组织形态学的影响.基础医学与临床1998;18(4):54-57.
    8. Otori T, Katsumata T, Muramatsu H, et al. Long2term measurement of cerebral blood flow and metabolism in a rat chronic hypoperfusion model. Clin Exp Pharmacol Physiol, 2003, 30: 266 - 272.
    9.王维治.神经病学.北京:人民卫生出版社,2001,253~254.
    10. Horvath S.The pathological and clinical consequences of chronic cerebral hypoperfusion.Orv Hetil 2001,142:323~329.
    11. De La Torre JC.Critically attained threshold of cerebral hypoperfusion:Can it cause Alzheimer's disease? Ann NY Acad Sci,2000,903:424~436.
    12. Giannakopoulos P,Bouras C.Re-evaluating the role of vascular changes in the differential diagnosis of Alzheimer’s disease and vascular dementia.EuropeanNeurology,1998,40:121~129.
    13. de la Torre JC.Vascular basis of Alzheimer's pathogenesis.Ann NY Acad Sci,2002,977:196~215.
    14. Nihashi T,Inao S,Kajita Y,et al.Expression and distribution of beta amyloid precursor protein and beta amyloid peptide in reactive astrocytes after transient middle cerebral artery occlusion[J].Acta Neurochir(Wien),2001,143(3):287-295.
    15. Koistinaho M,Koistinaho J.Interactions between Alzheimer’s disease and cerebral ischemia-focus on inflammation[J].Brain Res Rev,2005,48(2):240-250.
    16. Shi J,Yang SH,Stubley L,et al.Hypoperfusion induces overexpression ofβ-amyloid precursor protein mRNA in a focal ischemic rodent model[J].Brain Res,2000,853(1):1-4.
    17. Wen Y,Onyewuchi O,Yang S,et al.Increased beta-secretase activity and expression in rats following transient cerebral ischemia[J].Brain Res,2004,1009(1-2):1-8.
    18. de La Torre JC , Stefano GB.Evidence that Alzheimer’s disease is a microvascular disorder:the role of constitutive nitric oxide[J].Brain Res Rev,2000,34(3):119-136.
    19. Honig LS,Tang MX,Albert S,et al.Stroke and the risk of Alzheimer disease[J].Arch Neurol,2003,60:1707-1712.
    20. Kida E, Golabek AA, Wisniewski T et al.Regional differences in apolipoprotein E immunoreactivity in diffuse plaques in Alzheimer's disease brain.Neurosci Lett. 1994 Feb 14;167(1-2):73-6.
    21. Stadelmann CH.The enigma of cell death in neurodegenerative disorders.J Neural Transm Suppl. 2000;(60):21-36.
    22. Zhiyou C, Yong Y, Shanquan S et al. Epub 2009 Jan 4. Upregulation of BACE1 and beta-amyloid protein mediated by chronic cerebral hypoperfusion contributes to cognitive impairment and pathogenesis of Alzheimer's disease. Neurochem Res. 2009 Jul;34(7):1226-35.
    23. Ni JW,Matsumoto K.Neuronal damage and decrease of central acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat.Brain Res,1995,673:290~296.
    24. Tsuchiya M,Sako K,Yura S,et al.Local cerebral glucose utilization following acute and chronic bilateral carotid artery ligation in Wistar rats: relation to changes in local cerebral blood flow.Exp Brain Res,1993, 95(1):1-7.
    25. Ni J, Ohta H, Matsumoto K, Watanabe H.Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats.Brain Res. 1994 Aug 8;653(1-2):231-6.
    26. Lee J. Y., Cole T. B., Palmiter R. D., Suh S. W. and Koh J. Y. (2002) Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc. Natl Acad. Sci. USA 99, 7705–7710.
    27. Bayer T. A., Schafer S., Simons A. et al. (2003) Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc. Natl Acad. Sci. USA 100, 14187–14192.
    28. Sparks D. L. and Schreurs B. G. (2003) Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 100, 11065–11069.
    29. Atwood C. S., Moir R. D., Huang X., Scarpa R. C., Bacarra N. M., Romano D. M., Hartshorn M. A., Tanzi R. E. and Bush A. I. (1998) Dramatic aggregation of Alzheimer abeta by Cu(II) is inducedby conditions representing physiological acidosis. J. Biol. Chem. 273, 12817–12826.
    30. Bush A. I. (2003) Copper, zinc, and the metallobiology of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 17, 147–150.
    31. Tougu V., Karafin A. and Palumaa P. (2008) Binding of zinc(II) and copper(II) to the full-length Alzheimer’s amyloid-beta peptide. J. Neurochem. 104, 1249–1259.
    32. Lovell M. A., Robertson J. D., Teesdale W. J., Campbell J. L. and Markesbery W. R. (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158, 47–52.
    33. Sparks D. L. and Schreurs B. G. (2003) Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 100, 11065–11069.
    34. Lu J., Zheng Y. L., Wu D. M., Sun D. X., Shan Q. and Fan S. H. (2006) Trace amounts of copper induce neurotoxicity in the cholesterolfed mice through apoptosis. FEBS Lett. 580, 6730–6740.
    35. Bayer T. A., Schafer S., Simons A. et al. (2003) Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc. Natl Acad. Sci. USA 100, 14187–14192.
    36. Morris M. C., Evans D. A., Tangney C. C., Bienias J. L., Schneider J. A., Wilson R. S. and Scherr P. A. (2006) Dietary copper and high saturated and trans fat intakes associated with cognitive decline. Arch. Neurol. 63, 1085–1088.
    37. Sparks DL, Schreurs BG et al. Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer's disease. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11065-9.
    38. Atwood CS, Moir RD, Huang X et al. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. Bush AI. J Biol Chem. 1998 May 22;273(21):12817-26.
    39. Cherny RA, Legg JT, McLean CA, et al. Aqueous dissolution of Alzheimer's disease Abeta amyloid deposits by biometal depletion. J Biol Chem. 1999 Aug 13;274(33):23223-8.Science. 1996 Mar 8;271(5254):1406-9.
    40. Multhaup G, Schlicksupp A, Hesse L, The amyloid precursor protein of Alzheimer's disease in the reduction of copper(II) to copper(I). Science. 1996 Mar 8;271(5254):1406-9.
    41. Lin R, Chen X, Li W et al. Exposure to metal ions regulates mRNA levels of APP and BACE1 in PC12 cells: blockage by curcumin. Neurosci Lett. 2008 Aug 8;440(3):344-7.
    42. Gutteridge JM.Iron and oxygen radicals in brain.Ann Neurol 1992,32:16–21.
    43. House MJ,St Pierre TG,Kowdley KV,et al.Correlation of proton transverse relaxation rates(R2)with iron concentrations in postmortem brain tissue from Alzheimer’s disease patients.Magn Reson Med 2007;57:172–80.
    44. Dexter DT,Wells FR,Agid F,et al.Increased nigral iron content in post-mortem parkinsonian brain.Lancet 1987;41:1219–1220.
    45. Inglese M,Ge Y,Jensen J,et al.Iron accumulation in the deep gray matter of patients with MS measured by magnetic field correlation.Neurology 2005,64(suppl 1):236.
    46. Rottkamp CA,Raina AK,Zhu X,et al.Redox-active iron mediates amyloid-βtoxicity. Free Radical Biol Med 2001;30:447–450.
    47. Bishop GM,Robinson SR.β-Amyloid helps to protect neurons from oxidativestress. Neurobiol Aging 2000;21(suppl 1):226.
    48. Pulliam JF,Jennings CD,Kryscio RJ,et al.Association of HFE mutations with neurodegeneration and oxidative stress in Alzheimer’s disease and correlation with APOE. Am J Med Genet B Neuropsychiatr Genet 2003;119:48–53.
    49. Jefferies WA, Food MR, Gabathuler R, Rothenberger S, Yamada T, Yasuhara O, McGeer PL: Reactive microglia specifically associated with amyloid plaques in Alzheimer’s disease brain tissue express melanotransferrin. Brain Res 1996;712:122–126.
    50. Connor JR, Menzies SL, St Martin SM, Mufson EJ: A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J Neurosci Res 1992;31:75–83.
    51. Robinson SR, Noone DF, Kril J, Halliday GM: Most amyloid plaques contain ferritin-rich cells. Alzheimer Res 1995;1:191–196.
    52. Batton CI, O’Dowd BS, Noone DF, Kril J,Robinson SR: Ferritin-rich microglia are concentrated within ?-amyloid plaques. Alzheimer Res 1997;3:23–28.
    53. Grundke-Iqbal I, Fleming J, Tung YC, Lassmann H, Iqbal K, Joshi JG: Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathol 1990;81:105–110.
    54. Smith MA,Harris PLR,Sayre LM,et al.Iron accumulation in Alzheimer disease is a source of redox-generated free radicals.Proc Natl Acad Sci USA,1997, 94:9866-9868.
    55. Brass SD, Chen NK, Mulkern RV, et al. Magnetic resonance imaging of deposition in neurological disorders. Top Magn Reson Imaging, 2006, 17: 31-40.
    56. El Tayara Nel T,Volk A,Dhenain M,et al.Transverse relaxation time reflects brain amyloidosis in young APP/PS1 transgenic mice [ J ] .Magn Reson Med,2007,58:179-184.
    57. Braakman N, Matysik J, van Duinen SG, et al. Longitudinal assessment of Alzheimer's beta-amyloid plaque development in transgenic mice monitored by in vivo magnetic resonance microimaging. J Magn Reson Imaging. 2006 ,24(3):530-6.
    58. Vanhoutte G, Dewachter I, Borghgraef P, et al. Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer's disease. Magn Reson Med. 2005,53(3):607-13.
    59. Jack CR Jr,Garwood M,Wengenack TM,et al.In Vivo Visualization of Alzheimer’s Amyloid Plaques by Magnetic Resonance Imaging in Transgenic Mice without a Contrast Agent.Magnetic Resonance in Medicine,2004,52: 1263–1271.
    60. Sang-Pil Lee,Maria F,Falangola,et al.Visualization ofβ-Amyloid Plaques in a Transgenic Mouse Model of Alzheimer’s Disease Using MR Microscopy Without Contrast Reagents.Magnetic Resonance in Medicine,2004,52:538–544.
    61. Helpern JA, Lee SP, Falangola MF, et al.MRI assessment of neuropathology in a transgenic mouse model of Alzheimer’s disease. Magn Reson Med 2004;51:794–798.
    62. El Tannir El Tayara N,Delatour B,Le Cudennec C,et al.Age-related evolution of amyloid burden,iron load,and MR relaxation times in a transgenic mouse model of Alzheimer’s disease.Neurobiol Dis 2006;22(1):199–208.
    63. Laakso MP,Partanen K,Soininen H,et al.MR T2 relaxometry in Alzheimer’s disease and age-associated memory impairment.Neurobiol Aging,1996,17: 535–540.
    64. Bondareff W,Raval J,Colletti PM,et al.Quantitative magnetic resonance imaging and the severity of dementia in Alzheimer’s disease.Am J Psychiatry,145: 853–856.
    65. Haley AP,Knight-Scott J,Fuchs KL,et al.Shortening of hippocampal spin-spin relaxation time in probable Alzheimer’s disease:a 1H magnetic resonance spectroscopy study.Neurosci Lett,362:167–170.
    66. Kirsch SJ, Jacobs RW, Butcher LL, Beatty J. Prolongation of magnetic resonance T2 time in hippocampus of human patients marks the presence and severity of Alzheimer’s disease. Neurosci Lett 1992;134(2):187–190.
    67. Bondareff W, Raval J, Colletti PM, Hauser DL. Quantitative magnetic resonance imaging and the severity of dementia in Alzheimer’sdisease. Am J Psychiatry 1988; 145(7):853–856.
    68. Tariot P, Mack J, Patterson M, et al. Handbook of clinical neurologic scales. New York, NY: Dernos Vermande, 1997; 137–138, 151–152, 158.
    69. Pitkanen A, Laakso M, Kalviainen R, et al. Severity of hippocampal atrophy correlates with the prolongation of MRI T2 relaxation time in temporal lobe epilepsy but not in Alzheimer’s disease. Neurology 1996; 46(6):1724–1730.
    70. Laakso MP, Partanen K, Soininen H, et al. MR T2 relaxometry in Alzheimer’s disease and age-associated memory impairment. Neurobiol Aging 1996;17(4): 535–540.
    71. Campeau NG, Petersen RC, Felmlee JP, O’Brien PC, Jack CR Jr. Hippocampal transverse relaxation times in patients with Alzheimer disease. Radiology 1997;205(1): 197–201.
    72. Brooks DJ, Luthert P, Gadian D, Marsden CD. Does signal-attenuation on high-field T2-weighted MRI of the brain reflect regional cerebral iron deposition? Observations on the relationship between regional cerebral water proton T2 values and iron levels. J Neurol Neurosurg Psychiatry 1989; 52(1):108–111.
    73. Gelman N, Gorell JM, Barker PB, et al. MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 1999;210(3):759–767.
    74. Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain. J Neurochem 1958;3(1):41–51.
    75. Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic magnetic resonance imaging. Magn Reson Imaging 2005;23(1):1–25.
    76. Small SA, Nava AS, Perera GM, Delapaz R, Stern Y. Evaluating the function of hippocampal subregions with high-resolution MRI in Alzheimer’s disease and aging. Microsc Res Tech 2000;51(1):101–108.
    77. Bartzokis G, Sultzer D, Cummings J, et al. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging. Arch Gen Psychiatry 2000;57(1):47–53.
    78. Connor JR, Menzies SL, St Martin SM, Mufson EJ. A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J Neurosci Res 1992;31(1): 75–83.
    79. Connor JR, Snyder BS, Arosio P, Loeffler DA, LeWitt P. A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer’s diseased brains. J Neurochem 1995;65(2):717–724.
    80. Bartzokis G,Sultzer D,Cummings J,et al.In vivo evaluation of brani iron in Alzheimer disease using magnetic resonance imaging.Ar Gen Psychiatry,2000,57:47-53.
    81. Dhenain M,Privat N,Duyckaerts C,et al.Senile plaques do not inducesusceptibility. effects in T2*-weighted MR microscopic images.NMR Biomed, 2002,15:197–203.
    82. Helpern JA,Lee S-P,Falangola MF,et al.MRI assessment of neuropathology in atransgenic mouse model of Alzheimer’s disease.Magn Reson Med,2004,51:794–798.
    83. Zhang J,Yarowsky P,Gordon MN,et al.Detection of amyloid plaques in mouse models of Alzheimer’sdisease by magnetic resonance imaging.Magn Reson Med,2004,51:452–457.
    84. Jack CR Jr,Wengenack TM,Reyes DA,et al.In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer’s transgenic mice.J Neurosci 2005;25(43): 10041–10048.
    85. Benveniste H,Einstein G,Kim KR,et al.Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy.Proc Natl Acad Sci USA,1999, 96:14079–14084.
    86. Poduslo JF,Wengenack TM,Curran GL,et al.Molecular targeting of Alzheimer’s amyloid plaques for contrast-enhanced magnetic resonance imaging.Neurobiol Dis, 2002,11:315–329.
    87. Wadghiri YZ,Sigurdsson EM,Sadowski M,et al.Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging.Magn Reson Med,2003,50:293–302.
    88. Higuchi M,Iwata N,Matsuba Y,et al. 19 F and 1 H MRI detection of amyloid beta plaques in vivo.Nat Neurosci 2005;8(4):527–533.
    89. Borthakur A,Gur T,Wheaton AJ,et al.In vivo measurement of plaque burden in a mouse model of Alzheimer's disease.J Magn Reson Imaging 2006,24(5):1011-7.
    90. Haacke EM,Ayaz M,Khan A,et al.Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs abnormal iron content in the brain[J].J Magn Reson Imaging,2007, 26:256-264.
    91. Lee SP,Falangola MF,Nixon RA,et al.Visualization of beta-amyloid plaques in a transgenic mouse model of Alzheimer's disease using MR microscopy without contrast reagents[J].Magn Reson Med,2004,52:538-544.
    92. Ramani A,Jensen JH,Helpern JA.Quantitative MR imaging in Alzheimer's disease[J].Radiology,2006,242:26-44.
    93. Hashioka S,Han YH,Fujii S,et al.Phosphatidylserine and phosphatidylcholine-containing liposomes inhibit amyloid b and interferon-g-induced microglial activation[J].Free Radical Biol Med,2007,42:945-954.
    94. Nakada T,Matsuzawa H,Igarashi H,et al.In vivo visualization of senile-plaque-like pathology in Alzheimer's disease patients by MR microscopy on a 7T system[J].J Neuroimaging,2008,18:125-129.
    95. Chamberlain R, Reyes D, Curran GL. Comparison of amyloid plaque contrast generated by T2-weighted, T2*-weighted, and susceptibility-weighted imaging methods in transgenic mouse models of Alzheimer's disease. Magn Reson Med. 2009 May;61(5):1158-64.
    [1] Vassar R. Beta-Secretase, APP and Abeta in Alzheimer's disease[J]. Subcell Biochem, 2005, 38:79-103.
    [2] Bush AI.The metallobiology of Alzheimer's disease[J].Trends Neurosci,2003, 26:207-214.
    [3] House E, Collingwood J, Khan A, et al. Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Abeta42 in a manner which may have consequences for metal chelation therapy in Alzheimer′s disease[J]. Alzheimers Dis, 2004, 6 : 291-301.
    [4] Brass SD, Chen NK, Mulkern RV, et al. Magnetic resonance imaging of deposition in neurological disorders[J]. Top Magn Reson Imaging, 2006, 17: 31-40.
    [5] Bartzokis G, Sultzer D, Cummings J, et al. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging[J]. Arch Gen Psychiatry, 2000, 57:47-53.
    [6] Falangola MF, Lee SP, Nixon RA,et al. Histological co-localization of iron in A-βplaques of PS/APP transgenic mice[J]. Neurochem Res, 2005, 30:201-205.
    [7] Jack CR Jr, Garwood M, Wengenack TM, et al. In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent[J]. Magn Reson Med, 2004,52: 1263-1271.
    [8] El Tayara Nel T, Volk A, Dhenain M, et al. Transverse relaxation time reflects brain amyloidosis in young APP/PS1 transgenic mice[J]. Magn Reson Med, 2007,58:179-184.
    [9] Braakman N, Matysik J, van Duinen SG, et al. Longitudinal assessment of Alzheimer's beta-amyloid plaque development in transgenic mice monitored by in vivo magnetic resonance microimaging[J]. J Magn Reson Imaging,2006 ,24:530-536.
    [10] Vanhoutte G, Dewachter I, Borghgraef P, et al. Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer's disease[J]. Magn Reson Med, 2005,53:607-613.
    [11] Poduslo JF, Wengenack TM, Curran GL, et al. Molecular targeting of Alzheimer's amyloid plaques for contrast-enhanced magnetic resonance imaging[J]. Neurobiol Dis, 2002,11:315-329.
    [12] Wadghiri YZ, Sigurdsson EM, Sadowski M, et al. Detection of Alzheimer's amyloid in transgenic mice using magnetic resonance microimaging[J]. Mag Reson Med, 2003,50:293-302.
    [13] Higuchi M, Iwata N, Matsuba Y, et al. 19F and 1H MRI detection of amyloid beta plaques in vivo[J]. Nat Neurosci, 2005, 8:527-533.
    [14] Poduslo JF, Curran GL, Peterson JA, et al. Design and chemical synthesis of a magnetic resonance contrast agent with enhanced in vitro binding, high blood-brain barrier permeability, and in vivo targeting to Alzheimer's disease amyloid plaques[J]. Biochemistry, 2004,43:6064-6075.
    [15] Wengenack TM, Jack CR Jr, Garwood M, et al. MR microimaging of amyloid plaques in Alzheimer's disease transgenic mice[J]. Eur J Nucl Med Mol Imaging, 2008, 35 Suppl1:S82-88.
    [16] Sigurdsson EM, Wadghiri YZ, Mosconi L, et al. A non-toxic ligand for voxel-based MRI analysis of plaques in AD transgenic mice[J]. Neurobiol Aging, 2008,29: 836-847.
    [17] Haacke EM, Ayaz M, Khan A,et al. Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain[J]. J Magn Reson Imaging,2007,26:256-264.
    [18] Lee SP, Falangola MF, Nixon RA,et al. Visualization of beta-amyloid plaques in a transgenic mouse model of Alzheimer's disease using MR microscopy without contrast reagents[J]. Magn Reson Med ,2004,52:538-544.
    [19] El Tannir El Tayara N, Delatour B, Le Cudennec C,et al. Age-related evolution of amyloid burden, iron load, and MR relaxation times in a transgenic mouse model of Alzheimer's disease[J]. Neurobiol Dis ,2006,22:199-208.
    [20] Ramani A, Jensen JH, Helpern JA. Quantitative MR imaging in Alzheimer's disease[J]. Radiology, 2006,242:26-44.
    [21] Hashioka S, Han YH, Fujii S, et al. Phosphatidylserine and phosphatidylcholine-containing liposomes inhibit amyloid b and interferon-g-induced microglial activation. Free Radical Biol Med,2007,42:945-954.
    [22] Nakada T, Matsuzawa H, Igarashi H,et al. In vivo visualization of senile-plaque-like pathology in Alzheimer's disease patients by MR microscopy on a 7T system[J].J Neuroimaging,2008,18:125-129.
    [23] Borthakur A, Gur T, Wheaton AJ, et al. In vivo measurement of plaque burden in a mouse model of Alzheimer's disease[J]. J Magn Reson Imaging, 2006, 24:1011-1017.
    [24] Borthakur A, Wheaton AJ, Gougoutas AJ, et al. In vivo measurement of T1rho dispersion in the human brain at 1.5 tesla[J]. J Magn Reson Imaging, 2004,19:403-409.
    [25] Borthakur A, Sochor M, Davatzikos C, et al. T1rho MRI of Alzheimer's disease[J]. Neuroimage, 2008 ,41:1199-1205.
    [26] Haris M, McArdle E, Fenty M, et al. Early marker for Alzheimer's disease: hippocampus T1rho estimation[J]. J Magn Reson Imaging, 2009 ,29:1008-1012. (收稿2009-06-09)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700