用户名: 密码: 验证码:
磁共振T2弛豫时间测量在癫痫中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁共振T2弛豫时间测量在癫痫中的应用研究
     第一部分正常人脑组织的T2弛豫时间测量及其随年龄变化规律
     目的:确定正常人脑组织各个部位的T2弛豫时间值及其正常值参考范围,同时也分析半球间、性别间是否存在差异,以及年龄对T2弛豫时间值影响。材料和方法:无神经系统或影响神经系统疾病的正常志愿者38名。年龄:9-59岁,平均31.19±15.4岁。并根据年龄分为2组,未成年组≤17岁和成年人组≥18岁。所有志愿者常规颅脑MRI检查无阳性征象,行T2弛豫时间扫描。T2弛豫时间扫描数据传入Functool工作站的T2弛豫时间测量软件计算获得的每个体素的T2弛豫时间值,所得的T2 map图重叠在质子加权图像进行融合以便与对感兴趣区进行正确定位,然后测量双侧大脑的杏仁核,海马头部、尾状核、豆状核、丘脑、颞叶白质、枕叶白质、额叶白质、顶叶白质的T2弛豫时间并行统计分析。结果:各部位脑组织T2弛豫时间值,杏仁核:108.32±8.68ms,海马头114.99±9.16ms,尾状核头98.98±5.67ms,壳核86.00±7.95ms,丘脑86.34±5.47ms,,颞叶白质92.28±5.95ms,枕叶白质102.95±5.75ms;额叶白质96.49±5.62ms;顶叶白质107.28±6.01ms。各个不同部位间T2弛豫时间值差别存在统计学差别(P<0.05),而除壳核和丘脑外其余各部位灰质的T2弛豫时间高于白质结构。多个部位的脑组织T2弛豫时间值与年龄负相关,其中杏仁核r=-0.387,海马r=-0.348,尾状核r=-0.526,壳核r=-0.764,(P<0.05)。在未成年人组和成年人组之间T2弛豫时间(ms)比较:杏仁核113.41±10.75:105.78±6.13;海马119.85±9.47:112.56±8.05;尾状核103.02±6.12:96.97±4.22.;壳核93.59±5.91:82.21±5.85;丘脑89.18±5.72:84.91±4.79,颞叶白质94.62±5.63:89.11±1.68;枕叶白质102.53±4.68:103.15±6.25;额叶白质96.88±6.11:96.29±5.41;顶叶白质106.87±6.01:107.48±0.05。这一差别在壳核中最为明显。结论:脑内各个部位的T2弛豫时间无半球间差异,但有性别差异存在。各个部位的T2弛豫时间值存在差异,随着年龄的增长大部分的脑组织T2弛豫时间值呈下降趋势尤以壳核最明显。
     第二部分MRI阴性的癫痫T2弛豫时间测量及其与临床相关性分析
     目的:研究常规磁共振阴性的隐源性癫痫患者是否存在T2弛豫时间的改变,确定癫痫患者各部位T2驰豫时间值与临床发作类型、癫痫发病年龄、发作频率、癫痫病持续时间、末次发作与检查时时间间隔是否存在关系。材料和方法:本研究对象包括54例MRI阴性的癫痫患者和20例健康志愿者。病例组54例癫痫患者的诊断标准:根据国际抗癫痫联盟(ILAE)推荐的根据临床的脑电图特点进行分类诊断,所有患者行常规磁共振扫描和海马磁共振扫描以排除目测可见的疾病。对照组20名年龄性别与病例组相匹配的健康志愿者,行T2弛豫时间扫描和后处理,测量双侧大脑的杏仁核,海马头部、尾状核、豆状核、丘脑、颞叶白质、枕叶白质、额叶白质、顶叶白质的T2弛豫时间值。并根据ILAE推荐的根据临床和脑电图的国际分类(1989)将患者的临床发作类型分成4组:第1组为单纯部分性发作,第2组为复杂部分性发作和部分性继发全面发作者;第3组失神发作;第4组为强直—阵挛性发作。按发作频率分成4级:1级,每天一次以上;2级,每周一次以上,少于每天一次;3级,每月一次以上,少于每周一次;4级,每年数次以上,少于每月一次。分析癫痫临床发作类型、发作频率与脑内各部位T2驰豫时间的关系。结果:癫痫组杏仁核的T2弛豫时间高于正常人组(115.92±9.15:110.36±5.4,P=0.001)。单纯部分性发作组在尾状核、壳核、颞叶、丘脑、枕叶T2驰豫时间值均高于失神发作组,p值分别为:尾状核0.006,壳核0.042,颞叶0.020,丘脑0.026,枕叶0.044;海马、尾状核、壳核、丘脑、颞叶、T2驰豫时间低于强直—阵挛性发作组(p值分别为0.005,0.001,0.003,0.009)。复杂部分性发作和部分性继发全面发作组的杏仁核、海马,尾状核,丘脑、颞叶、顶叶T2弛豫时间延长较失神发作组更明显(p值分别为0.007,0.021,0.010,0.000,0.006,与强直—阵挛性发作组比,杏仁核、海马、尾状核、颞叶(p值分别为0.001,0.002,0.013,0.001)均高于强直—阵挛性发作组。全身性发作的两组之间未见有统计学意义的差异。不同的发作频率组间颞叶第二组、第三组和第四组的差别存在统计学差异(p值分别为0.046,0.017);枕叶第一组和第三组的差别存在统计学差异(p=0.044);顶叶第三组和第四组的差别存在统计学差异(p=0.047)。在排除检查时年龄对T2驰豫时间的影响后发现除枕叶和顶叶白质外,癫痫发病年龄与脑内各部位的T2驰豫时间的相关性如下:杏仁核r=-0.419,p=0.000;海马r=-0.320,p=0.001;尾状核r=-0.362,p=0.000;壳核r=-0.586,p=0.000;丘脑r=-0.481,p=0.000;颞叶白质r=-0.265,p=0.006;额叶白质r=-0.212,p=0.028。末次发作时间与检查时间的间隔和各部位T2弛豫时间之间可见曲线呈轻度下降趋势,但未见显著性差异。结论:常规磁共振阴性的癫痫患者杏仁核的T2弛豫时间延长。磁共振阴性的癫痫患者T2弛豫时间改变和癫痫的发作频率和时间有关;不同的临床发作类型间T2弛豫时间值存在一定的差别。
     第三部分继发性癫痫患者的磁共振T2弛豫时间测量
     目的:比较有无诱因的常规MRI阴性癫痫患者的T2弛豫时间改变的特点。材料和方法:本组研究对象包括原发性癫痫患者54例,继发性癫痫患者9例和20例健康志愿者。病例组无诱因的隐源性癫痫患者54名,9名继发性癫痫,继发原因:第一组,脑外伤史1例,第二组:新生儿缺血缺氧脑病史1例,第三组:病毒性脑炎史5例,第四组:可疑海马硬化1例。由癫痫专科医生根据国际抗癫痫联盟(ILAE)的诊断标准进行。对照组20名年龄、性别与病灶组相匹配的正常人,所有受试者行常规MRI、海马MRI(病例组)和T2弛豫时间测量。结果:脑内各部位的T2驰豫时间值为继发性癫痫组>原发性癫痫组>正常人组。癫痫组杏仁核、海马头T2驰豫时间值均高于正常人组(杏仁核116.02±8.16:110.36±5.4ms和海马头120.30±10.48:116.42±8.13ms,P值分别为0.000,0.025);继发性癫痫组高于正常人组的部位包括杏仁核(119.07±8.14:110.36±5.4;,P值分别为0.001)、海马(125.88±8.80:116.42±8.13,P=0.001),尾状核、壳核。原发性癫痫组高于正常人组的部位只有杏仁核具有统计学差异,115.92±9.15:110.36±5.4ms,P=0.000。继发性癫痫组间两两比较发现,脑外伤:枕叶的T2驰豫时间与其他各组之间的差异具有统计学意义,P值分别为0.001,0.015;0.005、0.002、0.001。HIE:杏仁核、壳核的T2驰豫时间值高于正常人;壳核高于原发性癫痫组及正常人组。脑炎组:于正常人组相比,杏仁核、尾状核的T2驰豫时间值高于正常人。与原发性癫痫组相比,尾状核、额叶、顶叶的T2驰豫时间值脑炎组高于原发性癫痫组。可疑海马硬化患者杏仁核和壳核的T2驰豫时间值与原发性癫痫组及正常人组差别具有统计学意义。结论:、磁共振阴性的继发性癫痫患者杏仁核和海马头的T2驰豫时间值较正常人延长;原发性癫痫组杏仁核T2驰豫时间值延长。继发性癫痫T2驰豫时间值高于原发性癫痫高于正常人;不同继发性癫痫患者的不同部位的T2驰豫时间延长。
     第四部分磁共振弥散张量成像、T2弛豫时间测量在癫痫中的联合应用
     目的:探索癫痫患者脑组织的弥散特性,探讨T2弛豫时间值和弥散特性的改变是否相关。材料和方法:研究对象包括21例癫痫患者(平均年龄12.81±6岁),其中常规结构影像无异常改变的19例患者中,根据患者的脑电图特点分成颞叶癫痫组共15例,额叶癫痫2例,顶叶癫痫2例。另外有2例常规影像学提示灰质异位、脑外伤各一例。所有患者行常规头颅磁共振、DTI和T2弛豫时间扫描。健康对照组性别、年龄相匹配的正常人共10例(14.5±4.54岁),分别测量双侧颞叶、枕叶白质、额叶白质、顶叶白质、内囊和胼胝体膝部平均弥散系数、各向异性分数和T2弛豫时间值,比较各组间有无差异。结果:本组中颞叶癫痫组中病灶侧颞叶内侧的平均弥散系增高(P=0.039)。癫痫组病灶侧多个部位的各向异性分数(FA值)降低,其中颞叶白质FA值降低具有统计学意义(P=0.038)。颞叶癫痫患者中,癫痫组病灶侧杏仁核的的T2弛豫时间值高于正常人组(P=0.037),对侧杏仁核与正常对照组之间未见显著性差异。其余各部位未见显著性组间差异。相关性分析示:颞叶白质的各向异性分数与杏仁核的T2弛豫时间呈负相关(r=0.286,P=0.044)。杏仁核和海马及颞叶白质的T2弛豫时间值显著性相关(r=0.399,P=0.004;r=0.487,P=0.000),余未见显著相关性。另外在两例继发性癫痫中DTI可更加清晰地显示局部白质结构的改变。结论:常规磁共振阴性的颞叶癫痫患者中,癫痫发放侧的部分脑组织弥散系数增高,各向系数下降;与T2弛豫时间延长的部位有一定的相关性,说明在“隐源性”癫痫存在一定的病理改变,需要结合多种检查手段才能发现。在常规磁共振显示病灶的癫痫患者中,弥散张量成像较之于常规磁共振提供了更多关于白质结构的信息。结合多种技术,可从不同的角度揭示癫痫患者脑区的各种改变,揭示癫痫的发病机制和癫痫网络。
Part I T2 Relaxation Time of Normal Human Brainand it's Change with Aging
     Purpose: To determine whether the average T2 relaxation time values of brain differ with age, sex and hemisphere, and the effect of aging on T2 relaxation time values, also to establish reference values of the absolute T2 relaxation time for further pathological studies. Material and Methods: Subjects (18 men and 20 women) were chosen from a healthy population; Two age groups were defined as adolescent group(age≤17 years old) and adult group(over 17 years old). All subjects were examined, including routine cranial MRI scan and T2 relaxometry sequence in oblique axial plane which is parallel to the long axis of hippocampus at 3.0 T MR. The data were transferred to the workstation ,analyzed by research T2 mapping software on Functool. Bilateral T2 relaxation time values were determined in 9 regions of interest encompassing the entire brain, including: the amygdala, the hippocampus , the caudate nucleus; the putamen, the thalamus ,frontal, parietal, occipital, temporal white matter. Results: The T2 relaxation time values in different brain regions were as follows: the amygdala 108.32±8.68ms, the hippocampus 114.99±9.16ms, caudate nucleus 98.98±5.67ms, putamen 86.00±7.95ms, the thalamus 86.34±5.47ms, temporal white matter 92.28±5.95ms,occipital white matter 102.95±5.75ms, frontal white matter 96.49±5.62ms; parietal white matter 107.28±6.01ms (P<0.05) . The T2 relaxation time values in gray matter except the putamen and thalamus is higher than that in white matter. No difference was observed between hemispheres, difference between different genders is found. The T2 relaxation time values significantly differ in different age groups in caudate nucleus; the putamen; the thalamus; the amygdala and the hippocampus. The T2 relaxation time values significantly decreased with advancing age in amygdala(r=-0.387, P<0.05), the hippocampus (r=-0.348, P<0.05), caudate nucleus (r=-0.526 P<0.05)and putamen(r=-0.764, P<0.05). Conclusion: Gray matter has a highter T2 relaxation time values than the white matter, the T2 relaxation time values of adult human brain show difference between genders in different regions, but no difference is found between the hemispheres. The T2 relaxation time values significantly decreased with advancing age in the amygdala, the hippocampus, caudate nucleus and putamen ; this change is most obviously in the putamen.
     Part II T2 Relaxometry in the MRI-negative Epilepsy and its Correlation with Clinical Characteristics
     Purpose: To determine whether the T2 relaxation time values in brain correlate with the clinical characteristic, the onset age and the frequency of seizure. Material and Methods: Subjects including 54 MRI-negative patients; 20 controls from healthy population. Bilateral T2 relaxation time values were determined in 9 regions of interest encompassing the entire brain, including: the amygdala and the hippocampus, the caudate nucleus; the putamen; the thalamus; frontal, parietal, occipital, temporal, white matter;.The clinical characteristics is divided into four groups:the 1~(st) group,simple partial seizure, the 2~(nd) group ,complex partial seizure, the 3~(rd) group ,absence seizures ,the 4~(th) group generalised tonic-clonic seizure. The patient group is divided into four frequency levels: the 1~(st) level with frequency more than once a day ;the 2nd level with frequency more than once a week, less than once a day; the 3rd level with frequency more than once a month, less than once a week;; the 4~(th) level with frequency more than once a year, less than once a month. Results: The T2 relaxation time values in amygdala in epilepsy group is higher than the controls (115.92±9.15:110.36±5.4, P=0.001). The T2 relaxation time values in caudate nucleus, the putamen, thalamus ,temporal and occipital white matter in the first epilepsy group were higher than the 3~(rd) group, with p values as 0.006,0.042,0.020, 0.026,0.044; The T2 relaxation time values in the hippocampus, the caudate nucleus, the putamen, thalamus,temporal white matter were lower than the 4~(th) group (p value as follows 0.005,0.001,0.003,0.009). The T2 relaxation time values in amygdala, hippocampus, caudate nucleus, thalamus, temporal and occipital white matter in the 2~(nd) epilepsy group were higher than the 3~(rd) group(p value as follows 0.007, 0.021, 0.010, 0.000, 0.006). The T2 relaxation time values in amygdala, hippocampus, caudate nucleus, thalamus ,temporal white matter in the 2~(nd) epilepsy group were higher than the 4~(th) group(p value as follows 0.001, 0.002, 0.013, 0.001). Difference was found in the different frequency levels, the temporal, occipital, parietal white matter. After excluding the age factors, the onset age in various regions was correlate with the T2 relaxation time, except occipital and parietal regions (amygdala r=-0.419,p=0.000; hippocampus r=-0.320,p=0.001; caudate nucleus r=-0.362 , p=0.000; putamen r=-0.586, p=0.000;r=-0.481, p=0.000; the temporal white matter r=-0.265, p=0.006; the frontal white matter r=-0.212, p=0.028.No statistical significance was found in the correlation of the T2 relaxation time and the interval between the last onset and the examination day. Conclusion: T2 relaxation time in multiple regions in the epilepsy group is higher than the normal control, T2 relaxation time change in amygdala is of statistical significance. T2 relaxation time in the epilepsy group is correlated with the frequency and the duration,and difference is also found in different clinical group.
     Part III Application of T2 Relaxometry in Secondary Epilepsy withNegative MRI
     Purpose: To determine compare the T2 relaxation time values in MRI-negative epilepsy patients with induce factor and those without induce factor. Material and Methods: Subjects including: 9 epilepsy patients with induce factor and 54 without any induce factor. The induce factor including injury, HIE, virus encephalitis, and suspected hippocampal sclerosis. The twenty controls came from healthy population. Results: The T2 relaxation time values in various regions in the epilepsy with induce factor were higher than those without induce factor, and controls. The T2 relaxation time values in amygdala and hippocampus in the epilepsy were higher than the controls (amygdala 116.02±8.16 :110.36±5.4ms, and hippocampus 120.30±10.48 :116.42±8.13ms, P value as 0.000, 0.025). The T2 relaxation time values in amygdale(119.07±8.14:110.36±5.4, P=0.001), hippocampus (125.88±8.80:1 16.42±8.13, P=0.001), caudate nucleus, putamen in the epilepsy with induce factor were higher than the normal controls. The amygdala relaxation time in the epilepsy without induce factor was higher than the normal controls (115.92±9.15:110.36±5.4ms, P=0.000). In the injury group the T2 relaxation time in the occipital white matter was higher than others(P value as 0.001, 0.015; 0.005、0.002、0.001), the amygdala and putamen T2 relaxation time in HIE was higher than the controls, the amygdala and caudate nucleus T2 relaxation time in the encephalitis groups were higher than the normal control, T2 relaxation time in caudate nucleus, frontal and parietal white matter were higher than the epilepsy without inducement, the amygdala and putamen T2 relaxation time in suspected hippocamal sclerosis were higher than the epilepsy without induce factor and normal controls. Conclusions: In the epilepsy patients with induce factors the amygdala and hippocampus T2 relaxation higher than epilepsy patients without induce factor and normal controls. T2 relaxation time in different regions is changed with different induce factor. T2 relaxation can show the abnormality which routine image is normal so that we can probe into the epilepsy network in the point of relaxation time.
     Part IV Application of Diffusion Tensor ImagingCombined with T2 Relaxometry in the Epilepsy
     Purpose: To explore the diffusion characteristic in the epilepsy, compare whether the diffusion characteristic correlates with T2 relaxation time values in MRI-negative epilepsy. Material and Methods: Twenty-one epilepsy patients including 19 MRI-negtive epilepsy patients, with 15 temporal ,2 frontal epilepsy and another 2 parietal epilepsy; another two epilepsy patients with positive routine MRI,which hints the diagnosis of ectopic gray matter were included. Ten controls came from healthy population. The MD, FA values and T2 relaxation time values in various regions in the epilepsy were evaluated. Results: The T2 relaxation time values in amygdala in the epilepsy were higher than the controls. Increased MD and decreased FA were found in the temporal lobe. There was statistically significant correlation between the amygdale T2 relaxtion time and the FA value in the temporal white matter. Further more, in the MRI positive cases the DTI demostrated the change of related white matter. Conclusions: In the MRI negative epilepsy patients, the increased MD with decreased ADC in the ipislatral temporal regions, there is correlation between the diffusion change and the T2 relaxation time, which demonstrate there maybe occult pathological change in the idiopathic epilepsy.As for the MRI positive epilepsy, DTI gives more information about white matter. Multimodality MRI is helpful in the exploration of the complicated change in the epilepsy brain, and the onset mechanism and network of epilepsy.
引文
1. English AE, Joy ML, Henkelman RM. Pulsed NMR relaxometry of striated muscle fibers [J]. Magn Reson Med, 1991,21(2):264-81.
    2. Clement O, Frija G, Chambon C, et al. Liver tumors in cirrhosis: experimental study with SPIO-enhanced MR imaging [J]. Radiology, 1991,180(1):31-36.
    3. Koenig SH, Brown RD 3rd, Spiller M, et al. Relaxometry of brain: why white matter appears bright in MRI [J]. Magn Reson Med, 1990 ,14(3):482-495.
    4. Barnes D, McDonald WI, Johnson G, et al. Quantitative nuclear magnetic resonance imaging: characterization of experimental cerebral oedema [J]. J Neurol Neurosurg Psychiatry, 1987,50:125-133
    5. Jackson GD, Connelly A, Duncan JS,et al.Detection of hippocampal pathology in intractable partial epilepsy:increased sensitivity with quantitative magnetic resonance T2 relaxometry [J]. Neurology ,1993,43:1793-1799
    6. Jackson GD, Connelly A, Duncan JS, et al. Detection of hippocampal pathology in intractable partial epilepsy: increased sensitivity with quantitative magnetic resonance T2 relaxometry [J]. Neurology,1993,43(9):1793-1799.
    7. Williamson D. S., Mulken R. V., Jakab P. D. et al.(1996) Coherence transfer by isotropic mixing in Carr-Purcell-Meiboom-Gill imaging: implications for the bright fat phenomenon in fast spin-echo imaging [J]. Magn. Reson. Med,35: 506-513
    8. 赵喜平. 磁共振成像系统原理及其应用[M]. 北京;科学出版社, 2000:68-70.
    9. Talos IF, Mian AZ, Zou KH,et al. Magnetic resonance and the human brain: anatomy, function and metabolism [J]. Cell Mol Life Sci,2006, 63(10):1106-1124.
    10. Henriksen O, de Certaines JD, Spisni A,et al.In vivo field dependence of proton relaxation times in human brain, liver and skeletal muscle: a multicenter study [J]. Magn Reson Imaging, 1993,11 (6):851-856.
    11. Whittall KP, MacKay AL, Li DK. Are mono-exponential fits to a few echoes sufficient to determine T2 relaxation for in vivo human brain? [J] Magn Reson Med,1999,41(6):1255-1257.
    12. [Chaland B, Mariette F, Marchal P, et al. 1H nuclear magnetic resonance relaxometric characterization of fat and water states in soft and hard cheese [J]. J Dairy Res,2000,67(4):609-618.
    13. Gossuin Y, Roch A, Muller RN, et al. Relaxation induced by ferritin and ferritin-like magnetic particles: the role of proton exchange[J]. Magn Reson Med, 2000,43(2):237-243.
    14. Bederson JB, Bartkowski HM, Moon K, et al. Nuclear magnetic resonance imaging and spectroscopy in experimental brain edema in a rat model[J]. J Neurosurg, 1986,64(5):795-802.
    15. Vymazal J, Brooks RA, Bulte JW, et al. Iron uptake by ferritin: NMR relaxometry studies at low iron loads[J]. J Inorg Biochem, 1998, 71(3-4): 153-157.
    16. Tenner MS, Spiller M, Koenig SH, et al. Calcification can shorten T2, but not T1, at magnetic resonance imaging fields. Results of a relaxometry study of calcified human meningiomas[J]. Invest Radiol, 1995,30(6):345-353.
    17. Scholz TD, Fleagle SR, Burns TL, et al. Tissue determinants of nuclear magnetic resonance relaxation times. Effect of water and collagen content in muscle and tendon[J] Invest Radiol. 1989,24(11):893-898.
    18. Hoehn-Berlage M, Tolxdorff T, Bockhorst K, et al. In vivo NMR T2 relaxation of experimental brain tumors in the cat: a multiparameter tissue characterization[J]. Magn Reson Imaging. 1992,10(6):935-947.
    19. Scott RC, Cross JH, Gadian DG, et al. Abnormalities in hippocampi remote from the seizure focus: a T2 relaxometry study[J]. Brain 2003,126(Pt 9): 1968-1974.
    20. Kim SG, Hu X, Ugurbil K. Accurate T1 determinations from inversion recovery images: application to human brain at 4 Tesla[J]. Magn Reson Imaging 1994,31(4):445-449.
    21. Garber HJ, Anath JV, Chiu LC, et al.Nuclear magnetic resonance study of obsessive-compulsive disorder[J]. Am J Psychiatry 1989, 146(8): 1001-1005.
    22. Koenig SH, Brown RD 3rd, Gibson JF, et al. Relaxometry of ferritin solutions and the influence of the Fe3+ core ions[J]. Magn Reson Med. 1986, 3(5):755-767
    23. Helenius J, Soinne L, Perkio J, et al. Diffusion-weighted MR imaging in normal human brains in various age groups[J]. AJNR Am J Neuroradiol. 2002 Feb,23(2):194-199.
    24. Nicholson KG, Kimura D. Sex differences for speech and manual skill. Perceptual and motor skills[J]. 1996,82:3-13.
    25.倪建明.弥散和弥散张量成像在缺血性脑梗死中的应用研究.[D].上海:复旦 大学,2006。
    26. Drayer B, Burger P, Darwin R, et al.MRI of brain iron. AJR Am J Roentgenol[J]. 1986,147(1):103-110.
    27. Bartzokis G, Mintz J, Sultzer D, et al.In vivo MR evaluation of age-related increases in brain iron[J]. Am J Neuroradiol. 1994, 15(6): 1129-1138.
    28. Drayer B, Burger P, Hurwitz B, et al.Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content?[J] AJR Am J Roentgenol. 1987,149(2):357-363.
    29. Ge Y, Grossman RI, Babb JS, et al.Age-related total gray matter and white matter changes in normal adult brain. Part Ⅰ: volumetric MR imaging analysis[J]. AJNR Am J Neuroradiol. 2002,23(8):1327-1333.
    30. Scheltens P, Barkhof F, Leyes D, Wolters EC, Ravid R, Kamphorst W. Histopathologic correlates of white matter changes on MRI in Alzheimer's disease and normal aging[J]. Neurology 1995,45:883-888
    31. Virta A, Barnett A, Pierpaoli A. Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MRI[J]. Magn Reson Imaging 1999, 17:1121-1133
    32. van Swieten JC, van Den Hout JHW, van Ketel BA, Hydra A, Wokke JHJ, van Gijn J. Periventricular lesions in the white matter on magnetic resonance imaing in the elderly[J]. Brain 1991,114:761-774
    33. Sze G, DeArmond S. Brant-Zawadski M, Davis RL, Norman D, Newton TH. Foci of MRI signal (pseudo lesions) anterior to the frontal horns: histologic correlations of a normal finding[J]. Am J Neuroradiol 1986,7:381-387
    34. Fazekas F, Kleinert R, Offenbacher H, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities[J]. Neurology 1993,43:1683-1689
    35. Fazekas F, Kleinert R, Offenbacher H, et al. The morphologic correlate of incidental white matter hyperintensities on MR images[J]. Am J Neuroradiol 1991,12:915-921
    36. Fan G, Wu Z, Pan S, Guo Q., et al. Quantitative study of MR T1 and T2 relaxation times and 1HMRS in gray matter of normal adult brain[J]. Chin Med J (Engl). 2003,116(3):400-404.
    37. Duncan JS.Brain imaging in idiopathic generalized epilepsies[J]. Epilepsia., 2005,46(Suppl 9): 108-111.
    38.何慧瑾,沈天真,冯晓源等。海马头部海马趾的丢失对海马硬化的诊断价值 [J].中华神经医学杂志,2005,4(10):1012-1014
    39. Guerreiro C, Cendes F, Li LM, et al. Clinical patterns of patients with temporal lobe epilepsy and pure amygdala atrophy. [J]. Epilepsia, 1999,40(4):453-461.
    40. Duncan JS, Bartlett PA, Barker GJ. Technique for measuring hippocampal T2 relaxation time[J]. AJNR 1996,17:1805-10.
    41. Van Paesschen W, Connelly A, Johnson C, et al. The amygdala and intractable temporal lobe epilepsy: A quantitative magnetic resonance study. [J]. Neurology 1996:47:1021-31.
    42. Salmempera T, Kalviainen R, Partanen K, et al. Hippocampal and amygdaloid damage in partial epilepsy: a cross-sectional MRI study of 241 patients. [J] Epilepsy Res 2001,46:69-82.
    43. Cendes F, Andermann F, Gloor P, et al. MRI volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy. [J] Neurology 1993,43:719-25.
    44. Bartlett PA, Richardson MP, Duncan JS. Measurement of amygdala T2 relaxation time in temporal lobe epilepsy[J]. J Neurol Neurosurg Psychiatry. 2002,73(6):753-755.
    45. Kalviainen R, Salmenpera T, Partanen K, et al. Recurrent seizures may cause hippocampal damage in temporal lobe epilepsy. [J]. Neurology. 1998,50(5):1377-1382.
    46. Kalviainen R, Salmenpera T. Do recurrent seizures cause neuronal damage? A series of studies with MRI volumetry in adults with partial epilepsy. [J]. Prog Brain Res. 2002,135:279-295.
    47. Salmenpera T, Kalviainen R, Partanen K, et al. Hippocampal and amygdaloid damage in partial epilepsy: a cross-sectional MRI study of 241 patients. [J]. Epilepsy Res. 2001,46(1):69-82.
    48. Grunewald RA, Jackson GD, Connelly A,MR detection of hippocampal disease in epilepsy: factors influencing T2 relaxation time. [J].AJNR Am J Neuroradiol. 1994,15(6):1149-56.
    49.吴逊。国际抗癫痫联盟和名词委员会推荐的癫痫发作的临床及脑电图分类.[J].中华神经科杂志.2001,34(3),187-189
    50. Scott RC, Cross JH, Gadian DG, et al. Abnormalities in hippocampi remote from the seizure focus: a T2 relaxometry study[J]. Brain, 2003,126(Pt 9): 1968-1974.
    51. Betting LE, Mory SB, Lopes-Cendes I, et al. MRI reveals structural abnormalities in patients with idiopathic generalized epilepsy[J]. Neurology,2006,67(5):8488-52.
    52. Bick U, Ullrich K, Stober U, et al. White matter abnormalities in patients with treated hyperphenylalaninaemia: magnetic resonance relaxometry and proton spectroscopy findings[J]. Eur J Pediatr. 1993,152(12): 1012-1020.
    53.尹世金,韩丹。强直电刺激右背海马诱发双侧海马神经元癫痫相关性单位放电特征.[J].中国应用生理学杂志,2001,17(3):262-266
    54.隋鸿锦 宫瑾 李冬冬。癫痫大鼠海马内凋亡神经元超微结构的研究.[N].解剖学报,1999,30(4)
    55. Briellmann RS, Kalnins RM, Berkovic SF, et al. Hippocampal pathology in refractory temporal lobe epilepsy: T2-weighted signal change reflects dentate gliosis. [J]. Neurology. 2002 22,58(2):265-271.
    56. Kelley AE, Domesick VB, Nauta WJH. The amygdalostriatal projection in the rat—an anatomical study by anterograde and retrograde tracing methods[J]. Neuroscience, 1982,7(3):615-630.
    57. Vella N, Ferraro G, Caravaglios G, et al. A feature of caudate control of focal hippocampal epilepsy: evidence for an anterograde pathway[J]. Exp Brain Res, 1991, 85(1):240-242.
    58. Ciumas C, Savic I. Structural changes in patients with primary generalized tonic and clonic seizures[J]. Neurology, 2006,67(4):683-686.
    59. Briellmann RS, Jackson GD, Pell GSStructural abnormalities remote from the seizure focus: a study using T2 relaxometry at 3 T[J]. Neurology. 2004,63(12):2303-2308
    60. Briellmann RS, Syngeniotis A, Fleming S, Kalnins RM, Abbott DF, Jackson GD. Increased anterior temporal lobe T2 times in cases of hippocampal sclerosis: a multi-echo T2 relaxometry study at 3 T. [J].AJNR Am J Neuroradiol. 2004,25(3):389-394.
    61.毛伟峰 金国华 秦建兵 等。大鼠创伤性脑损伤后细胞凋亡及NOS阳性细胞的变化[J].中国临床解剖学杂志,2003,21(6):603-607
    62. Swartz BE, Houser CR, Tomiyasu U, et al. Hippocampal cell loss in posttraumatic human epilepsy[J]. Epilepsia,2006,47(8):1373-1382.
    63.王雪峰.难治性癫痫.[M].上海:上海科学技术出版社,2002:28-29.
    64. Garnett MR, Blamire AM, Corkill RG, Cadoux-Hudson TA, Rajagopalan B, Styles P. Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. [J]. Brain. 2000 ,123 (Pt 10):2046-2054.
    65. Kumar R, Gupta RK ,Rao SB, et al.Magnetization transfer and T2 quantitation in normal appearing cortical gray matter and white matter adjacent to focal abnormality in patients with traumatic brain injury. Magn Reson Imaging [J]. 2003 ,21(8):893-899.
    66. Woermann FG, Barker GJ, Birnie KD, et al. Regional changes in hippocampal T2 relaxation and volume: a quantitative magnetic resonance imaging study of hippocampal sclerosis[J]. Neurol Neurosurg Psychiatry,65(5):656-664
    67. Briellmann RS, Kalnins RM, Berkovic SF, et al. Hippocampal pathology in refractory temporal lobe epilepsy: T2-weighted signal change reflects dentate gliosis. [J].Neurology. 2002 Jan 22,58(2):265-271.
    68. Hagemann G, Mentzel HJ, Weisser H, et al. Multiple reversible MR signal changes caused by Epstein-Barr virus encephalitis [J]. Am J Neuroradiol,2006,27(7): 1447-1449.
    69. Qiao M, Malisza KL, Del Bigio MR, Tuor UI. Transient hypoxia-ischemia in rats: changes in diffusion-sensitive MR imaging findings, extracellular space, and Na+-K+ -adenosine triphosphatase and cytochrome oxidase activity. [J]. Radiology. 2002,223(1):65-75.
    70. Qiao M, Malisza KL, Del Bigio MR, Tuor UI. Correlation of cerebral hypoxic-ischemic T2 changes with tissue alterations in water content and protein extravasation. Stroke. [J]. 2001,32(4):9589-9563.
    71. Werring DJ, Clark CA, Barker GJ, et al.Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. [J]. Neurology 1999;52:1626-1632
    72. Lim KO, Hedehus M, Moseley M, et al. Pfefferbaum A. Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging.[J].Arch Gen Psychiatry 1999;56:367-374
    73. Assaf, B.A., Mohamed, F.B., Abou-Khaled, K.J., et al. Diffusion tensor imaging of the hippocampal formation in temporal lobe epilepsy.[J].AJNR,2003,24, 1857-1862.
    74. Hugg, J.W., Butterworth, E.J.,Kuzniecky, R.I.Diffusion mapping applied to mesial temporal lobe epilepsy: preliminary observations.[J].Neurology, 1999, 53, 173-176.
    75. Eriksson, S.H., Rugg-Gunn, F.J., Symms, M.R., et al. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. [J]. Brain , 2001,124,617-626.
    76. Rugg-Gunn, F.J., Eriksson, S.H., Symms, M.R., et al. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies.[J]. Brain, 2001,124, 627-636.
    77. Wang, Y.,Majors, A., Najm, I., et al., Postictal alteration of sodium content and apparent, diffusion coefficient in epileptic rat brain induced by kainic acid.[J]. Epilepsia 1996.37,1000-1006.
    78. Righini, A., Pierpaoli, C, Alger, J.R., et al. Brain parenchyma apparent diffusion coefficient alterations associated with experimental complex partial status epilepticus.[J].Magn. Reson. Imaging, 1994,2, 865-871.
    79. Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imag 2001;13:534—546
    80. Pierpaoli C, Jezzard P, Basser PJ, et al. Diffusion tensor MR imaging of the human brain.[J]. Radiology 1996;201:637-648
    81. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI.[J]. J Magn Reson B 1996;111:209-219
    82. Wieshmann UC, Clark CA, Symms MR, et al. Water diffusion in the human hippocampus in epilepsy.[J].Magn Reson Imaging 1999;17:29-36
    83. Warach S, Gaa J, Siewert B, Wielopolski P.Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol. [J].1995;37(2):231-241.
    84. Rugg GFJ , Eriksson SH , Symms MR , et al . Diffusion tensor imaging in refractory epilepsy. [J].Lancet, 2002 , 359(9319): 1748 -1751
    85. Krakow K, Wieshmann UC, Woermann FG, et al. Multimodal MR imaging: functional, diffusion tensor, and chemical shift imaging in a patient with localization - related epilepsy. [J]. Epilepsia, 1999 ,40(10): 1459 - 1462
    1. Wieshmann UC.Clinical application of neuroimaging in epilepsy[J]. J Neurol Neurosurg Psychiatry 2003;74:466-470
    2. Knake S, Triantafyllou C; Wald L.L et al. 3T phased array MRI improves the presurgical evaluation in focal epilepsies. A prospective study.[J] Neurology,2005,65:1026-1031.
    3. Jackson GD, Berkovic SF, Duncan JS, et al. Optimizing the diagnosis of hippocampal sclerosis using MR imaging[J]. AJNR Am J Neuroradiol 1993;14(3):753-762
    4.何慧瑾,沈天真,冯晓源等。海马头部海马趾的丢失对海马硬化的诊断价值[J].中华神经医学杂志,2005,4(10):1012-1014
    5. Koller J, Zaczek R, Coyle J. N-acetylaspartyl-glutamate: regional levels in rat brain and the effects of brain lesions as determined by a new HPLC method. [J] . J Neurochem 1984;43:1136-42.
    6. Urenjak J, Williams SR, Gadian DG, et al. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types.[J]. J Neurosci 1993;13:981-989.
    7. Hugg JW, Laxer KD, Matson GB, et al. Neuron loss localizes human temporal lobe epilepsy by in vivo proton magnetic resonance spectroscopic imaging. [J]. Ann Neurol 1993;34:788-794.
    8. Connelly A, Jackson GD, Duncan JS, et al. Magnetic resonance spectroscopy in temporal lobe epilepsy. [J]. Neurology 1994;44:1411-1417.
    9. Cendes F, Andermann F, Preul MC, et al. Lateralization of temporal lobe epilepsy based on regional metabolic abnormalities in proton magnetic resonance spectroscopic images. [J]. Ann Neurol 1994;35:211-216.
    10. Garcia PA, Laxer KD, Ng T. Application of spectroscopic imaging in epilepsy. Magn Reson Imaging 1995;13:1181-1185.
    11. Cross JH, Connelly A, Jackson GD, et al. Proton magnetic resonance spectroscopy in children with temporal lobe epilepsy. [J]. Ann Neurol 1996;39:107-113.
    12. Gadian DG, Isaacs EB, Cross JH, et al. Lateralization of brain function in childhood revealed by magnetic resonance spectroscopy. [J]. Neurology 1996;46:974-977.
    13. Zubler F, Seeck M, Landis T,et al. Contralateral medial temporal lobe damage in right but not left temporal lobe epilepsy: a 1H magnetic resonance spectroscopy study. [J]. J Neurol Neurosurg Psychiatry, 2003,74:1240 - 1244.
    14. Capizzano A A, Vermathen P,Laxer KD ,et al. Multisection Proton MR Spectroscopy for Mesial Temporal Lobe Epilepsy. [J] AJNR Am J Neuroradiol ,2002,23:1359 - 1368.
    15. Savic I, Osterman Y, Helms G. MRS shows syndrome differentiated metabolite changes in human-generalized epilepsies [J].Neuroimage, 2004,21 (1): 163-172.
    16. Mory SB, Li LM, Guerreiro CA, et al. Thalamic dysfunction in juvenile myoclonic epilepsy: aproton MRS study.[J]. Epilepsia,2003 ,44(11): 1402-1405.
    17. Simister RJ, McLean MA, Barker GJ, et al. A proton magnetic resonance spectroscopy study of metabolites in the occipital lobes in epilepsy.[J]. Epilepsia. 2003;44(4):550-558.
    18. Simister RJ, McLean MA, Barker GJ, et al. Proton MRS reveals frontal lobe metabolite abnormalities in idiopathic generalized epilepsy.[J]. Neurology. 2003 14;61(7):897-902.
    19. Simister RJ, McLean MA, Barker GJ,et al .Proton magnetic resonance spectroscopy of malformations of cortical development causing epilepsy .[J] Epilepsy Res. 2007 Mar 20; [Epub ahead of print].
    20. Kobayashi E, Bagshaw AP, Jansen A, et al. Intrinsic epileptogenicity in polymicrogyric cortex suggested by EEG-fMRI BOLD responses.[J]. Neurology 2005;64:1263-1266.
    21. Federico P, Abbott DF, Briellmann RS, et al. Functional MRI of the pre-ictal state .[J] Brain. 2005;128:1811-1817
    22. Aghakhani Y, Bagshaw AP, Benar CG, et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy.[J].Brain. 2004;127:1127-1144
    23. Federico P, Archer JS, Abbott DF, et al. Cortical/subcortical BOLD changes with epileptic discharges: an EEG-fMRI study at 3T. [J]. Neurology 2005;64:1125-1130.
    24. Richardson MP, Strange BA, Thompson PJ, et al. Pre-operative verbal memory fMRI predicts post-operative memory decline after left temporal lobe resection.[J]. Brain. 2004;127(Pt ll):2419-2426.
    25. Assaf BA, Mohamed FB, Abou-Khaled KJ, et al. Diffusion Tensor Imaging of the Hippocampal Formation in Temporal Lobe Epilepsy. [J]. AJNR 2003 ; 24(9): 1857-1862
    26. Rugg-Gunn FJ, Eriksson SH, Symms MR, et al. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies[J]. Brain. 2001 ;124(Pt 3):627-636.
    27. Gupta RK, Saksena S, Agarwal A,et al. Diffusion tensor imaging in late posttraumatic epilepsy[J]. Epilepsia 2005,46(9):1465-1471
    28. Duncan, J. S., Bartlett, P., and Barker, G. J. 1996. Technique for measuring hippocampal T2 relaxation time. AJNR Am. J. Neuroradiol. 17: 1805-1810.
    29. Briellmann RS, Jackson GD, Pell GS Structural abnormalities remote from the seizure focus: a study using T2 relaxometry at 3 T[J]. Neurology. 2004;63(12):2303-2308
    30. Barnes D, McDonald WI, Johnson G,et al. Quantitative nuclear magnetic resonance imaging: characterization of experimental cerebral oedema.[J]. J Neurol Neurosurg Psychiatry 1987;50:125-133
    31. Abernethy LJ, Klafkowski G, Foulder-Hughes L, et al. Magnetic resonance imaging and T2 relaxometry of cerebral white matter and hippocampus in children born preterm[J]. Pediatr Res,2003,54(6):868-874.
    32. Scheltens P, Barkhof F, Leyes D, , et al. Histopathologic correlates of white matter changes on MRI in Alzheimer's disease and normal aging.[J]. Neurology 1995;45:883-888
    33. van Swieten JC, van Den Hout JHW, van Ketel BA,, et al. Periventricular lesions in the white matter on magnetic resonance imaing in the elderly.[J]. Brain 1991;114:761-774
    34. Sze G, DeArmond S. Brant-Zawadski M, Davis RL, et al. Foci of MRI signal (pseudo lesions) anterior to the frontal horns: histologic correlations of a normal finding.[J]. Am J Neuroradiol 1986;7:381-387
    35. Fazekas F, Kleinert R, Offenbacher H, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993 ;43:1683-1689
    36. Fazekas F, Kleinert R, Offenbacher H, et al. The morphologic correlate of incidental white matter hyperintensities on MR images.[J]. Am J Neuroradiol 1991;12:915-921
    37. Briellmann RS, Jackson GD,et al. Hemicranial volume deficits in patients with temporal lobe epilepsy with and without hippocampal sclerosis.[J]. Epilepsia. 1998;39(11):1174-1181.
    38. Bemasconi N, Bemasconi A, Caramanos Z, et al.Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region.[J]. Brain. 2003;126(Pt 2):462-469.
    39. Szabo CA, Lancaster JL, Lee S, et al. MR imaging volumetry of subcortical structures and cerebellar hemispheres in temporal lobe epilepsy.[J]. AJNR Am J Neuroradiol. 2006;27(10):2155-60.
    40. Araujo D, Santos AC, Velasco TR, et al. Volumetric evidence of bilateral damage in unilateral mesial temporal lobe epilepsy.[J]. Epilepsia. 2006;47(8): 1354-1359.
    41. Burdett J, Stevens J, Flugel D, et al. Increased sensitivity to pathological brain changes using co-registration of magnetic resonance imaging scans.[J]. Acta Radiol. 2006;47(10):1067-1072.
    42. Runge U, Kirsch G, Petersen B, et al. Ictal and interictal ECD-SPECT for focus localization in epilepsy.[J]. Acta Neurol Scand. 1997;96(5):271-276.
    43. Huberfeld G, Habert MO, Clemenceau S, et al. Ictal brain hyperperfusion contralateral to seizure onset: the SPECT mirror image[J]. Epilepsia,2006 ;47(1):123-133.
    44. Van Paesschen W. Ictal SPECT. [J] Epilepsia. 2004;45 Suppl 4:35-40.
    45. Petroff OA, Errante LD, Rothman DL, et al. Glutamate-glutamine cycling in the epileptic human hippocampus.[J] Epilepsia. 2002;43(7):703-710.
    46. 侯敏. 癫痫的SPECT脑血流灌注研究[D]上海: 复旦大学, 2004
    47. Engel J Jr, Henry TR, Risinger MW, et al. Presurgical evaluation for partial epilepsy: relative contributions of chronic depth-electrode recordings versus FDG-PET and scalp-sphenoidal ictal EEG[J]. Neurology;40(11):1670-1677.
    48. Lamusuo S, Jutila L, Ylinen A, et al.[18F]FDG-PET reveals temporal hypometabolism in patients with temporal lobe epilepsy even when quantitative MRI and histopathological analysis show only mild hippocampal damage.[J]. Arch Neurol. 2001;58(6):933-939.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700