用户名: 密码: 验证码:
磁共振纳米铁颗粒成像技术在肿瘤及转移淋巴结中的基础实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究不同浓度超小超顺磁性氧化铁颗粒(USPIO)在兔胭窝炎性淋巴结中的增强磁共振特征,建立USPIO淋巴结显像的常规注射及扫描方案。
     材料与方法:12只健康新西兰兔于足垫处注射完全弗氏佐剂,建立胭窝淋巴结的炎性增生模型。静脉注射不同剂量(45/90/135μmol Fe/kg)的USPIO,注射前后行磁共振扫描,观察不同浓度组及90μmol Fe/kg浓度组在不同时间点淋巴结强化特征,测量各组淋巴结T1信号强度、T2信号强度、T2*值及T2值变化并计算T2强化率。结果:胭窝炎症淋巴结在USPIO增强后24小时,90和135μmol Fe/kg浓度组T2加权像序列强化效果及强化率差异无显著性,但均显著优于45μmol Fe/kg浓度组(P<0.05):90μmo1 Fe/kg组在6-24h T1信号强度、T2信号强度、T2值及T2强化率差异无显著性(P>0.05),90μmol Fe/kg组淋巴结信号强度降低在18h达峰值,于18-24h均能获得较好的图像。
     结论:90μmol Fe/kg可以较好地强化淋巴结,注射USPIO后18-24h采集淋巴结图像可以达到满意的强化效果。
     目的:研究不同性质淋巴结超小超顺磁性氧化铁颗粒(USPIO)的增强磁共振特征,分析其与淋巴结病理超微结构的关系;在此基础上探讨USPIO增强MR在诊断淋巴结转移方面的作用及价值。
     材料与方法:36只健康新西兰兔随机分为炎症组及肿瘤转移组,兔足垫注射完全弗氏佐剂,用于建立胭窝淋巴结的炎性增生模型;兔后小腿肌肉接种VX2瘤株,用于建立胭窝肿瘤淋巴结转移模型。两组建模后动物均经静脉注射90μmolFe/kg的USPIO,于注射前及注射后24h分别行磁共振成像(MRI)扫描观察淋巴结信号强度及T2值变化并计算强化率,扫描后取出胭窝淋巴结行HE染色、普鲁士蓝染色及电镜切片,观察淋巴结超微结构的变化、铁颗粒在淋巴结内的分布特征,巨噬细胞吞噬铁颗粒的情况,分析病理显微结构与淋巴结强化的关系。确定淋巴结USPIO增强MR影像诊断标准,评价其诊断的准确性。
     结果:在观测的72枚淋巴结中,病理证实共有46个炎性增生性淋巴结和26个转移性淋巴结,其中4枚仅见小片状包膜下转移灶。USPIO增强MR诊断淋巴结的敏感性为84.6%,特异性为87.0%,阳性预测值为78.6%,阴性预测值为90.9%。平扫时炎性增生性淋巴结和肿瘤转移性淋巴结的T2信号强度差异无显著性,USPIO强化后,炎性增生组淋巴结中心T2信号强度明显降低,而肿瘤转移组淋巴结T2信号降低不明显,二者淋巴结强化率分别为57.22%和29.45%,差异具有显著性(P<0.01)。HE染色、普鲁士蓝染色及电镜切片显示淋巴结内的铁颗粒主要分布于淋巴结髓索结构内,皮质及副皮质区相对较少,与MRI图像相对应;电镜检查显示炎性增生性淋巴结内铁颗粒主要存在于巨噬细胞的胞饮泡内,而转移性淋巴结巨噬细胞胞饮泡内则被大量的细胞碎屑所取代。
     结论:淋巴结USPIO增强磁共振成像是一种良好的鉴别淋巴结性质的方法,良恶性淋巴结USPIO强化特征与淋巴结的超微结构特别是巨噬细胞在结内的分布及其功能状态有较密切关系,可能影响USPIO对淋巴结性质的诊断准确性。
     目的:研究DMSA-USPIO纳米颗粒表征、体外磁学性能及其在健康裸鼠体内的分布特征。
     方法:FT-IR方法检测DMSA-USPIO表面羧基情况。配置相同浓度梯度的DMSA-USPIO溶液及Ferumoxtran-10溶液,比较其体外磁共振T2及T2*信号强度及T2/T2*值;3只健康BALB/C nu-nu裸鼠尾静脉注射DMSA-USPIO,注射前后行磁共振扫描,观察其各脏器在MRI多种序列中的影像特征及在不同时间点肝、肾、肌肉和脑组织的强化特点和T2值变化,并进行病理组织学检查,普鲁士蓝染色观察各器官铁颗粒分布情况。
     结果:FT-IR波谱图显示DMSA-USPIO具有-OH和-C=O特征性吸收强峰。DMSA-USPIO浓度与R2/R2*值呈线性正比关系,在相同浓度下,DMSA-USPIO的横向弛豫时间明显短于Ferumoxtran-10的横向弛豫时间。DMSA-USPIO注射后肝脏信号强度比注射前减低,肾脏、肌肉与脑信号强度无明显改变;肝脏DMSA-USPIO注射前与注射24小时后T2值比较差异有显著性(p<0.05),强化率为26.8%。病理切片普鲁士蓝染色可见肝、脾、淋巴结组织内存在蓝染铁颗粒,肾、脑、肺、心肌及肠道未见明显铁颗粒沉积。
     结论:DMSA-USPIO颗粒有着优良的磁共振成像性能,表面被覆有丰富的可修饰集团,可作为靶标分子的拼接载体用于磁共振成像;肝脏可作为评价DMSA-USPIO纳米氧化铁颗粒裸鼠体内强化效果的目标脏器之一,用于后续磁共振增强研究。
     目的:构建血管内皮生长因子受体3(VEGFR3)抗体与超微超顺磁性氧化铁粒子(USPIO)的磁共振分子探针VEGFR3-USPIO,探讨其对人乳腺癌MDA-MB-231细胞的体外靶向结合能力及体外磁共振靶向成像能力。
     方法:利用细胞免疫荧光方法检测MDA-MB-231细胞VEGFR3的表达情况及表达部位;利用Western Blot方法检测VEGFR3分子量并进行半定量分析;用碳二亚胺(1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)将VEGFR3抗体和USPIO进行偶联;检测相同浓度梯度下VEGFR3-USPIO、USPIO溶液磁共振T2弛豫时间的变化及差异;将VEGFR3-USPIO、USPIO分别与MDA-MB-231细胞孵育,行普鲁士蓝染色观察铁颗粒结合及存在情况,并行体外磁共振成像测定T2值变化情况。
     结果:MDA-MB-231细胞VEGFR3受体表达阳性,VEGFR3表达部位在细胞膜及胞质内,VEGFR3肽段与Marker相比大致位于分子质量为73KDa处;体外磁共振测量结果显示,VEGFR3-USPIO与USPIO相比,在各浓度下,T2及T2*弛豫时间均无明显差异,且R2及R2*弛豫时间与溶液浓度存在线性正比关系;铁颗粒与细胞孵育后,普鲁士蓝染色可见VEGFR3-USPIO组铁颗粒存留较多,且集中分布于细胞膜周围,而USPIO组铁颗粒存留稀少,且散在分布于细胞间隙。VEGFR3-USPIO-细胞孵育组的T2弛豫时间低于USPIO-细胞孵育组,两者的T2驰豫时间变化率分别为61.0%和43.5%。
     结论:VEGFR3-USPIO颗粒在体外细胞水平对表达VEGFR3的人乳腺癌MDA-MB-231细胞具有较好的靶向结合能力和靶向成像能力。
     目的:利用临床型MRI仪探讨VEGFR3-USPIO颗粒的健康裸鼠体内分布特征及其对荷瘤裸鼠在体瘤块的靶向成像能力。
     材料与方法:3只健康BALB/C nu-nu裸鼠尾静脉注射VEGFR3-USPIO,注射前后行磁共振扫描,观察其各脏器在MRI多种序列中的影像特征及在不同时间点肝、肾、肌肉和脑组织的强化特点和T2值变化,并进行病理组织学检查,普鲁士蓝染色观察各器官铁颗粒分布情况;建立人乳腺癌MDA-MB-231裸鼠皮下瘤模型6只,随机分为二组,每组3只,分别经尾静脉注射VEGFR3-USPIO及空白USPIO造影剂,注射前与注射后24小时行磁共振扫描,测量在体肿瘤及肝脏的T2值强化程度,并进行病理组织学检查。
     结果:VEGFR3-USPIO注射后健康裸鼠肝脏T2值比注射前明显减低,而肾脏、肌肉与脑的T2值无明显改变。肝脏VEGFR3-USPIO注射前与注射24小时后T2值比较差异有显著性(p<0.05),强化率为25.7%。普鲁士蓝染色显示VEGFR3-USPIO强化24小时后可见肝、脾、淋巴结组织内蓝染铁颗粒,其他脏器未见明显铁颗粒沉积。T2WI图像上显示VEGFR3-USPIO组肿瘤T2值明显减低,强度率为28.6%;而USPIO组肿瘤T2值未见明显改变。二者肝的T2值降低均接近30%左右。离体标本普鲁士蓝染色观察,VEGFR3-USPIO组肿瘤及肿瘤间质可见蓝染铁颗粒,而USPIO组铁颗粒主要位于聚集在肿瘤周围的巨噬细胞中。
     结论:VEGFR3-USPIO与USPIO在健康裸鼠体内的分布相似,主要位于肝脏、脾脏血窦及淋巴结中;肝脏可作为评价VEGFR3-USPIO裸鼠强化效果的目标脏器;VEGFR3-USPIO有望成为一种高效、特异性的MRI靶向成像分子探针,用于肿瘤早期诊断及无创实时的评价治疗效果成像。
Purpose To study magnetic resonance enhancement features of inflammatory lymph nodes using different doses of ultrasmall superparamagnetic iron oxide (USPIO) particles in order to establish a standardized protocol for USPIO-enhanced MR imaging of lymph nodes.
     Materials and Methods A total of 12 healthy New Zealand rabbits were injected complete Freund's adjuvant in foot pad to establish popliteal inflammatory lymph node model. Different doses (45/90/135μmol Fe/kg) of USPIO were injected intravenously. Magnetic resonance scans were performed before and after USPIO injection to observe the enhancement features of different groups. T1SI, T2SI, T2*value and T2 value were measured and T2 enhancement ratio was calculated at different time points to draw time-dependent curves.
     Results Twenty-four hours after USPIO injection, there was no statistical difference in T2SI and enhancement ratio between 90 and 135μmol Fe/kg dose groups, but both were superior to 45μmol Fe/kg group (P<0.05); There were no statistical differences in T1SI, T2SI, T2 value or enhance ratio from 6 to 24 hours after USPIO injection in 90μmol Fe/kg group (P>0.05), and signal reduction of lymph nodes peaked 18 hours after injection. Better images were acquired with a post-contrast delay of 18-24 hours. Conclusion Lymph nodes can be enhanced well with a dose of 90μmol Fe/kg. Postcontrast delay of 18-24 hours is appropriate for acquiring satisfactory enhancement images.
     Purpose To assess the characteristics of lymph nodes in USPIO enhanced Magnetic resonance (MR) imaging in rabbit tumor and inflammatory models, and explore its relevance with histologic ultrastructural findings; To discuss the accuracy and clinical value of USPIO enhanced MR imaging in the diagnosis of lymph node.
     Materials and Methods 36 New Zealand white rabbits were randomly divided into inflammatory group and tumor group. Complete Freund's adjuvant was injected into the footpads to set up inflammatory model. VX2 tumor cell suspension was implanted into thighs to set up metastatic lymph node model. MR scans of the popliteal fossa were performed before and 24 hours after USPIO (90μmol Fe/kg) administration. T2 values of each lymph node were measured and enhancement rate was calculated as well. HE staining, Prussian blue staining, and electronic microscopy were performed to observe the pathological microstructure changes and the distribution of the iron particle in lymph node. Relationship between lymph nodes USPIO enhancement imaging and its microstructures were further analyzed. Diagnoses of popliteal lymph nodes were evaluated based on dedicated criteria and the accuracy was also discussed.
     Results There were 46 inflammatory and 26 metastatic lymph nodes, including four with subcapsular metastatic foci. Sensitivity, specificity and positive and negative predictive values of the diagnosis of nodal metastasis were 84.6%,87.0%,78.6% and 90.9%, respectively. Plain scan showed no obvious difference of T2 signal intensity between the inflammatory and metastasis lymph nodes. After USPIO administration, there was distinctly T2 signal reduction at the center in inflammatory lymph nodes, and metastatic lymph nodes showed faint T2 signal reduction. Enhancement rate of benign and malignant lymph nodes were 57.22% and 29.45%, respectively (P< 0.01). HE staining and Prussian blue staining indicated USPIO particles located mainly in the macrophages at inflammatory lymphatic medulla, while paracortical area and cortical area contained relatively much less USPIO particles due to less macrophages distribution. MRI findings were correlated with the pathological results. Electronic microscopy also verified that the majority of USPIO particles were located in the numerous cytophagic bubbles of macrophages in inflammatory nodes, while in metastatic nodes, they contained predominantly cellular residues.
     Conclusion USPIO-enhanced MR is a particularly promising technique that improves the sensitivity and specificity of metastatic lymph node. USPIO enhancement pattern of different lymph nodes is closely related to distribution and functional status of the intra-node macrophages. It may affect the accuracy of the lymph node property diagnosis based on USPIO enhanced image.
     Purpose:To investigate granulometric characteristics of DMSA modified Ultrasmall Superparamagnetic Iron Oxide (USPIO) nanoparticles, the magnetic property in vitro and distribution features in healthy nude mice.
     Materials and Methods:FT-IR method was used to detect carboxyl groups on the surface of DMSA-USPIO. MR signal intensity of modified USPIO solutions with different concentrations was evaluated, and was compared with that of Ferumoxtran-10 solutions. USPIO nanoparticles were injected into 3 healthy BALB/C nu-nu nude mice through tail veins. MR imaging was performed before and after USPIO administration to study the MR enhancement features and T2 signal intensity changes on different time points in liver, kidney, muscle and brain. Mice were sacrificed right after MR imaging scan, tissues were collected for Prussian blue staining to investigate iron distribution in different organs.
     Results:DMSA-USPIO had absorption peaks at CO-and OH-groups. R2 and R2* values had a linear correlation with USPIO concentrations in both particles. At the same concentration, T2 and T2* relaxation time of DMSA-USPIO nanoparticles was obviously shorter than that of Ferumoxtran-10. After USPIO administration, T2 signal intensity of liver reduced significantly, whereas no obvious T2 signal intensity changes was found in kidney, muscle and brain. T2 values of liver showed significant differences between pre-and 24 hours post-USPIO administration (p<0.05), with an enhancing ratio of 26.8%. Prussian blue staining showed iron nanoparticles scattering in liver, spleen and lymph nodes, and there were no visible iron deposition in other tissues including kidney, brain, lung, myocardiac wall and bowel wall.
     Conclusion:DMSA-USPIO nanoparticles with superb magnetic features, which were encapsulated with rich modifiable surface groups, can be used as conjugation carrier of the target molecular for MR imaging. The significant T2 value enhancement in the liver might be recommended as one of indexes for evaluation of USPIO enhancement effectiveness.
     Purpose:To establish a magnetic resonance molecular conjugator of vascular endothelial growth factor receptor 3 (VEGFR3) antibody and ultrasmall superparamagnetic iron oxide particles (USPIO). And to investigate in vitro targeted combination specificity and MRI targeted imaging feasibility of VEGFR3-USPIO to human breast cancer MDA-MB-231 cells.
     Materials and Methods:Expression level and expression site of VEGFR3 on MDA-MB-231 cells was detected using immunofluorescence technique. Molicular weight measurement and semi-quantitative analysis were performed using Western Blot test. VEGFR3 anti-body and USPIO were coupled using carbodiimide (1-ethyl-(3-dimethylamino propyl) carbodiimide hydrochloride (EDC). T2 relaxation time differences of VEGFR3-USPIO conjugator and USPIO solutions were evaluated at same concentration grads. After incubating the MDA-MB-231 cells with VEGFR3-USPIO and USPIO respectively, existing of iron particles was observed by Prussian blue staining, changes of T2 relaxation time of each in vitro samples were measured using a clinical MRI scanner.
     Results:VEGFR3 receptor expression was positive both on the membrane and in the cytoplasm of MDA-MB-231 cells. Molecular weight of VEGFR3 peptide is about 73Kda according to the result of Western blot test. In vitro MR scan proved that there was no significant T2 or T2* relaxition time difference between VEGFR3-USPIO and USPIO at every different concentrations, and there was linear correlation between R2 and R2* relaxation time and the particle concentration. After incubation, Prussian blue staining showed more iron particles left in the VEGFR3-USPIO group. Distribution of iron particles was mainly around the cell membrane in the VEGFR3-USPIO group, while scattered iron particles were found in the inter-cell space. T2 relaxation time of VEGFR3-USPIO-cell incubation group was lower than USPIO-cell incubation group, T2 relaxation time change rate were 61.0% and 43.5% respectively.
     Conclusion:VEGFR3-USPIO conjugator had satisfied in vitro targeted combination specificity and MRI targeted imaging feasibility according to a VEGFR3 expression positive cell MDA-MB-231.
     Purpose:To investigate the distribution feature of VEGFR3 antibody-conjugated Ultrasmall Superparamagnetic Iron Oxide nanoparticles (VEGFR3-USPIO) in healthy nude mice and assess its targeted imaging viability in the tumor bearing nude mice using a clinical type MRI scanner.
     Materials and Methods:VEGFR3-USPIO molecular probes were injected into 3 healthy BALB/C nu-nu nude mice via tail veins. MR imaging including multiple sequences was performed pre-and post-VEGFR3-USPIO administration in order to study the MR enhancement features and T2 signal intensity changes on different time points in liver, kidney, muscle and brain. Mice were sacrificed right after MR imaging scan, tissues were collected for Prussian blue staining. Iron particles distribution in different organs was investigated. Subcutaneous human mammary tumor (MDA-MB-231) models were established in 6 BALB/C nu-nu female nude mice. They were then randomly divided into two groups. VEGFR3-USPIO and DMSA-USPIO were injected into tumor bearing nude mice via tail veins. MR images were acquired before and 24 hours after contrast agent administration. T2 value enhancement of the tumor and the liver was measured and tissues were collected for histological examination.
     Results:After VEGFR3-USPIO administration in healthy nude mice, T2 value of liver got lower, whereas no obvious T2 value change was found in the kidney, muscle and brain. T2 values of the liver showed significant differences between before and 24 hours after VEGFR3-USPIO administration (p<0.05), with an enhancing ratio of 25.8%. Prussian blue staining showed iron oxide nanoparticles scattering in liver, spleen and lymph nodes, and there were no visible iron deposition in other tissues including kidney, brain, lung, myocardia wall and bowel wall. On T2WI image, T2 value of tumor tissue showed a dramatic decrease in VEGFR3-USPIO group, with enhancing ratio of 28.6%. However, in the USPIO group, T2 value of tumor tissue had no obvious changes. In both groups, T2 value of the liver showed equally 30% reduction. Prussian blue staining in VEGFR3-USPIO group showed that blue iron nanoparticles scattered around the tumor cells or inside their stoma. While in USPIO group, iron nanoparticles mostly deposited surround the macrophages which gathered around the tumor tissue.
     Conclusion:Similar to DMSA-USPIO nanoparticle, VEGFR3-USPIO mainly distributed in the liver, spleen and lymph nodes. The significant T2 value enhancement in the liver might be recommended as one of indexes for evaluation of VEGFR3-USPIO enhancement effectiveness. VEGFR3-USPIO is a potentially superb MRI molecular targeted imaging probe with high efficiency and high specificity. It is possible to be used as an imaging tool for early tumor detection and non-invasive real-time evaluation of anti-tumor therapy.
引文
[1]Jemal A, Siegel R, Ward E, et al. Cancer Statistics,2009 [J]. CA Cancer J Clin,2009, 59:225-249.
    [2]Weissleder R, Pittet MJ. Imaging in the era of molecular oncology [J]. Nature,2008, 452(7187):580-589.
    [3]Weissleder R, Mahmood U. Molecular imaging [J]. Radiology,2001,219(2):316-333.
    [4]Hoehn M, Himmelreich U, Kruttwig K, Wiedermann D. Molecular and cellular MR imaging:potentials and challenges for neurological applications [J]. J Magn Reson Imaging,2008,27(5):941-54.
    [5]Delikatny EJ, Poptani H. MR techniques for in vivo molecular and cellular imaging [J]. Radiol Clin North Am,2005,43(1):205-220.
    [6]Vande Velde G, Baekelandt V, Dresselaers T, et al. Magnetic resonance imaging and spectroscopy methods for molecular imaging [J]. Q J Nucl Med Mol Imaging,2009, 53(6):565-585.
    [7]Weissleder R. Molecular imaging:exploring the next frontier [J]. Radiology,1999, 212(3):609-614.
    [8]Wong FC, Kim EE. A review of molecular imaging studies reaching the clinical stage [J]. Eur J Radiol,2009,70(2):205-211.
    [9]Kinkel K, Lu Y, Both M, et al. Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis [J]. Radiology,2002,224(3):748-756.
    [10]Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide:characterization of a new class of contrast agent for MR imaging [J]. Radiology, 1990,175:489-493.
    [11]Will O, Purkayastha S, Chan C, et al. Diagnostic precision of nanoparticle enhanced MRI for lymph-node metastases:a meta-analysis [J]. Lancet Oncol,2006,7:52-60.
    [12]Tokuhara T, Taniqawa N, Matsurki M, et al. Evaluation of lymph node metastases in gastric cancer using magnetic resonance imaging with ultrasmall superparamagnetic iron oxide (USPIO):diagnostic performance in post-contrast images using new diagnostic criteria [J]. Gastric Cancer,2008; 11:194-200.
    [13]Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer [J]. N Engl J Med,2003, 348:2491-2499.
    [14]Guimaraes AR, Tabatabei S, Dahl D, et al. Pilot study evaluating use of lymphotrophic nanoparticle-enhanced magnetic resonance imaging for assessing lymph nodes in renal cell cancer [J]. Urology,2008,71(4):708-712.
    [15]Michel SC, Keller TM, Froehlich JM, et al. Preoperative breast cancer staging:MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement [J], Radiology,2002,225(2):527-536.
    [16]Rockall AG, Sohaib SA, Harisinghani MG, et a. Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer [J]. Journal of Clinical Oncology,2005,23(12):2813-2821.
    [17]Carrillo de Santa Pau E, Arias FC, Caso Pelaez E, et al. Prognostic significance of the expression of vascular endothelial growth factors A, B, C, and D and their receptors R1, R2, and R3 in patients with nonsmall cell lung cancer[J]. Cancer,2009, 115(8):1701-12.
    [18]Tammela T, Alitalo K. Lymphangiogenesis:molecular mechanism and future promise [J]. Cell,2010,140(4):460-476.
    [19]Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease [J]. Nature,2005,438:946-953.
    [20]Plate K. From angiogenesis to lymphangiogenesis[J]. Nat Med,2001,7:151-152.
    [21]He Y, Rajantie I, Pajusola K, et al. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels [J]. Cancer Res,2005,65(11):4739-4746.
    [22]Nakatsu T, Ichiyama S, Hirtake J. Structural basis for the spectral difference in luciferase bioluminescence [J]. Nature,2006,440(7082):372-376.
    [23]Hirakawa S, Brown LF, Kodama S, et al. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites [J]. Blood,2007, 109(3):1010-1017.
    [24]Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogensis by VEGF-C promotes breast cancer metastasis [J]. Nat Med,2001,7(2):192-198.
    [25]Das S, Ladell DS, Podgrabinska S, et al. Vascular endothelial growth factor-C induces lymphangitic carcinomatosis, an extremely aggressive form of lung metastases [J]. Cancer Res,2010,70(5):1814-1824.
    [26]Morelli MP, Brown AM, Pitts TM, et al. Targeting vascular endothelial growth factor receptor-1 and-3 with cediranib (AZD2171):effects on migration and invasion of gastrointestinal cancer cell lines [J]. Mol Cancer Ther,2009,8(9):2546-2558.
    [27]Di Costanzo F, Mazzoni F, Micol Mela M, et al. Bevacizumab in non-small cell lung cancer [J]. Drugs,2008,68(6):737-746.
    [28]Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma [J]. N Engl J Med,2007,356(2):125-134.
    [29]Motzer RJ, Rini BI, Bukowski RM, et al. Sunitinib in patients with metastatic renal cell carcinoma [J]. JAMA,2006,295(21):2516-2524.
    [30]Huhtala T, Laakkonen P, Sallinen H, et al. In vivo SPECT/CT imaging of human ovarian carcinoma with monoclonal antibodies to EGFR and VEGFR-3 in mouse mode [J]. J Nucl Med,2009,50 (Supplement 2):1932.
    [31]Sigovan M, Boussel L, Sulaiman A, et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque:initial experience in animal model [J]. Radiology,2009,252(2):401-409.
    [32]Boutry S, Laurent S, Elst LV, Muller RN. Specific E-selectin targeting with a superparamagnetic MRI contrast agent [J]. Contrast Media Mol Imaging,2006, 1(1):15-22.
    [33]Dousset V, Brochet B, Deloire MS, et al. MR imaging of relapsing ele sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium [J]. AJNR, 2006,27(5):1000-1005.
    [34]Truijers M, Fiitterer JJ, Takahashi S, et al. In vivo imaging of the aneurysm wall with MRI and a macrophage-specific contrast agent [J]. AJR Am J Roentgenol,2009, 193(5):437-441.
    [35]Neri M, Maderna C, Cavazzin C, et al. Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles:relevance for in vivo cell tracking [J]. Stem Cells,2008,26(2):505-516.
    [36]Zhang C, Jugold M, Woenne EC, et al. Specific targeting of tumor angiogenesis by RGD conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner [J]. Cancer Res,2007,67(4):1555-1562.
    [37]Kou G, Wang S, Cheng C, et al. Development of SM5-1-conjugated ultrasmall superparamagnetic iron oxide nanoparticles for hepatoma detection [J]. Biochem Biophys Res Commun,2008,374(2):192-197.
    [1]Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging [J]. European Radiology, 2001,11:2319-2331.
    [2]Benderbous S, Corot C, Jacobs P, et al. Superparamagnetic agents:physicochemical characteristics and preclinical imaging evaluation [J]. Acad Radiol,1996,3:292-294.
    [3]Raynal I, Prigent P, Peyramaure S, et al. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles:mechanisms and comparison of ferumoxides and ferumoxtran-10 [J]. Invest Radial,2004,39(1):56-63.
    [4]Lee JM, Kim CS, Youk JH, et al. Characterization of focal liver lesions with superparamagnetic iron oxide-enhanced MR imaging:value of distributional phase T1-weighted imaging [J]. Korean J Radiol,2003,4(1):9-18.
    [5]Vassallo P, Matei C, Heston W, et al. AMI-227-enhanced MR lymphography: usefulness for differentiating reactive from tumor-bearing lymph nodes [J]. Radiology, 1994,193:501-506.
    [6]Anzai Y, Piccoli CW, Outwater EK, et al. Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging:phase III safety and efficacy study [J]. Radiology,2003,228:777-788.
    [7]Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide:characterization of a new class of contrast agent for MR imaging [J]. Radiology, 1990,175:489-493.
    [8]Corot C, Petry KG, Trivedi R, et al. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging [J]. Invest Radiol,2004,39:619-625.
    [9]Rockall AG, Sohaib SA, Harisinghani MG, et al. Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer [J]. Journal of Clinical Oncology,2005,23:2813-2821.
    [10]Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide:an intravenous contrast agent for assessing lymph nodes with MR imaging [J]. Radiology,1990,175:494-498.
    [11]Bourrinet P, Bengele HH, Bonnemain B, et al. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide MR-contrast agent [J]. Invest Radiol,2006,41:313-324.
    [12]Harisinghani MG, Dixon WT, Saksena MA, et al. MR lymphangiography:imaging strategies to optimize the imaging of lymph nodes with ferumoxtran-10 [J]. Radiographics,2004,24:867-878.
    [13]Harisinghani MG, Saksena MA, Hahn PF, et al. Ferumoxtran-10-enhanced MR lymphangiography:dose contrast-enhanced imaging alone suffice for accurate lymph node characterization [J]? Am J Roentgenol,2006,186:144-148.
    [14]Sigal R, Vogl T, Casselman J, et al. Lymph node metastases from head and neck squamous cell carcinoma:MR imaging with ultrasmall superparamagnetic iron oxide particles (Sinerem MR)-results of a phase-Ⅲ multicenter clinical trial [J]. European Radiology,2002,12:1104-1113.
    [15]Corot C, Petry KG, Trivedi R, et al. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging [J]. Invest Radiol,2004,39:619-625.
    [16]Kooi ME, Cappendijk VC, Cleutjens KB, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging [J]. Circulation,2003,107:2453-58.
    [17]Politi LS, Bacigaluppi M, Brambilla E, et al. Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis [J]. Stem Cells,2007,25(10):2583-2592.
    [18]Oghabian MA, Gharehaghaji N, Amirmohseni S, et al. Detection sensitivity of lymph nodes of various sizes using USPIO nanoparticles in magnetic resonance imaging [J]. Nanomedicine,2010,1,4 [Epub ahead of print].
    [19]Gharehaghaji N, Oghabian MA, Sarkar S, et al. Optimization of pulse sequences in magnetic resonance lymphography of axillary lymph nodes using magnetic nanoparticles [J]. Nanosci Nanotechnol,2009,9(7):4448-4452.
    [20]Mazda M, Christopher CR, Andreas K, et al. Axillary lymph node metastases in patients with breast carcinomas:assessment with nonenhanced versus USPIO-enhanced MR imaging [J]. Radiology,2006,241(2):367-377.
    [21]Guimaraes AR, Tabatabei S, Dahl D, et al. Pilot study evaluating use of lymphotrophic nanoparticle-enhanced magnetic resonance imaging for assessing lymph nodes in renal cell cancer [J]. Urology,2008,71(4):708-712.
    [22]Michel SC, Keller TM, Frohlich JM, et al. Preoperative breast cancer staging:MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement [J]. Radiology,2002,225(2):527-536.
    [23]Tokuhara T, Tanigawa N, Matsuki M, et al. Evaluation of lymph node metastases in gastric cancer using magnetic resonance imaging with ultrasmall superparamagnetic iron oxide (USPIO):diagnostic performance in post-contrast images using new diagnostic criteria [J]. Gastric Cancer,2008,11(4):194-200.
    [24]Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer [J]. N Engl J Med,2003,348: 2491-2499.
    [25]Pannu HK, Wang KP, Borman TL, et al. MR imaging of mediastinal lymph nodes: evaluation using a superparamagnetic contrast agent [J]. Journal of Magnetic Resonance Imaging,2000,12:899-904.
    [26]Durand E, Raynaud JS, Bruneval P, et al. Magnetic resonance imaging of ruptured plaques in the rabbit with ultrasmall superparamagnetic particles of iron oxide [J]. Vase Res,2007,44(2):119-128.
    [27]Beaumont M, Lemasson B, Farion R, et al. Characterization of tumor angiogenesis in rat brain using iron-based vessel size index MRI in combination with gadolinium-based dynamic contrast-enhanced MRI [J]. J Cereb Blood Flow Metab,2009, 29(10):1714-1726.
    [28]Frericks BB, Wacker F, Loddenkemper C, et al. Magnetic resonance imaging of experimental inflammatory bowel disease:quantitative and qualitative analyses with histopathologic correlation in a rat model using the ultrasmall iron oxide SHU 555 C [J]. Invest Radiol,2009,44(1):23-30.
    [29]Sigovan M, Boussel L, Sulaiman A, et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque:initial experience in animal model [J]. Radiology,2009,252(2):401-409.
    [30]Choi SH, Moon WK, Hong JH, et al. Lymph Node Metastasis:Ultrasmall Superparamagnetic Iron Oxide-enhanced MR Imaging versus PET/CT in a Rabbit Model [J]. Radiology,2007,242(1):137-143.
    [31]Ruehm SG, Corot C, Vogt P, et al. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits [J]. Circulation,2001,103:415-422.
    [32]Hyafil F, Laissy JP, Mazighi M, et al. Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta relationship between signal loss and macrophage infiltration [J]. Arterioscler Thromb Vase Biol,2006,26:176-181.
    [33]Pultrum BB, van der Jagt EJ, van Westreenen HL, et al. Detection of lymph node metastases with ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging in oesophageal cancer:a feasibility study [J]. Cancer Imaging,2009, 9:19-28.
    [34]Heesakkers RA, Jager GJ, Hovels AM, et al. Prostate cancer:detection of lymph node metastases outside the routine surgical area with ferumoxtran-10-enhanced MR imaging [J]. Radiology,2009,251(2):408-414.
    [35]Barentsz JO, Futterer JJ, Takahashi S. Use of ultrasmall superparamagnetic iron oxide in lymph node MR imaging in prostate cancer patients [J]. Eur J Radiol,2007, 63(3):369-72.
    [36]Dinniwell R, Chan P, Czarnota G, et al. Pelvic lymph node topography for radiotherapy treatment planning from ferumoxtran-10 contrast-enhanced magnetic resonance imaging [J]. Int J Radiat Oncol Biol Phys,2009,74(3):844-851.
    [37]Vilarino-Varela MJ, Taylor A, Rockall AG, et al. A verification study of proposed pelvic lymph node localisation guidelines using nanoparticle-enhanced magnetic resonance imaging [J]. Radiother Oncol,2008,89(2):192-196.
    [38]Engelen SM, Beets-Tan RG, Lahaye MJ, et al. Location of involved mesorectal and extramesorectal lymph nodes in patients with primary rectal cancer:preoperative assessment with MR imaging [J]. Eur J Surg Oncol,2008,34(7):776-81.
    [39]Tanoura T, Bernas M, Darkazanli A, et al. MR lymphography with iron oxide compound AMI-227:studies in ferrets with filariasis [J]. American Journal of Roentgenology,1992,159:875-881.
    [40]Saksena MA, Saokar A, Harisinghani MG. Lymphotropic nanoparticle enhanced MR imaging (LNMR imaging) technique for lymph node imaging [J]. European Journal of Radiology,2006,58(3):367-374.
    [41]Firouznia K, Amirmohseni S, Guiti M, et al. MR relaxivity measurement of iron oxide nano-particles for MR lymphography applications [J]. Pak J Biol Sci,2008, 11(4):607-612.
    [42]Serkova NJ, Renner B, Larsen BA, et al. Renal Inflammation:targeted iron oxide nanoparticles for molecular MR imaging in mice [J]. Radiology,2010,255(2):517-26.
    [1]Dunne AA, Mandic R, Ramaswamy A, et al. Lymphogenic metastatic spread of auricular VX2 carcinoma in New Zealand white rabbits [J]. Anticancer Research,2002, 22:3273-3279.
    [2]Curvo-Semedo L, Diniz M, Migueis J, et al. USPIO-enhanced magnetic resonance imaging for nodal staging in patients with head and neck cancer [J]. Journal of Magnetic Resonance Imaging,2006,24:123-131.
    [3]Koh DM, Brown G, Temple L, et al. Rectal cancer:mesorectal lymph nodes at MR imaging with USPIO versus histopathologic findings-initial observations [J]. Radiology, 2004,231:91-99.
    [4]Harisinghani MG, Saksena MA, Hahn PF, et al. Ferumoxtran-10-enhanced MR lymphangiography:dose contrast-enhanced imaging alone suffice for accurate lymph node characterization [J]? Am J Roentgenol,2006,186:144-148.
    [5]Lahaye MJ, Engelen SM, Kessels AG, et al. USPIO-enhanced MR imaging for nodal staging in patients with primary rectal cancer:predictive criteria [J]. Radiology,2008, 246(3):804-811.
    [6]Anzai Y, Piccoli CW, Outwater EK, et al. Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging:phase III safety and efficacy study [J]. Radiology,2003,228:777-788.
    [7]Sigal R, Vogl T, Casselman J, et al. Lymph node metastases from head and neck squamous cell carcinoma:MR imaging with ultrasmall superparamagnetic iron oxide particles (Sinerem MR)-results of a phase-Ⅲ multicenter clinical trial [J]. European Radiology,2002(5),12:1104-1113.
    [8]Baghi M, Mack MG, Wagenblast J, et al. Iron oxide particle-enhanced magnetic resonance imaging for detection of benign lymph nodes in the head and neck:how reliable are the results [J]? Anticancer Research,2007,27:3571-3575.
    [9]Rockall AG, Sohaib SA, Harisinghani MG, et al. Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer [J]. Journal of Clinical Oncology,2005,23:2813-2821.
    [10]吴元魁,许乙凯.淋巴结转移的影像学诊断现状[J]。国外医学临床放射学分册,2004,27(3):256-259.
    [11]Sumi M, Ohki M, Nakamura T. Comparison of sonography and CT for differentiating benign from malignant cervical lymph nodes in patients with head and neck squamous cell carcinomas [J]. Am J Roentgenol,2001,176:1019-1024.
    [12]van den Brekel MW, Stel HV, Castelijns JA, et al. Cervical lymph node metastasis: assessment of radiologic criteria [J]. Radiology,1990,177(2):379-384.
    [13]Chikui T, Yonetsu K, Nakamura T. Multivariate feature analysis of sonographic findings of metastatic cervical lymph nodes:contribution of blood flow features revealed by power Doppler sonography for predicting metastasis [J]. Am J Neuroradiol,2000, 21:561-567.
    [14]Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging [J]. European Radiology, 2001,11:2319-2331.
    [15]Harisinghani MG, Dixon WT, Saksena MA, et al. MR lymphangiography:imaging strategies to optimize the imaging of lymph nodes with ferumoxtran-10 [J]. Radiographics,2004,24:867-878.
    [16]Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide:an intravenous contrast agent for assessing lymph nodes with MR imaging [J]. Radiology,1990,175:494-498.
    [17]Saokar A, Braschi M, Harisinghani MG. Lymphotrophic nanoparticle enhanced MR imaging (LNMRI) for lymph node imaging [J]. Abdominal Imaging,2006,3:660-667.
    [18]Heesakkers RA, Hovels AM, Jager GJ, et al. MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer:a prospective multicohort study [J]. Lancet Oncol,2008,9:850-856.
    [19]杨泽然,李继承.两种不同淋巴转移能力小鼠肝癌细胞亚系的建立和生物学特性[J].实验生物学报,2003,36(2):99-104.
    [20]孙昉宪.肿瘤模型的最新进展—“转移鼠”模型[J].国外医学肿瘤学分册,1996,23(5):287-290.
    [21]白旭明,曹贵文,王滨,等.兔VX2肝癌模型的建立[J].潍坊医学院报,2008,30(1): 1-4.
    [22]马连君,张向华,祁彦君.兔VX2肺癌模型的建立及评价[J].解放军医学杂志,2007,32(9):916-918.
    [23]王志明,任正刚,叶彤,等.兔肝VX2肝肿瘤模型的转移特性[J].肿瘤,2006,26(1):1057-1058.
    [24]李烁,薛华丹,金征宇,孙非.磁共振扩散加权成像用于动物模型淋巴结病变的实验研究[J].临床放射学杂志,2008,27(7):952-956.
    [25]Taniguchi I, Sakurada A, Murakami G, et al. Comparative histology of lymph node from aged animals and humans with special reference to the proportional areas of the nodal cortex and sinus [J]. Annals of Anatomy,2004,186:337-347.
    [26]Willard-Mack CL. Normal structure, function, and histology of lymph nodes [J]. Toxicologic Pathology,2006,34:409-424.
    [27]Mazda M, Christopher CR, Andreas K, et al. Axillary lymph node metastases in patients with breast carcinomas:assessment with nonenhanced versus USPIO-enhanced MR imaging [J]. Radiology,2006,241(2):367-377.
    [28]Guimaraes AR, Tabatabei S, Dahl D, et al. Pilot study evaluating use of lymphotrophic nanoparticle-enhanced magnetic resonance imaging for assessing lymph nodes in renal cell cancer [J]. Urology,2008,71(4):708-712.
    [29]Michel SC, Keller TM, Frohlich JM, et al. Preoperative breast cancer staging:MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement [J]. Radiology,2002,225(2):527-536.
    [30]Tokuhara T, Tanigawa N, Matsuki M, et al. Evaluation of lymph node metastases in gastric cancer using magnetic resonance imaging with ultrasmall superparamagnetic iron oxide (USPIO):diagnostic performance in post-contrast images using new diagnostic criteria [J]. Gastric Cancer,2008,11(4):194-200.
    [31]Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer [J]. N Engl J Med,2003,348: 2491-2499.
    [32]Pannu HK, Wang KP, Borman TL, et al. MR imaging of mediastinal lymph nodes: evaluation using a superparamagnetic contrast agent [J]. Journal of Magnetic Resonance Imaging,2000,12:899-904.
    [33]Choi SH, Moon WK, Hong JH, et al. Lymph Node Metastasis:Ultrasmall Superparamagnetic Iron Oxide-enhanced MR Imaging versus PET/CT in a Rabbit Model [J]. Radiology,2007,242(1):137-143.
    [34]Keller TM, Michel SC, Fmhlich J, et al. USPIO-enhanced MRI for preopemtive staging of gynecological pelvic tumors:preliminary results [J]. Eur Radiol,2004, 14(6):937-944.
    [35]Bellin MF, Roy C, Kinkel K, et al. Lymph node metastases:safety and effectiveness of MR imaging with ultrasmall superparamagnetic iron oxide particles-initial clinical experience [J]. Radiology,1998,207(3):799-808.
    [36]Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide:characterization of a new class of contrast agent for MR imaging [J]. Radiology, 1990,175:489-493.
    [37]Carr I. Lymphatic metastasis [J]. Cancer Metastasis Reviews,1983,2:307-317.
    [38]Lee AS, Weissleder R, Brady TJ, et al. Lymph nodes:microstructural anatomy at MR imaging [J]. Radiology,1991,178:519-522.
    [39]Witte CL, Williams WH, Witte JH. Lymphatic imaging [J]. Lymphology,1993, 26:109-111.
    [40]Anzai Y, Brunberg JA, Lufkin RB. Imaging of nodal metastases in the head and neck [J]. Journal of Magnetic Resonance Imaging,1997,7:774-783.
    [41]Will O, Purkayastha S, Chan C, et al. Diagnostic precision of nanoparticle-enhanced MRI for lymph-node metastases:a meta analysis [J]. Lancet Oncol,2006, 7:52-60.
    [42]Ross RW, Zietman AL, Xie W, et al. Lymphotropic nanoparticle-enhanced magnetic resonance imaging (LNMRI) identifies occult lymph node metastases in prostate cancer patients prior to salvage radiation therapy [J]. Clin Imaging,2009,33(4):301-305.
    [43]Jahan N, Narayanan P, Rockall A. Magnetic resonance lymphography in gynaecological malignancies [J]. Cancer Imaging,2010,10:85-96.
    [44]Tanoura T, Bernas M, Darkazanli A, et al. MR lymphography with iron oxide compound AMI-227:studies in ferrets with filariasis [J]. American Journal of Roentgenology,1992,159:875-881.
    [1]Phillips JP, Dailey JP. Synthesis of silicone magnetic fluid for use in eye surgery [J]. J. Magn. Magn. Mater,1999,194:140-148.
    [2]Jordan A, Scholz R, Wust P, et al. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro [J]. J. Magn. Magn. Mater,1999,194:185-196.
    [3]L. Josephson, J.M. Perez, and R.Weissleder. Magnetic nanosensors for the detection of oligonucleotide sequences [J]. Angew. Chem. Int. Ed,2001,40:3204-3206.
    [4]Jain T K, Morales M A, Sahoo S K, et al. Iron oxide nanoparticles for sustained delivery of anticancer agents [J]. Mol Pharm,2005,2(3):194-205.
    [5]Parka SI, Kimb JH, Kim CO. Preparation of photosensitizercoated magnetic fluid for treatment of tumor [J]. J Magn Magn Mater,2004,272-276(3):2340-2342.
    [6]Jordan A, Scholz R, Wust P, et al. Magnetic fluid hyperthermia (MFH):cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles [J]. J. Magn. Magn. Mater,1999,201:413-419.
    [7]Veiseh O, Sun C, Gunn J, et al. Optical and MRI multifunctional nanoprobe for targeting gliomas [J]. Nano Lett,2005,5(6):1003-1008.
    [8]Jianfei Sun, Rui Xu, Yu Zhang, et al. Magnetic nanoparticles separation based on nanostructures [J]. J. Mag. Mag. Mater,2007,312:354-358.
    [9]Ju SH, Teng GJ, Zhang Y, et al. In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood [J]. Magnetic Resonance Imaging,2006,24((5): 611-617.
    [10]Z.P. Chen, Y. Zhang, S. Zhang, et al. Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2008,316:210-216.
    [11]Ming Ma, Yu Zhang, Wei Yu, et al. Preparation and characterization of magnetite nanoparticles coated by amino silane [J]. Coll. Surf.,2003,212:219.
    [12]Rocchiccioli-Deltcheff C, Franck R, Cabuil V and Massart R. Surfacted ferrofluid: interactions at the surfactant-magnetic iron oxide interface [J]. Chem. Res,1987, 5:126-127.
    [13]Yongkang Sun, Lei Duan, Zhirui Guo, et al. An improved way to prepare superparamagnetic magnetitesilica core-shell nanoparticles for possible biological application [J]. J. Mag. Mag. Mater,2005,285(1-2):65-70.
    [14]Sousa MH, Rubim JC, Sobrinho PG and Tourinho FA. Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures [J]. J. Magn. Magn. Mater,2001,225:67-72.
    [15]Kam leung. Ferumoxtran [EB]. Molecular Imaging Contrast Agent Database. 2004,5.
    [16]Bourrinet P, Bengele HH, Bonnemain B, et al. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide MR-contrast agent [J]. Invest Radiol,2006,41:313-324.
    [17]McCarville MB, Hillenbrand CM, Loeffler RB, et al. Comparison of whole liver and small region-of-interest measurements of MRI liver R2* in children with iron overload [J]. Pediatr Radiol,2010,5. [Epub ahead of print]
    [18]Wang ZJ, Fischer R, Chu Z, et al. Assessment of cardiac iron by MRI susceptometry and R2* in patients with thalassemia. Magn Reson Imaging,2010, 28(3):363-371.
    [19]Yanagawa Y, Tsushima, Y, Tokumaru A, et al. A Quantitative Analysis of Head Injury Using T2*-Weighted Gradient-Echo Imaging [J]. J Trauma,2000,49(2):272-277.
    [20]McNeill A, Birchall D, Hayflick SJ, et al. T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation [J]. Neurology,2008, 70(18):1614-1619.
    [21]Reddy T, Rainey JK. Interpretation of biomolecular NMR spin relaxation parameters [J]. Biochem Cell Biol,2010,88(2):131-142.
    [22]Lim RP, Tuvia K, Hajdu CH, et al. Quantification of hepatic iron deposition in patients with liver disease:comparison of chemical shift imaging with single-echo T2*-weighted imaging [J]. Am J Roentgenol,2010,194(5):1288-1295.
    [23]Kaye EA, Josan S, Lu A, et al. Consistency of signal intensity and T2* in frozen ex vivo heart muscle, kidney, and liver tissue [J]. J Magn Reson Imaging,2010, 31(3):719-724.
    [24]Szumowski J, Bas E, Gaarder K, et al. Measurement of brain iron distribution in Hallevorden-Spatz syndrome [J]. J Magn Reson Imaging,2010,31(2):482-489.
    [25]Pultrum BB, van der Jagt EJ, van Westreenen HL, et al. Detection of lymph node metastases with ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging in oesophageal cancer:a feasibility study [J]. Cancer Imaging,2009, 9:19-28.
    [26]Heesakkers RA, Jager GJ, Hovels AM, et al. Prostate cancer:detection of lymph node metastases outside the routine surgical area with ferumoxtran-10-enhanced MR imaging [J]. Radiology,2009,251(2):408-414.
    [27]Barentsz JO, Fiitterer JJ, Takahashi S. Use of ultrasmall superparamagnetic iron oxide in lymph node MR imaging in prostate cancer patients [J]. Eur J Radiol,2007, 63(3):369-72.
    [28]Tanoura T, Bernas M, Darkazanli A, et al. MR lymphography with iron oxide compound AMI-227:studies in ferrets with filariasis [J]. American Journal of Roentgenology,1992,159:875-881.
    [29]Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide:characterization of a new class of contrast agent for MR imaging [J]. Radiology, 1990,175:489-493.
    [30]Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging [J]. European Radiology, 2001,11:2319-2331.
    [31]Harisinghani MG, Dixon WT, Saksena MA, et al. MR lymphangiography:imaging strategies to optimize the imaging of lymph nodes with ferumoxtran-10 [J]. Radiographics,2004,24:867-878.
    [32]Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide:an intravenous contrast agent for assessing lymph nodes with MR imaging [J]. Radiology,1990,175:494-498.
    [33]郑振辉.实用医学实验动物学[M]。2008,4.
    [34]Van Beers BE, Sempoux C, Materne R, et al. Biodistribution of ultrasmall iron oxide particles in the rat liver [J]. J Magn Reson Imaging,2001,13(4):549-599.
    [1]Lljin K, Karkkainen MJ, Lawrence EC, et al. VEGFR3 gene structure, regulatory region, and sequence polymorphisms [J]. FASEB J,2001,15(6):1028-1036.
    [2]Kaipainen A, Korhonen J, Pajusola K, et al. The related FLT4, FLT1, and KDR receptor tyrosine kinase show distinct expression patterns in human fetal endothelial cells [J]. J Exp Med,1993,178(6):2077-2088.
    [3]Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease [J]. Nature,2005,438:946-953.
    [4]Plate K. From angiogenesis to lymphangiogenesis [J]. Nat Med,2001,7:151-152.
    [5]Hirakawa S, Brown LF, Kodama S, et al. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites [J]. Blood,2007, 109(3):1010-1017.
    [6]Wissmann C, Detmar M. Pathways targeting tumor lymphangiogenesis [J]. Clin Cancer Res,2006,12(23):6865-6568.
    [7]Jennbacken k, Vallbo C, Wang W, et al. Expression of vascular endothelial growth factor C (VEGF-C) and VEGF receptor-3 in human prostate cancer is associated with regional lymph node metastasis [J]. Prostate,2005,110-116.
    [8]Shimizu K, Kubo H, Yamaguchi K, et al. Suppression of VEGFR-3 signaling inhibits lymph node metastasis in gastric cancer [J]. Cancer Sci,2004,95:328-333..
    [9]Kukk E, Lymboussaki A, Taira S, et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development [J]. Development,1996,122:3829-3837.
    [10]Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogensis by VEGF-C promotes breast cancer metastasis [J]. Nat Med,2001,7(2):192-198.
    [11]Bando H, Weich HA, Horiguchi S, et al. The association between vascular endothelial growth factor-C, its corresponding receptor, VEGFR-3, and prognosis in primary breast cancer:a study with 193 cases [J]. Oncol. Rep,2006,15:653-659.
    [12]Hamrah P, Chen L, Zhang Q, Dana R. Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells [J]. Am. J. Pathol,2003,163:57-68.
    [13]Das S, Ladell DS, Podgrabinska S, et al. Vascular endothelial growth factor-C induces lymphangitic carcinomatosis, an extremely aggressive form of lung metastases [J]. Cancer Res,2010,70(5):1814-1824.
    [14]Morelli MP, Brown AM, Pitts TM, et al. Targeting vascular endothelial growth factor receptor-1 and-3 with cediranib (AZD2171):effects on migration and invasion of gastrointestinal cancer cell lines [J]. Mol Cancer Ther,2009,8(9):2546-2558.
    [15]Feng Y, Wang W, Hu J, et al. Expression of VEGF-C and VEGF-D as significant markers for assessment of lymphangiogenesis and lymph node metastasis in non-small cell lung cance r [J]. Anat Rec (Hoboken),2010,293(5):802-812.
    [16]Das S, Ladell DS, Podgrabinska S, et al. Vascular endothelial growth factor-C induces lymphangitic carcinomatosis, an extremely aggressive form of lung metastases [J]. Cancer Res,2010,70(5):1814-1824.
    [17]Lui Z, Ma Q, Wang X, Zhang Y. Inhibiting tumor growth of colorectal cancer by blocking the expression of vascular endothelial growth factor receptor 3 using interference vector-based RNA interference [J]. Int J Mol Med,2010,25(1):59-64.
    [18]Holash J, Thurston G, Rudge JS, et al. Inhibitors of growth factor receptors, signaling pathways and angiogenesis as therapeutic molecular agents [J]. Cancer Metastasis Rev,2006,25(2):243-52.
    [19]Achen MG, Mann GB, Stacker SA. Targeting lymphangiogenesis to prevent tumour metastasis [J]. Br J Cancer,2006,94(10):1355-1360.
    [20]Thiele W, Sleeman JP. Tumor-induced lymphangiogenesis:a target for cancer therapy [J]? J Biotechnol,2006,124(1):224-241.
    [21]Zhang D, Li B, Shi J, et al. Suppression of tumor growth and metastasis by simultaneously blocking vascular endothelial growth factor (VEGF)-A and VEGF-C with a receptor-immunoglobulin fusion protein [J]. Cancer Res,2010,70(6):2495-2503.
    [22]Di Costanzo F, Mazzoni F, Micol Mela M, et al. Bevacizumab in non-small cell lung cancer [J]. Drugs,2008,68(6):737-746.
    [23]Pytowski B, Goldman J, Persaud K, et al. Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody [J]. J Natl Cancer Inst, 2005.97(1):14-21.
    [24]Zhang Haiqian, Shinohara Hiroaki, Gu Ning, Sasaki Hiroshi, Sisido Masahiko, Cell adhesion inhibition by RGD peptides linked with a photoisomerizable nonnatural amino acid [J]. Journal of Southeast University (English Edition),2001,17(2):22-26.
    [25]Choi WW, Lewis MM, Lawson D, et al. Angiogenic and lymphangiogenic microvessel density in breast carcinoma:correlation with clinicopathologic parameters and VEGF-family gene expression [J]. Mod. Pathol,2005,18:143-152.
    [26]Vahola R, Salven P, Heikkila P, et al. VEGR3 and its ligand VEGF-C are associated with angiogenesis in breast cancer [J]. Am J Pathol,1999,154(5):1381-1 390.
    [27]Toi M, Matsumoto T, Bando H.Vascular endothelial growth factor:its prognostic, predictive, and therapeutic implications [J]. Lancet Oncol,2001,2(11):667.
    [28]Valrovic, Toni, Dobrila, et al. Correlation between Vascular endothelial growth factor, angiogenesis, and tumor associated marophages in invasive ductal breast carcinoma[J]. Virchows Arch,2002,440(6):583.
    [29]Toi M, lnada K, Suzuki H, et al. Tumor angiogenesis in breast cancer:its importance as a prognostic indicator and the association with vascular endothelial growth factor expression[J].Br Cancer R Treat,1995,36(2):193.
    [30]Walczak P, Zhang J, Gilad AA, et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia [J]. Stroke,2008, 39:1569-1574.
    [31]Heyn C, Ronald JA, Mackenzie LT, et al. In vivo magnetic resonance imaging of single cells in mouse brain with optical validation [J]. Magn. Reson. Med,2006, 55:23-29.
    [32]Heyn C, Ronald JA, Ramadan SS, et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain [J]. Magn. Reson. Med,2006,56:1001-1010.
    [33]Himmelreich U, Hoehn M. Stem cell labeling for magnetic resonance imaging [J]. Minim. Invasive Ther. Allied Technol,2008,17:132-142.
    [34]Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging [J]. NMR Biomed,2004,17:484-499.
    [35]Chen Z.P., Zhang Y., Zhang S., et al. Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA, Colloids and Surfaces A:Physicochem. Eng. Aspects 316 (2008) 210-216
    [36]Song Zhang, Yu Zhang, Jiwei Liu, et al. Preparation of Anti-Sperm Protein 17 Immunomagnetic Nanoparticles for Targeting Cell [J]. Nanosci. Nanotechnol,2008,8: 2341-2346.
    [37]Bos C, Delmas Y, Desmouliere A, et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver [J]. Radiology,2004,233(3):781-789.
    [1]Hoehn M, Himmelreich U, Kruttwig K, Wiedermann D. Molecular and cellular MR imaging:potentials and challenges for neurological applications [J]. J Magn Reson Imaging,2008,27(5):941-54.
    [2]Delikatny EJ, Poptani H. MR techniques for in vivo molecular and cellular imaging [J]. Radiol Clin North Am,2005,43(1):205-220.
    [3]Weissleder R, Pittet MJ. Imaging in the era of molecular oncology [J]. Nature,2008, 452(7187):580-589.
    [4]Vande Velde G, Baekelandt V, Dresselaers T, et al. Magnetic resonance imaging and spectroscopy methods for molecular imaging [J]. Q J Nucl Med Mol Imaging,2009, 53(6):565-585.
    [5]Akerman ME, Chan WC, Laakkonen P. Nanocystal targeting in vivo [J]. Proc Natl Acad Sci USA,2002,99:12617-12621
    [6]Kim S, Lim YT, Soltesz EG. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping [J]. Nat. Biotechnol,2004,22:93-97
    [7]Michalet X, Pinaud FF, Bentolila LA. Quantum dots for live cells, in vivo imaging, and diagnosis [J]. Science,2005,307:538-544.
    [8]Phelps ME. PET:The merging of biology and imaging into molecular imaging [J]. Nucl Med,2000,41:661-681.
    [9]Artemov D. Molecular magnetic resonance imaging with targeted contrast agents [J]. J Cell Bio chem,2003,909:518-524.
    [10]Weissleder R. Molecular imaging:exploring the next frontier [J]. Radiology,1999, 212(3):609-614.
    [11]Weissleder R, Mahmood U. Molecular imaging [J]. Radiology,2001,219(2):316-333.
    [12]Wong FC, Kim EE. A review of molecular imaging studies reaching the clinical stage [J]. Eur J Radiol,2009,70(2):205-211.
    [13]Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging [J]. European Radiology, 2001,11:2319-2331.
    [14]Weissleder R,-Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide:characterization of a new class of contrast agent for MR imaging [J]. Radiology, 1990,175:489-493.
    [15]Shapiro MG, Westmeyer GG, Romero PA, et al. Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine [J]. Nat Biotechnol,2010,28(3):264-270.
    [16]Minchin RF, Martin DJ. Nanoparticles for molecular imaging-an overview [J]. Endocrinology,2010,151(2):474-481.
    [17]Mueggler T, Baltes C, Rudin M. Molecular neuroimaging in rodents:assessing receptor expression and function [J]. Eur J Neurosci,2009,30(10):1860-1869.
    [18]Hwang do W, Song IC, Lee DS, Kim S. Smart magnetic fluorescent nanoparticles imaging probes to monitor microRNAs [J]. Small,2010,6(1):81-88.
    [19]Alford R, Ogawa M, Choyke PL, Kobayashi H. Molecular probes for the in vivo imaging of cancer [J]. Mol Biosyst,2009,5(11):1279-1291.
    [20]Kolosnjaj-Tabi J, Hartman KB, Boudjemaa S, et al. In Vivo Behavior of Large Doses of Ultrashort and Full-Length Single-Walled Carbon Nanotubes after Oral and Intraperitoneal Administration to Swiss Mice [J]. ACSNANO,2010,14:1481-1492.
    [21]Bock NA, Nieman BJ, Bishop JB, et al. In vivo multiple-mouse MRI at 7 Tesla [J]. Magn Reson Med,2005,54(5):1311-1316.
    [22]Lazovic J, Stojkovic DS, Collins CM, et al. Hexagonal zero mode TEM coil:a single-channel coil design for imaging multiple small animals [J]. Magn Reson Med, 2005,53:1150-1157.
    [1]Bipat S, van Leeuwen MS, Comans EF, et al. Colorectal liver metastases:CT, MR imaging, and PET for diagnosis-meta-analysis [J]. Radiology,2005,237 (1):123-131.
    [2]Aoki T, Tomoda Y, Watanabe H, et al. Peripheral lung adenocarcinoma:correlation of thin-section CT findings with histologic prognostic factors and survival [J]. Radiology, 2001,220(3):803-809.
    [3]Valls C, Andia E, Sanchez A, et al. Dual-phase helical CT of pancreatic adenocarcinoma:assessment of resectability before surgery [J]. AJR,2002,178 (4):821-826.
    [4]Zhi-Qing Zhao, Ke-Guo Zheng, Jing-Xian Shen, et al. Evaluation of lymph node metastases in gastric cancer with spiral computed tomography [J]. World Journal of Gastroenterology,2006,14(31):3060-3064.
    [5]Steinkamp HJ, Cornehl M, Hosten N, et al. Cervical Lymphadenopathy:Ratio of Long to short axis Diameter as a Predictor of Malignancy [J]. Br J Radiol,1995, 68(807):266-270.
    [6]Som PM. Detection of metastasis in cervical lymph nodes:CT and MR criteria and differential diagnosis [J]. Am J Roentgenol,1992,158(5):961-969.
    [7]Weissleder R, Elizondo G, Josephson L, et al. Experimental lymph node metastasis, enhanced, detection with MR lymphography [J]. Radiology,1989,171(3):835-839.
    [8]Weissleder R, Elizondo G, Witenberg J, et al. Ultrasmall superparamagnetic iron oxide (USPIO):an intravenous contrast agent for assessing lymph nodes with MR imaging [J]. Radiology,1990,175(2):494-498.
    [9]Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging [J]. European Radiology, 2001,11:2319-2331.
    [10]王芳,陆菁菁,金征宇.新型磁共振对比剂USPIO及应用研究现状[J].国际医学放射学杂志,2008,31(5):372-375.
    [11]Saksena MA, Saokar A, Harisinghani MG. Lymphotropic nanoparticle enhanced MR imaging (LNMR imaging) technique for lymph node imaging [J]. European Journal of Radiology,2006,58:367-374.
    [12]Harishinghani MG, Saksena MA, Hahn PF, et al. Ferumoxtraon-10-enhanced MR lymphangiography:does contrast-enhanced imaging alone suffice for accurate lymph node characterization [J]. American Journal of Roentgenology,2006,186:144-148.
    [13]Harisinghani MG, Saini S, Weissleder R, et al. MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients wit h primary abdominal and pelvic malignancies:radiographic-pathologic correlation [J]. AJR,1999,172 (6):1347-1351.
    [14]Stets C, Brandt S, Wallis F, et al. Axillary lymph node metastases:a statistical analysis of various parameters in MRI with USPIO [J]. JMRI,2002,16(1):60-68.
    [15]Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph node metastases in prostate cancer[J]. N Engl J Med,2003,348:2491-2499.
    [16]Will O, Purkayastha S, Chan C, et al. Diagnostic precision of nanoparticle enhanced MRI for lymph-node metastases:a meta-analysis [J]. Lancet Oncol,2006,7:52-60.
    [17]Guimaraes AR, Tabatabei S, Dahl D, et al. Pilot study evaluating use of lymphotrophic nanoparticle-enhanced magnetic resonance imaging for assessing lymph nodes in renal cell cancer [J]. Urology,2008,71(4):708-712.
    [18]Rockall AG, Sohaib SA, Harisinghani MG, et al. Diagnostic performance of nanoparticle enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer [J]. Journal of Clinical Oncology,2005,23(12):2813-2821.
    [19]Sigal R, Vogl T, Casselman J, et al. Lymph node metastases from head and neck squamous cell carcinoma:MR imaging with ultrasmall superparamagnetic iron oxide particles (Sinerem MR)-result s of a phase-Ⅲ multicenter clinical trial [J]. Eur Radiol, 2002,12(5):1104-1113.
    [20]Mack MG, Balzer JO, St raub R, et al. Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes [J]. Radiology,2002,222(1):239-244.
    [21]Tokuhara T, Taniqawa N, Matsurki M, et al. Evaluation of lymph node metastases in gastric cancer using magnetic resonance imaging with ultrasmall superparamagnetic iron oxide (USPIO):diagnostic performance in post-contrast images using new diagnostic criteria [J]. Gastric Cancer 2008; 11:194-200.
    [22]Anzai Y, Piccoli CW, Outwater EK, et al. Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging:phase III safety and efficacy study [J]. Radiology 2003; 228:777-788.
    [23]Memarsadeqhi M, Riedl CC, Kaneider A, et al. Axillary lymph node metastases in patients with breast carcinomas:assessment with nonenhanced versus USPIO-enhanced MR imaging [J]. Radiology 2006; 241:367-377.
    [24]Curvo-Semedo L, Diniz M, Migueis J, et al. USPIO-enhanced magnetic resonance imaging for nodal staging in patients with head and neck cancer [J]. Journal of Magnetic Resonance Imaging,2006,24:123-131.
    [25]Baghi M, Mack MG, Wagenblast J, et al. Iron oxide particle-enhanced magnetic resonance imaging for detection of benign lymph nodes in the head and neck:how reliable are the results [J]? Anticancer Research,2007,27:3571-3575.
    [26]Koh DM, Brown G, Temple L, et al., Rectal cancer:mesorectal lymph nodes at MR imaging with USPIO versus histopathologic findings-initial observations [J]. Radiology, 2004,231:91-99.
    [27]Harisinghani MG, Dixon WT, Saksena MA, et al. MR lymphangiography:Imaging strategies to optimize the imaging of lymph nodes with ferumoxtran-10 [J]. Radiographics,2004,24:867-878.
    [28]Choi SH, Moon WK, Hong JH, et al. Lymph node metastasis:ultrasmall superparamagnetic iron oxide-enhanced MR imaging versus PET/CT in a rabbit model [J]. Radiology,2007,242(1):137-43.
    [29]Michel SC, Keller TM, Froehlich JM, et al. Preoperative breast cancer staging:MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement [J]. Radiology,2002,225(2):527-536.
    [30]薛华丹,雷晶,李琢等.超顺磁性纳米氧化铁颗粒(USPIO)淋巴结成像及其与病理超微结构的对照研究[J].中国医学科学院学报,2009,31(2):139-145.
    [31]Gray L, MacFall J. Overview of diffusion imaging [J]. MRI Clin N Am,1998, 6(1):125-138.
    [32]Stadnik TW, Demaerel P, Luypaert RR, et al. Imaging tutorial:differential diagnosis of bright lesions on diffusion-weighted MR images [J]. Radiographics,2003,23(1):e7.
    [33]Sakai O, Curtin HD, Romo LV, et al. Lymph node pathology:Benign proliferative, lymphoma and metastatic disease [J]. Radiol Clin North Amer,2000,38:979.
    [34]Holzapfel K, Duetsch S, Fauser C, et al. Value of diffusionweighted MR imaging in the differentiation between benign and malignant cervical lymph nodes [J]. Eur J Radiol, 2009,72(3):381-387.
    [35]Kosucu P, Tekinbas C, Erol M, et al. Mediastinal lymph nodes:Assessment with diffusion weighted MR imaging [J]. J Magn Reson Imaging,2009,30(2):292-297.
    [36]Sumi M, Sakiham N, Sumi T, et al. Discrimination of metastatic lymph nodes with diffusion MR imaging in patients with head and neck cancer [J]. Am J Neuroradiol,2003, 24:1627-1634.
    [37]Abdel Razek AA, Soliman NY, Elkhamary S, et al. Role of diffusion weighted MR imaging in cervical lymphadenopathy [J]. Eur Radiol,2006,16:1468-1477
    [38]Shuo Li, Hua-dan Xue, Zheng-yu Jin, et al. MR Diffusion Weighted Imaging for Evaluation of Radiotherapeutic Effects on Rabbit VX2 Tumor Model [J]. Chinese Medical Sciences Journal,2008,23(3):172-177.
    [39]Vandecaveye V, De Keyzer F, Nuyts S, et al. Detection of head and neck squamous cell carcinoma with diffusion weighted MRI after (chemo) radiotherapy:correlation between radiologic and histopathologic findings [J]. Int J Radiat Oncol Biol Phys,2007, 67(4):960-971.
    [40]Takahara T, Imai Y, Yamashita T, et al. Diffusion weighted whole body imaging with background body signal suppression (DWIBS):technical improvement using free breathing, STIR and high resolution 3D display [J]. Radiat Med,2004,22(4):275-282.
    [41]Kwee TC, Takahara T, et al. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS):features and potential applications in oncology [J].Eur Radiol,2008,18(9):1937-1952.
    [42]Miirtz P, Krautmacher C, et al. Diffusion-weighted whole-body MR imaging with background body signal suppression:a feasibility study at 3.0 Tesla [J]. Eur Radiol,2007, 17(12):3031-3037.
    [43]Takano A, Oriuchi N, Tsushima Y, et al. Detection of metastatic lesions from malignant pheochromocytoma and paraganglioma with diffusion-weighted magnetic resonance imaging:comparison with 18F-FDG positron emission tomography and
    123I-MIBG scintigraphy [J]. Ann Nucl Med,2008,22(5):395-401.[44]张赞,梁碧玲,高立,等.磁共振弥散加权成像诊断颈部淋巴结的临床价值[J].中华肿瘤杂志,2007,29:70-73.
    [45]Shah GV, Fischbein NJ, Patel R, et al. New MR imaging techniques for head and neck [J]. Magn Reson Imaging Clin North Amer,2003,11(3):449-469.
    [46]Fischbein NJ, Noworolski SM, Henry RG, et al. Assessment of metastatic cervical adenopathy using dynamic contrast-enhanced MR imaging [J]. Am J Neuroradiol,2003, 24(3):301-311.
    [47]刘妍,夏黎明,梁赵玉,等.动态增强MRI在诊断颈部淋巴结病变中的价值[J].医学影像学杂志,2007,17(5):446-449.
    [48]Shah GV, Fischbein NJ, Gandhi D, Mukherji SK. Dynamic contrast-enhanced MR imaging [J]. Top Magn Reson Imaging,2004,15(2):71-77.
    [49]Star-Lack JM, Adalsteinsson E, Adam MF, et al. In Vivo 1H-MR Spectroscopy of Human Head and Neck Lymph Nodes Metastasis and Comparison with Oxygen Tension Measurements [J]. Am J Neuroradiol,2000,21(1):183-193.
    [50]Bisdas S, Baghi M, Huebner F, et al. In Vivo Proton MR Spectroscopy of Primary Tumors, Nodal and Recurrent Disease of the Extracranial Head and Neck [J]. Eur Radiol, 2006,16(10):2220-2228.
    [51]King AD, Yeung DK, Ahuja AT, et al. Human Cervical Lymphadenopathy: Evaluation wit h in Vivo 1H-MRS at 1.5 T [J]. Clin Radiol,2005,60(5):592-598.
    [52]Yeung OK, Yang UT, Tde GM. Breast cancer:in vivo proton MR spectroscopy in the characterization of histopathologic sub-types and prekiminary observations in axillary node metastases [J]. Radiology,2002,225(1):190-197.
    [53]Weissleder R, Mahmood U. Molecular Imaging [J]. Radiology,2001,219:316-333.
    [54]王霄英.分子影像学进展及其应用[J].北京大学学报(医学版),2007,39(5):555-556.
    [55]Weissleder R. Molecular imaging:exploring the next frontier (Review) [J]. Radiology,1999,212:609-614.
    [56]Weissleder R, Moore A, Mahmood U, et al. In Vivo Magnetic Resonance Imaging of Trans gene Expression [J]. Nat Med,2000,31(6):351-353.
    [57]Zhang C, Jugold M, Woenne EC, et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner [J]. Cancer Res,2007,67(4):1555-1562.
    [58]Peng XH, Qian X, Mao H, et al. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy [J]. Int J Nanomedicine,2008,3(3):311-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700