用户名: 密码: 验证码:
利用光散射技术研究离子液体多元体系的聚集行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体作为化工分离、材料制备、化学反应等的新兴溶剂体系,其应用过程中都不可避免地遇到与水、有机溶剂、大分子等的混合与分离,研究离子液体多元体系的聚集行为,可以充分说明离子液体多元体系中微观相形态、结构及其随动力学条件的变化情况,有利于指导建立离子液体多元体系混合与分离的技术方法。
     本论文主要采用激光光散射技术系统研究了离子液体多元体系的聚集行为,包括离子液体/水体系,离子液体/有机溶剂体系以及离子液体/高分子体系,探讨了离子液体与不同分子之间的相互作用机理,为离子液体的实际应用提供理论支撑。
     首先,为了说明离子液体与水分子的相互作用,我们主要研究了离子液体/水体系的聚集行为。选取1-丁基-3-甲基咪唑四氟硼酸盐[C4mim][BF4]为模型分子,研究了O-100wt%全浓度范围内的聚集行为,发现体系中除了有1nm左右的胶束峰外,还存在尺寸在几百纳米左右的异质结构峰。这种离子液体水溶液中出现的异质结构与在一些有机溶剂与水的混合体系中出现的异质结构相似。离子液体本身阴阳离子间的强相互作用、烷基链的疏水性以及水的三维氢键结构是形成这种异质结构的根本原因。阴离子氢键碱度越大的离子液体在水中形成的异质结构尺寸越小,而烷基链越长的离子液体在水中越不稳定,越容易形成异质结构甚至出现相分离。离子液体的浓度以及滴加的次序对异质结构的尺寸和形貌有很大影响。用0.22μm的膜过滤能有效去除异质结构,而胶束能被完整地保留下来,但随时间推移异质结构又会在体系中重新形成。同时过滤前后体系的离子数目没有改变,说明异质结构的存在并不影响体系的物化性质。另外,降低温度有利于异质结构的形成。
     其次,为了说明有机分子的极性对其与离子液体相互作用的影响,我们系统研究了二甲基亚砜(DMSO)、乙腈、乙醇、甲苯等极性完全不同的溶剂分子与离子液体混合后的聚集行为。结果表明强极性的DMSO能与各种离子液体均匀混合;而极性最弱的甲苯与离子液体不能互溶,混合后发生宏观相分离。在乙腈、乙醇等混合体系中出现了尺寸较大的异质结构,异质结构的性质与离子液体水溶液中出现的异质结构的性质相似。浓度、混合次序、阴离子的性质、阳离子烷基链的长度对异质结构的形成都有影响。可以推测异质结构的形成与离子液体本身的性质以及溶剂分子的极性有关。
     最后,为了说明离子液体对高分子聚集形态的影响,我们系统研究了带电性质不同的高分子在1-烯丙基-3-甲基咪唑氯化盐[AMIM][Cl],1-丁基-3-甲基咪唑甲酸盐[BMIM][COOH],1-乙基-3-甲基咪唑甲基磷酸酯盐[EMIM][(CH3O)HPO2]等离子液体中的聚集行为。结果发现,与中性高分子相比,带电的高分子与离子液体的相溶性更好。如带负电的脱氧核糖核酸DNA、聚苯乙烯磺酸钠PSS都以单分子的形式分散在离子液体中;而电中性的聚乙烯醇PVA、聚芳砜酰胺PSA在离子液体中都会发生一定程度的聚集。纤维素在离子液体中的溶解表现出独特性。作为中性高分子的纤维素溶于[AMIM][C1]后,链上的羟基因吸附Cl-而使纤维素链表现出类似聚电解质的性质。离子液体溶解高分子的能力与阴离子和高分子的相互作用能力有很大关系,当高分子和离子液体中形成的氢键或极性力的相互吸引作用不能克服阴阳离子本身的吸引作用时,则容易发生大分子聚集甚至产生沉淀导致相分离。
As one of the new kind of solvents in the aspects of chemical separation, material preparation and chemical reaction, ionic liquids (ILs) mixing with water, organic solvents or dissolving the macromolecules are inevitably encountered during their applications. Investigation on the aggregation behavior of ILs multicomponent systems is helpful to understand the interaction between ILs and other components, which is conducive to guide the establishment of mixing and separation techniques in ILs multi component systems.
     In this work, laser light scattering (LLS) was used to investigate the aggregation behaviors of ILs multicomponent systems, including ILs/water systems, ILs/organic solvent systems and ILs/polymer systems.
     Firstly, as an example of the aggregation behaviors of IL/water systems, a miscible ionic liquid 1-butyl-3-methyl-imidazoliumtetrafluoroborate ([C4mim][BF4]) was used to mix with water at the ratio ranging from 0wt%to 100wt%. LLS results indicated that besides the aggregates (micellar structure) with size about 1 nm, large-scale heterogeneous structures with several hundred nanometers were observed in the mixture. The heterogeneous structures in ILs aqueous solutions were similar to that in the mixtures of some organic solvents and water. The formation of heterogeneous structures was attributed to both the 3-D hydrogen-bond network of H2O and the local structure of ILs. The size and the property of the heterogeneous structures were closely related to the mixing orders, as well as the IL concentrations. Filtration by a 0.22μm filter was able to effectively remove the heterogeneous structures, while keeping the nanoscale aggregates intact. No change in conductivity was observed after filtration. Interestingly, the heterogeneous structures were reformed with the time. An acceleration in this reformation had been observed by decreasing temperature. The size of large-scale structure was found to be dependent on hydrogen basicity and length of alkyl chains of IL.
     Secondly, the aggregation behaviors of ILs with different polar solvents including dimethylsulfoxide (DMSO), acetonitrile, ethanol and toluene were investigated. Homogeneous mixture was formed when ILs mixed with the organic solvent with strong polarity such as DMSO while ILs was immiscible with toluene. The large-scale heterogeneous structures in ethanol or acetonitrile solutions were similar to that in ILs aqueous solution. The formation of large-scale heterogeneous structures was influenced by the ILs concentration, the mixing order, and the property of anions, as well as the length of alkyl chain. The weak interactions between organic solvent molecule and IL compared with anions and cations would lead to the heterogeneous structures formation. The organization pattern of ILs also had effect on the formation of heterogeneous structures. The different polarity results in the different properties of mixtures as in the case of water which is a strong polar solvent but mixed inhomogeneously in microscopic, due to the 3D hydro-bonding network.
     Finally, the aggregation behaviors of different polymers in 1-allyl-3-methylimidazolium chloride ([AMIM][Cl]),1-butyl-3-methyl imidazoliumformate ([BMIM][COOH]) and 1-ethyl-3-methylimidazo liumphosphite ([EMIM][(CH3O)HPO2]) were investigated. The charged polymers were easier to dissolved in ILs than neutral polymers. For polyelectrolyte carrying negative charge, such as DNA and polystyrene sulfonate (PSS), single chain conformation was observed for both polymers in ILs. While for neutral polymer, such as polyvinyl alcohol (PVA) and polysulfonamide (PSA), aggregation occurred. Cellulose in particular, was neutral polymer but dissolved well in [AMIM][Cl] resulting in single chain conformation. LLS and zeta potential analysis indicated that cellulose exhibited the feature of polyelectrolyte after dissolution in IL. The solubility of polymer in ILs was closely correlated with the interactions between anions and polymer, if the attractive forces between polymer and ILs gained by hydrogen bonding or polar interactions, cannot counterbalance the intractions between cation and anion, aggregation or precipitation of polymers would commonly occur.
引文
[1]Rogers, R. D.; Seddon, K. R., Eds.; Ionic Liquids IIIA:Fundamentals, Progress, Challenges, and Opportunities-Properties and Structure; ACS Symposium Series ed.; Oxford University Press:New York,2005; Vol.901 of ACS Symposium Series.
    [2]Rogers, R. D.; Seddon, K. R., Eds.; Ionic Liquids IIIB:Fundamentals, Progress, Challenges, and Opportunities-Transformations and Processes Oxford University Press:New York,2005; Vol.902 of ACS Symposium Series.
    [3]Plechkova, N. V; Seddon, K. R. Applications of ionic liquids in the chemical industry. Chem Soc Rev 2008,37,123-150.
    [4]Seddon, K. R.; Stark, A.; Torres, M. J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 2000,72, 2275-2287.
    [5]Krossing, I.; Slattery, J. M.; Daguenet, C; Dyson, P. J.; Oleinikova, A.; Weingartner, H. Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies (vol 128, pg 13427,2006). J Am Chem Soc 2007, 129,11296-11296.
    [6]Rebelo, L. P. N.; Lopes, J. N. C; Esperanca, J.; Guedes, H. J. R.; Lachwa, J.; Najdanovic-Visak, V; Visak, Z. P. Accounting for the unique, doubly dual nature of ionic liquids from a molecular thermodynamic, and modeling standpoint. Accounts Chem Res 2007,40,1114-1121.
    [7]Welton, T.; Wasserscheid, P., Eds.; Ionic Liquids in Synthesis; Wiley VCH: Weinheim, Germany,2002.
    [8]Metal Catalysed Reactions in Ionic Liquids; Dyson, P. J.; Geldbach, T. J., Eds.; Springer:New York,2006.
    [9]Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 1999,99,2071-2083.
    [10]Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 2002,102,3667-3691.
    [11]Dupont, J.; Scholten, J. D. Alkene hydroformylation catalyzed by rhodium complexes in ionic liquids:Detection of transient carbene species. Organometallics 2008,27,4439-4442.
    [12]Wang, Y. M.; Qian, Y. B.; Xiao, S. Y; Liu, L. A mild and efficient procedure for asymmetric Michael additions of cyclohexanone to chalcones catalyzed by an amino acid ionic liquid. Tetrahedron-asymmetr 2008,19,1515-1518.
    [13]Visser, A. E.; Swatloski, R. P.; Rogers, R. D. pH-dependent partitioning in room temperature ionic liquids provides a link to traditional solvent extraction behavior. Green Chem 2000,2,1-4.
    [14]Arce, A.; Earle, M. J.; Rodriguez, H.; Seddon, K. R. Separation of benzene and hexane by solvent extraction with 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide ionic liquids:Effect of the alkyl-substituent length. JPhys Chem B 2007,111,4732-4736.
    [15]Earle, M. J.; Arce, A.; Rodriguez, H.; Seddon, K. R. Separation of benzene and hexane by solvent extraction with 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide ionic liquids:Effect of the alkyl-substituent length. JPhys Chem B 2007,111,4732-4736.
    [16]Arce, A.; Rodriguez, H.; Soto, A. Use of a green and cheap ionic liquid to purify gasoline octane boosters. Green Chem 2007,9,247-253.
    [17]Holbrey, J. D.; Reichert, W. M.; Nieuwenhuyzen, M; Johnston, S.; Seddon, K. R.; Rogers, R. D. Crystal polymorphism in 1-butyl-3-methylimidazolium halides:supporting ionic liquid formation by inhibition of crystallization. Chem Commun 2003,1636-1637.
    [18]Ohno, H., Ed.; Electrochemical Aspects of Ionic Liquids; Wiley-Interscience: New York,2005.
    [19]Macfarlane, D. R.; Forsyth, M.; Howlett, P. C; Pringle, J. M.; Sun, J.; Annat, G; Neil, W.; Izgorodina, E. I. Ionic liquids in electrochemical devices and processes:managing interfacial Electrochemistry. Accounts Chem Res 2007,40, 1165-1173.
    [20]Chew, S. Y.; Sun, J. Z.; Wang, J. Z.; Liu, H. K.; Forsyth, M.; MacFarlane, D. R. Lithium-polymer battery based on an ionic liquid-polymer electrolyte composite for room temperature applications. Electrochim Acta 2008,53, 6460-6463.
    [21]Li, Y. X.; Ma, L. J.; Yu, X. F.; Yang, Q. B.; Noh, C. H. Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability. Sol Energ Mat Sol C 2008,92,1253-1259.
    [22]Someya, T.; Sekitani, T.; Noguchi, Y; Hata, K.; Fukushima, T.; Aida, T. A rubberlike stretchable active matrix using elastic conductors. Science 2008,321, 1468-1472.
    [23]Brazel, C. S.; Rogers, R. D., Eds.; Ionic Liquids in Polymer Systems; Oxford University Press:New York,2005; Vol.913 of ACS Symposium Series.
    [24]Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. Dissolution of cellose with ionic liquids. J Am Chem Soc 2002,124,4974-4975.
    [25]Liu, Q. B.; Janssen, M. H. A.; van Rantwijk, E; Sheldon, R. A. Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem 2005,7,39-42.
    [26]Stevenson, D. G; Biswas, A.; Jane, J. L.; Inglett, G E. Changes in structure and properties of starch of four botanical sources dispersed in the ionic liquid, 1-butyl-3-methylimidazolium chloride. CarbohydPolym 2007,67,21-31.
    [27]Xie, H. B.; Zhang, S. B.; Li, S. H. Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 2006,8,630-633.
    [28]Xie, H. B.; Li, S. H.; Zhang, S. B. Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chem 2005,7,606-608.
    [29]El Seoud, O. A.; Koschella, A.; Fidale, L. C; Dorn, S.; Heinze, T. Applications of ionic liquids in carbohydrate chemistry:A window of opportunities. Biomacromolecules 2007,8,2629-2647.
    [30]Phillips, D. M.; Drummy, L. F.; Conrady, D. G; Fox, D. M.; Naik, R. R.; Stone, M.O.; Trulove, P. C; De Long, H..C; Mantz, R. A. Dissolution and regeneration of Bombyx mori Silk fibroin using ionic liquids. J Am Chem Soc 2004,126,14350-14351.
    [31]Sate, D.; Janssen, M. H. A.; Stephens, G; Sheldon, R. A.; Seddon, K. R.; Lu, J. R. Enzyme aggregation in ionic liquids studied by dynamic light scattering and small angle neutron scattering. Green Chem 2007,9,859-867.
    [32]Fukaya, Y.; Sugimoto, A.; Ohno, H. Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 2006,7,3295-3297.
    [33]Earle, M. J.; Seddon, K. R. Ionic liquids. Green solvents for the future. Pure Appl Chem 2000,72,1391-1398.
    [34]Rogers, R. D.; Seddon, K. R. Ionic liquids-Solvents of the future? Science 2003,302,792-793.
    [35]Swatloski, R. P.; Holbrey, J. D.; Rogers, R. D. Ionic liquids are not always green:hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 2003,5,361-363.
    [36]Abbott, A. P.; Capper, G; Davies, D. L.; Rasheed, R. H.; Tambyrajah, V. Quaternary ammonium zinc-or tin-containing ionic liquids:water insensitive, recyclable catalysts for Diels-Alder reactions. Green Chemistry 2002,4,24-26.
    [37]Howarth, J.; Dallas, A. Moisture stable ambient temperature ionic liquids: Solvents for the new millennium.1. The heck reaction. Molecules 2000,5, 851-855.
    [38]Adams, C. J.; Earle, M. J.; Roberts, G; Seddon, K. R. Friedel-Crafts reactions in room temperature ionic liquids. Chem Commun 1998,2097-2098.
    [39]Umpierre, A. P.; Machado, G; Fecher, G H.; Morais, J.; Dupont, J. Selective hydrogenation of 1,3-butadiene to 1-Butene by Pd(0) nanoparticles embedded in imidazolium ionic liquids. Adv Syn Catal 2005,347,1404-1412.
    [40]Jiang, N.; Ragauskas, A. J. Selective aerobic oxidation of activated alcohols into acids or aldehydes in ionic liquids. JOrg Chem 2007,72,7030-7033.
    [41]Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Zanatta, N.; Bonacorso, H. G. Ionic liquids in heterocyclic synthesis. Chem Rev 2008,108,2015-2050.
    [42]Toma, S.; Meciarova, M.; Sebesta, R. Are Ionic Liquids Suitable Media for Organocatalytic Reactions? Eur-JOrg Chem 2009,321-327.
    [43]Li, D.; Zhang, Y. M.; Wang, H. P.; Tang, J. Z.; Wang, B. Free-radical copolymerization kinetics of acrylonitrile and methyl acrylate in [BMIM]BF4. J Appl Poly Sci 2006,102,4254-4257.
    [44]Lu, J. M.; Yan, F.; Texter, J. Advanced applications of ionic liquids in polymer science. Prog Polym Sci 2009,34,431-448.
    [45]Barth, J.; Buback, M.; Schmidt-Naake, G; Woecht, I. Termination kinetics of free-radical polymerization in ionic liquids. Polymer 2009,50,5708-5712.
    [46]Perrier, S.; Davis, T. P.; Carmichael, A. J.; Haddleton, D. M. First report of reversible addition-fragmentation chain transfer (RAFT) polymerisation in room temperature ionic liquids. Chem Commun 2002,2226-2227.
    [47]Perrier, S.; Davis, T. P.; Carmichael, A. J.; Haddleton, D. M. Reversible addition-fragmentation chain transfer polymerization of methacrylate, acrylate and styrene monomers in 1-alkyl-3-methylimidazolium hexfluorophosphate. Eur PolymJ 2003,39, 417-422.
    [48]Sekiguchi, K.; Atobe, M.; Fuchigami, T. Electropolymerization of pyrrole in 1-ethyl-3-methylimidazoliumtrifluoromethanesulfonate room temperature ionic liquid. Electrochem Commun 2002,4,881-885.
    [49]Nyce, G. W.; Glauser, T.; Connor, E. F.; Mock, A.; Waymouth, R. M.; Hedrick, J. L. In situ generation of carbenes:A general and versatile platform for organocatalytic living polymerization. J Am Chem Soc 2003,125,3046-3056.
    [50]Vijayaraghavan, R.; MacFarlane, D. R. Organoborate acids as initiators for cationic polymerization of styrene in an ionic liquid medium. Macromolecules 2007,40,6515-6520.
    [51]Vygodskii, Y. S.; Lozinskaya, E. L.; Shaplov, A. S. Ionic liquids as novel reaction media for the synthesis of condensation polymers. Macromol Rapid Comm 2002,23,676-680.
    [52]Vijayakrishna, K.; Jewrajka, S. K.; Ruiz, A.; Marcilla, R.; Pomposo, J. A.; Mecerreyes, D.; Taton, D.; Gnanou, Y. Synthesis by RAFT and ionic responsiveness of double hydrophilic block copolymers based on ionic liquid monomer units. Macromolecules 2008,41,6299-6308.
    [53]Tang, H. D.; Tang, J. B.; Ding, S. J.; Radosz, M.; Shen, Y. Q. Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids. J Polym Sci Pol Chem 2005,43, 1432-1443.
    [54]Huddleston, J. G; Willauer, H. D.; Swatloski, R. P.; Visser, A. E.; Rogers, R. D. Room temperature ionic liquids as novel media for'clean'liquid-liquid extraction. Chem Commun 1998,1765-1766.
    [55]Visser, A. E.; Rogers, R. D. Actinide chemistry in novel solvent media:Room temperature ionic liquids. Molten SaltsXiii 2002,2002,516-529.
    [56]Blanchard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F. Green processing using ionic liquids and CO2. Nature 1999,399,28-29.
    [57]Wang, J. S.; Sheaff, C. N.; Yoon, B.; Addleman, R. S.; Wai, C. M. Extraction of Uranium from Aqueous Solutions by Using Ionic Liquid and Supercritical Carbon Dioxide in Conjunction. Chem-EurJ2009,15,4458-4463.
    [58]Wang, J. H.; Cheng, D. H.; Chen, X. W; Du, Z.; Fang, Z. L. Direct extraction of double-stranded DNA into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and its quantification. Anal Chem 2007,79,620-625.
    [59]Hapiot, P.; Lagrost, C. Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 2008,108,2238-2264.
    [60]Sato, T; Marukane, S.; Narutomi, T.; Akao, T. High rate performance of a lithium polymer battery using a novel ionic liquid polymer composite. J Power Sources 2007,164,390-396.
    [61]Nakajima, H.; Ohno, H. Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer 2005,46, 11499-11504.
    [62]Yu, S. M.; Yan, F.; Zhang, X. W.; You, J. B.; Wu, P. Y; Lu, J. M.; Xu, Q. F.; Xia, X. W.; Ma, G. L. Polymerization of ionic liquid-based microemulsions:A versatile method for the synthesis of polymer electrolytes. Macromolecules 2008,41,3389-3392.
    [63]Scott, M. P.; Brazel, C. S.; Benton, M. G; Mays, J. W.; Holbrey, J. D.; Rogers, R. D. Application of ionic liquids as plasticizers for poly(methyl methacrylate). Chem Commun2002,1370-1371.
    [64]Scott, M. P.; Rahman, M.; Brazel, C. S. Application of ionic liquids as low-volatility plasticizers for PMMA. Eur Polym J2003,39,1947-1953.
    [65]Pernak, J.; Zabielska-Matejuk, J.; Kropacz, A.; Foksowicz-Flaczyk, J. Ionic liquids in wood preservation. Holzforschung 2004,58,286-291.
    [66]Li, X.; Geng, Y; Simonsen, J.; Li, K. C. Application of ionic liquids for electrostatic control in wood. Holzforschung 2004,58,280-285.
    [67]Zhang, H.; Wu, J.; Zhang, J.; He, J. S.1-Allyl-3-methylimidazolium chloride room temperature ionic liquid:A new and powerful nonderivatizing solvent for cellulose. Macromolecules 2005,38,8272-8277.
    [68]Kohler, S.; Liebert, T.; Schobitz, M.; Schaller, J.; Meister, F.; Gunther, W.; Heinze, T. Interactions of ionic liquids with polysaccharides 1. Unexpected acetylation of cellulose with 1-ethyl-3-methylimidazolium acetate. Macromol Rapid Comm 2007,28,2311-2317.
    [69]Fukaya, Y; Hayashi, K.; Wada, M.; Ohno, H. Cellulose dissolution with polar ionic liquids under mild conditions:required factors for anions. Green Chem 2008,10,44-46.
    [70]Triolo, A.; Russina, O.; Keiderling, U.; Kohlbrecher, J. Morphology of poly(ethylene oxide) dissolved in a room temperature ionic liquid:A small angle neutron scattering study. JPhys Chem B 2006,110,1513-1515.
    [71]Kawauchi, T.; Kumaki, J.; Okoshi, K.; Yashima, E. Stereocomplex formation of isotactic and syndiotactic poly(methyl methacrylate)s in ionic liquids leading to thermoreversible ion gels. Macromolecules 2005,38,9155-9160.
    [72]Wan, S. X.; Zhang, Y. M.; Wang, H. P. Acrylic fibers processing with ionic liquid as solvent. Polym Advan Technol 2009,20,857-862.
    [73]Liu, W. W.; Cheng, L. Y; Zhang, H. Y; Zhang, Y M.; Wang, H. P.; Yu, M. F. Rheological behaviors of polyacrylonitrile/1-butyl-3-methylimidazolium chloride concentrated solutions. IntJMolSci 2007,8,180-188.
    [74]Zhao, T. T.; Wang, H. P.; Wang, B.; Tu, X. P.; Zhang, Y. M.; Jiang, J. M. Rheological behavior of poly(m-phenyleneisophthalamide) in ionic liquid. Polym Bull 2006,57,369-375.
    [75]Tu, X. P.; Zhang, Y. M.; Zhao, T. T.; Wang, H. P. Rheological behavior of polyarylsulfone 1-butyl-3-methylimidazolium chloride solutions. J Macromol Sci B 2006,45,665-669.
    [76]Barthel, S.; Heinze, T. Acylation and carbanilation of cellulose in ionic liquids. Green Chem 2006,8,301-306.
    [77]Schlufter, K.; Schmauder, H. P.; Dorn, S.; Heinze, T. Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Comm 2006,27, 1670-1676.
    [78]Schobitz, M.; Meister, F.; Heinze, T. Unconventional Reactivity of Cellulose Dissolved in Ionic Liquids. Macromol Symp 2009,280,102-111.
    [79]Bagheri, M.; Rodriguez, H.; Swatloski, R. P.; Spear, S. K.; Daly, D. T.; Rogers, R. D. Ionic liquid-based preparation of cellulose-dendrimer films as solid supports for enzyme immobilization. Biomacromolecules 2008,9,381-387.
    [80]Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. A rubber like stretchable active matrix using elastic conductors. Science 2008,321, 1468-1472.
    [81]Viswanathan, G; Murugesan, S.; Pushparaj, V.; Nalamasu, O.; Ajayan, P. M.; Linhardt, R. J. Preparation of biopolymer fibers by electro spinning from room temperature ionic liquids. Biomacromolecules 2006,7,415-418.
    [82]Cho, J. H.; Lee, J.; He, Y.; Kim, B.; Lodge, T. P.; Frisbie, C. D. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv Mater 2008,20,686-+.
    [83]Lee, J.; Panzer, M. J.; He, Y. Y; Lodge, T. P.; Frisbie, C. D. Ion gel gated polymer thin-film transistors. JAm Chem Soc 2007,129,4532-+.
    [84]Dupont, J. On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Brazil Chem Soc 2004,75,341-350.
    [85]Gordon, C. M.; Holbrey, J. D.; Kennedy, A. R.; Seddon, K. R. Ionic liquid crystals:hexafluorophosphate salts. J Mater Chem 1998,8,2627-2636.
    [86]Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.; Watanabe, M. Physicochemical properties and structures of room temperature ionic liquids.2. Variation of alkyl chain length in imidazolium cation. JPhys Chem B 2005,109,6103-6110.
    [87]Tokuda, H.; Hayamizu, K.; Ishii, K.; Abu Bin Hasan Susan, M.; Watanabe, M. Physicochemical properties and structures of room temperature ionic liquids.1. Variation of anionic species. JPhys Chem B 2004,108,16593-16600.
    [88]Tokuda, H.; Ishii, K; Susan, M.; Tsuzuki, S.; Hayamizu, K.; Watanabe, M. Physicochemical properties and structures of room-temperature ionic liquids.3. Variation of cationic structures 10.1021/jpO53396f. JPhys Chem B 2006,110, 2833-2839.
    [89]Consorti, C. S.; Suarez, P. A. Z.; de Souza, R. F.; Burrow, R. A.; Farrar, D. H.; Lough, A. J.; Loh, W; da Silva, L. H. M.; Dupont, J. Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution. J Phys Chem B 2005,109,4341-4349.
    [90]Hardacre, C; Holbrey, J. D.; McMath, S. E. J.; Bowron, D. T; Soper, A. K. Structure of molten 1,3-dimethylimidazolium chloride using neutron diffraction. JChem Phys 2003,118,273-278.
    [91]Triolo, A.; Russina, O.; Bleif, H. J.; Di Cola, E. Nanoscale segregation in room temperature ionic liquids. JPhys Chem B 2007,111,4641-4644.
    [92]Iwata, K.; Okajima, H.; Saha, S.; Hamaguchi, H. O. Local structure formation in alkyl-imidazolium-based ionic liquids as revealed by linear and nonlinear Raman spectroscopy. Accounts Chem Res 2007,40,1174-1181.
    [93]Wang, Z. G; Kuang, Q. L.; Zhang, J. Revealing long-range density fluctuations in dialkylimidazolium chloride ionic liquids by dynamic light scattering. JPhys Chem B 2007,111,9858-9863.
    [94]Hayashi, S.; Ozawa, R.; Hamaguchi, H. Raman spectra, crystal polymorphism, and structure of a prototype ionic-liquid [bmim]Cl. Chem Lett 2003,32, 498-499.
    [95]Gozzo, F. C; Santos, L. S.; Augusti, R.; Consorti, C. S.; Dupont, J.; Eberlin, M. N. Gaseous supramolecules of imidazolium ionic liquids:"Magic" numbers and intrinsic strengths of hydrogen bonds. Chem-Eur J 2004,10,6187-6193.
    [96]Paul, A.; Mandal, P. K.; Samanta, A. On the optical properties of the imidazolium ionic liquids. JPhys Chem B 2005,109,9148-9153.
    [97]Mandal,P. K.; Saha, S.; Karmakar, R.; Samanta, A. Solvation dynamics in room temperature ionic liquids:Dynamic Stokes shift studies of fluorescence of dipolar molecules. Curr Sci India 2006,90,301-310.
    [98]Moyna, G; Remsing, R. C; Wildin, J. L.; Rapp, A. L. Hydrogen bonds in ionic liquids revisited:Cl-35/37 NMR studies of deuterium isotope effects in 1-n-butyl-3-methylimidazolium chloride. J Phys Chem B 2007,111, 11619-11621.
    [99]Palomar, J.; Ferro, V. R.; Gilarranz, M. A.; Rodriguez, J. J. Computational approach to nuclear magnetic resonance in 1-alky 1-3-methylimidazolium ionic liquids. JPhys Chem B 2007,111,168-180.
    [100]Gordon, C. M.; McLean, A. J. Photoelectron transfer from excited-state ruthenium(II) tris(bipyridyl) to methylviologen in an ionic liquid. Chem Commun 2000,1395-1396.
    [101]Skrzypczak, A.; Neta, P. Diffusion-controlled electron-transfer reactions in ionic liquids. JPhys Chem A 2003,107,7800-7803.
    [102]Mandal, P. K.; Sarkar, M.; Samanta, A. Excitation-wavelength-dependent fluorescence behavior of some dipolar molecules in room-temperature ionic liquids. JPhys Chem A 2004,108,9048-9053.
    [103]Katayanagi, H.; Hayashi, S.; Hamaguchi, H. O.; Nishikawa, K. Structure of an ionic liquid, 1-n-butyl-3-methylimidazolium iodide, studied by wide-angle X-ray scattering and Raman spectroscopy. Chem Phys Lett 2004,392,460-464.
    [104]Urahata, S. M.; Ribeiro, M. C. C. Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations:A systematic computer simulation study. J Chem Phys 2004,120,1855-1863.
    [105]Wang, Y. T.; Voth, G. A. Unique spatial heterogeneity in ionic liquids. J Am Chem Soc 2005,127,12192-12193.
    [106]Lopes, J. N. A. C; Padua, A. A. H. Nanostructural organization in ionic liquids. JPhys Chem B 2006,110,3330-3335.
    [107]Hu, Z. H.; Margulis, C. J. Heterogeneity in a room-temperature ionic liquid: Persistent local environments and the red-edge effect. PNAS 2006,103, 831-836.
    [108]Dong, K.; Zhang, S. J.; Wang, D. X.; Yao, X. Q. Hydrogen bonds in imidazolium ionic liquids. JPhys ChemA 2006,110,9775-9782.
    [109]Wang, Y. T.; Voth, G. A. Tail aggregation and domain diffusion in ionic liquids. JPhys Chem B 2006,110,18601-18608.
    [110]Schroder, U.; Wadhawan, J. D.; Compton, R. G; Marken, F.; Suarez, P. A. Z.; Consorti, C. S.; de Souza, R. F.; Dupont, J. Water-induced accelerated ion diffusion:voltammetric studies in 1-methyl3-[2,6-(S)-dimethylocten-2-yl] imidazoliumtetrafluoroborate, 1-butyl-3-methylimidazoliumtetrafluoroborate and hexafluorophosphate ionic liquids. New J Chem 2000,24,1009-1015.
    [111]Cammarata, L.; Kazarian, S. G; Salter, P. A.; Welton, T. Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 2001,3, 5192-5200.
    [112]Tran, C. D.; Lacerda, S. H. D.; Oliveira, D. Absorption of water by room-temperature ionic liquids:Effect of anions on concentration and state of water. Appl Spectrosc 2003,57,152-157.
    [113]Koddermann, T.; Wertz, C; Heintz, A.; Ludwig, R. The association of water in ionic liquids:A reliable measure of polarity. Angew Chem Int Edit 2006,45, 3697-3702.
    [114]Porter, A. R.; Liem, S. Y.; Popelier, P. L. A. Room temperature ionic liquids containing low water concentrations-a molecular dynamics study. Phys Chem Chem Phys 2008,10,4240-4248.
    [115]Rivera-Rubero, S.; Baldelli, S. Influence of water on the surface of hydrophilic and hydrophobic room-temperature ionic liquids. J Am Chem Soc 2004,126, 11788-11789.
    [116]Mele, A.; Tran, C. D.; Lacerda, S. H. D. The structure of a room-temperature ionic liquid with and without trace amounts of water:The role of C-H center dot center dot center dot O and C-H center dot center dot center dot F interactions in 1-n-butyl-3-methylimidazolium tetrafluoroborate. Angew Chem Int Edit 2003,42,4364-4366.
    [117]Saha, S.; Hamaguchi, H. O. Effect of water on the molecular structure and arrangement of nitrile-functionalized ionic liquids. J Phys Chem B 2006,110, 2777-2781.
    [118]Firestone, M. A.; Dzielawa, J. A.; Zapol, P.; Curtiss, L. A.; Seifert, S.; Dietz, M. L. Lyotropic liquid-crystalline gel formation in a room-temperature ionic liquid. Langmuir 2002,18,7258-7260.
    [119]Firestone, M. A.; Rickert, P. G; Seifert, S.; Dietz, M. L. Anion effects on ionogel formation in N,N'-dialkylimidazolium-based ionic liquids. Inorg Chim Acta2004,357,3991-3998.
    [120]Bowers, J.; Butts, C. P.; Martin, P. J.; Vergara-Gutierrez, M. C; Heenan, R. K. Aggregation behavior of aqueous solutions of ionic liquids. Langmuir 2004,20, 2191-2198.
    [121]Singh, T.; Kumar, A. Aggregation behavior of ionic liquids in aqueous solutions: Effect of alkyl chain length, cations, and anions. J Phys Chem B 2007,111, 7843-7851.
    [122]Sirieix-Plenet, J.; Gaillon, L.; Letellier, P. Behaviour of a binary solvent mixture constituted by an amphiphilic ionic liquid, 1-decyl-3-methylimidazolium bromide and water Pot entio metric and conductimetric studies. Talanta 2004,63,979-986.
    [123]Gaillon, L.; Sirieix-Plenet, J.; Letellier, P. Volumetric study of binary solvent mixtures constituted by amphiphilic ionic liquids at room temperature (1-alkyl-3-methylimidazolium bromide) and water. J Solution Chem 2004,33, 1333-1347.
    [124]Butts, C. P.; Goodchild, I.; Collier, L.; Millar, S. L.; Prokes, I.; Lord, J. C. D.; Bowers, J.; Webster, J. R. P.; Heenan, R. K. Structural studies of the phase, aggregation and surface behaviour of 1-alkyl-3-methylimidazolium halide plus water mixtures. J Colloid InterfSci 2007,307,455-468.
    [125]Wang, J. J.; Wang, H. Y.; Zhang, S. L.; Zhang, H. H.; Zhao, Y. Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C(4)mim][BF4] and [C(n)mim]Br(n= 4,6,8,10,12) in aqueous solutions. J Phys Chem B 2007,111,6181-6188.
    [126]Wang, H. Y; Wang, J. J.; Zhang, S. B.; Xuan, X. P. Structural Effects of Anions and Cations on the Aggregation Behavior of Ionic Liquids in Aqueous Solutions. JPhys Chem B 2008,112,16682-16689.
    [127]Vanyur, R.; Biczok, L.; Miskolczy, Z. Micelle formation of 1-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution. Colloid Surface A 2007,299,256-261.
    [128]Dong, B.; Zhao, X. Y; Zheng, L. Q.; Zhang, J.; Li, N.; Inoue, T. Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: Micellization and characterization of micelle microenvironment. Colloid Surface A 2008,317,666-672.
    [129]Blesic, M.; Marques, M. H.; Plechkova, N. V.; Seddon, K. R.; Rebelo, L. P. N.; Lopes, A. Self-aggregation of ionic liquids:micelle formation in aqueous solution. Green Chem 2007,9,481-490.
    [130]Jiang, W; Wang, Y. T.; Voth, G. A. Molecular dynamics simulation of nanostructural organization in ionic liquid/water mixtures. J Phys Chem B 2007, 111,4812-4818.
    [131]Luczak, J.; Hupka, J.; Thoming, J.; Jungnickel, C. Self-organization of imidazolium ionic liquids in aqueous solution. Colloid Surface A 2008,329, 125-133.
    [132]Miskolczy, Z.; Sebok-Nagy, K.; Biczok, L.; Gokturk, S. Aggregation and micelle formation of ionic liquids in aqueous solution. Chem Phys Lett 2004, 400,296-300.
    [133]Malham, I. B.; Letellier, P.; Turmine, M. Evidence of a phase transition in water-1-butyl-3-methylimidazolium tetrafluoroborate and water-1-butyl-2,3-dimethylimidazolium tetrafluoroborate mixtures at 298 k: Determination of the surface thermal coefficient, b(T,P). J Phys Chem B 2006, 110,14212-14214.
    [134]Fazio, B.; Triolo, A.; Di Marco, G. Local organization of water and its effect on the structural heterogeneities in room-temperature ionic liquid/H2O mixtures. J Raman Spectrosc 2008,39,233-237.
    [135]Takamuku, T.; Kyoshoin, Y.; Shimomura, T.; Kittaka, S.; Yamaguchi, T. Effect of Water on Structure of Hydrophilic Imidazolium-Based Ionic Liquid. J Phys Chem B 2009,113,10817-10824.
    [136]Remsing, R. C; Liu, Z. W.; Sergeyev, I.; Moyna, G. Solvation and aggregation of N,N'-dialkylimidazolium ionic liquids:A multinuclear NMR spectroscopy and molecular dynamics simulation study. J Phys Chem B 2008,112, 7363-7369.
    [137]Katayanagi, H.; Nishikawa, K.; Shimozaki, H.; Miki, K.; Westh, P.; Koga, Y. Mixing schemes in ionic liquid-H2O systems:A thermodynamic study. J Phys Chem B 2004,108,19451-19457.
    [138]Wu, D.; Wu, B.; Zhang, Y. M.; Wang, H. P. Density, Viscosity, Refractive Index and Conductivity of 1-Allyl-3-methylimidazolium Chloride plus Water Mixture. JChem EngData 2010,55,621-624.
    [139]Wu, B.; Liu, Y; Zhang, Y. M.; Wang, H. P. Probing Intermolecular Interactions in Ionic Liquid-Water Mixtures by Near-Infrared Spectroscopy. Chem-Eur J 2009,15,6889-6893.
    [140]Wu, B.; Zhang, Y. M.; Wang, H. P. Insight into the Intermolecular Interactions in [Bmim]BF4/[Amim]Cl-Ethanol-Water Mixtures by Near-Infrared Spectroscopy. JPhys Chem B 2009,113,12332-12336.
    [141]Anthony, J. L.; Maginn, E. J.; Brennecke, J. F. Solution thermodynamics of imidazolium-based ionic liquids and water. J Phys Chem B 2001,105, 10942-10949.
    [142]Hanke, C. G.; Atamas, N. A.; Lynden-Bell, R. M. Solvation of small molecules in imidazolium ionic liquids:a simulation study. Green Chem 2002,4,107-111.
    [143]Hanke, C. G; Johansson, A.; Harper, J. B.; Lynden-Bell, R. M. Why are aromatic compounds more soluble than aliphatic compounds in dimethylimidazolium ionic liquids? A simulation study. Chem Phys Lett 2003, 374,85-90.
    [144]Armstrong, D. W.; He, L. F.; Liu, Y. S. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal Chem 1999,71,3873-3876.
    [145]Anderson, J. L.; Ding, J.; Welton, T.; Armstrong, D. W. Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc 2002, 124,14247-14254.
    [146]Crowhurst, L.; Mawdsley, P. R.; Perez-Arlandis, J. M.; Salter, P. A.; Welton, T. Solvent-solute interactions in ionic liquids. Phys Chem Chem Phys 2003,5, 2790-2794.
    [147]Domanska, U.; Marciniak, A. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate. J Phys Chem B 2008, 112,11100-11105.
    [148]Padua, A. A. H.; Gomes, M. F.; Lopes, J. N. A. C. Molecular solutes in ionic liquids:A structural, perspective. Accounts Chem Res 2007,40,1087-1096.
    [149]Tubbs, J. D.; Hoffmann, M. M. Ion-pair formation of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifyl)imide in low dielectric media. J Solution Chem 2004,33,379-392.
    [150]Dorbritz, S.; Ruth, W.; Kragl, U. Investigation on aggregate formation of ionic liquids. Adv Synth Catal 2005,347,1273-1279.
    [151]Li, W. J.; Zhang, Z. F0; Zhang, J. L.; Han, B. X.; Wang, B.; Hou, M. Q.; Xie, Y. Micropolarity and aggregation behavior in ionic liquid plus organic solvent solutions. Fluid Phase Equilibr 2006,248,211-216.
    [152]Li, W. J.; Zhang, Z. F.; Han, B. X.; Hu, S. Q.; Xie, Y.; Yang, G. Y. Effect of water and organic solvents on the ionic dissociation of ionic liquids. J Phys Chem B 2007,111,6452-6456.
    [153]He, Y. Y; Li, Z. B.; Simone, P.; Lodge, T. P. Self-assembly of block copolymer micelles in an ionic liquid. J Am Chem Soc 2006,128,2745-2750.
    [154]He, Y. Y; Lodge, T. P. The micellar shuttle:Thermoreversible, intact transfer of block copolymer micelles between an ionic liquid and water. J Am Chem Soc 2006,128,12666-12667.
    [155]He, Y. Y; Lodge, T. P. A thermoreversible ion gel by triblock copolymer self-assembly in an ionic liquid. Chem Commun 2007,2732-2734.
    [156]Simone, P. M.; Lodge, T. P. Micellization of PS-PMMA diblock copolymers in an ionic liquid. Macromol Chem Phys 2007,208,339-348.
    [157]Bai, Z. F.; He, Y Y; Lodge, T. P. Block copolymer micelle shuttles with tunable transfer temperatures between ionic liquids and aqueous solutions. Langmuir 2008,24,5284-5290.
    [158]Bai, Z. F.; He, Y Y; Young, N. P.; Lodge, T. P. A thermoreversible micellization-transfer-demicellization shuttle between water and an ionic liquid. Macromolecules 2008,41,6615-6617.
    [159]Bai, Z. F.; Lodge, T. P. Thermodynamics and Mechanism of the Block Copolymer Micelle Shuttle between Water and an Ionic Liquid. J Phys Chem B 2009,113,14151-14157.
    [160]Meli, L.; Lodge, T. P. Equilibrium vs Metastability:High-Temperature Annealing of Spherical Block Copolymer Micelles in an Ionic Liquid. Macromolecules 2009,42,580-583.
    [161]He, Y Y; Boswell, P. G.; Buhlmann, P.; Lodge, T. P. Ion gels by self-assembly of a triblock copolymer in an ionic liquid. J Phys Chem B 2007,111, 4645-4652.
    [162]Simone, P. M.; Lodge, T. P. Lyotropic phase behavior of polybutadiene-poly(ethylene oxide) diblock copolymers in ionic liquids. Macromolecules 2008,41,1753-1759.
    [163]Ueki, T.; Watanabe, M.; Lodge, T. P. Doubly Thermosensitive Self-Assembly of Diblock Copolymers in Ionic Liquids. Macromolecules 2009,42,1315-1320.
    [164]Ueki, T.; Karino, T.; Kobayashi, Y; Shibayama, M.; Watanabe, M. Difference in lower critical solution temperature behavior between random copolymers and a homopolymer having solvatophilic and solvatophobic structures in an ionic liquid. JPhys Chem B 2007,111,4750-4754.
    [165]Noro, A.; Matsushita, Y.; Lodge, T. P. Thermoreversible supramacromolecular ion gels via hydrogen bonding. Macromolecules 2008,41,5839-5844.
    [166]He, Y; Lodge, T. P. Thermoreversible ion gels with tunable melting temperatures from triblock and pentablock copolymers. Macromolecules 2008, 41,167-174.
    [167]Lodge, T. P. Materials science-A unique platform for materials design. Science 2008,327,50-51.
    [168]Lee, J.; Kaake, L. G; Cho, J. H.; Zhu, X. Y; Lodge, T. P.; Frisbie, C. D. Ion Gel-Gated Polymer Thin-Film Transistors:Operating Mechanism and Characterization of Gate Dielectric Capacitance, Switching Speed, and Stability. JPhys Chem C 2009,113,8972-8981.
    [169]Moulthrop, J.S.; Swatloski, R. P.; Moyna, G; Rogers, R. D. High-resolution C-13 NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 2005,1557-1559.
    [170]Remsing, R. C; Swatloski, R. P.; Rogers, R. D.; Moyna, G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a C-13 and C1-35/37 NMR relaxation study on model systems. Chem Commun 2006,1271-1273.
    [171]Youngs, T. G A.; Holbrey, J. D.; Deetlefs, M.;Nieuwenhuyzen, M.; Gomes, M. F. C; Hardacre, C. A molecular dynamics study of glucose solvation in the ionic liquid 1,3-dimethylimidazolium chloride. Chemphyschem 2006,7, 2279-2281.
    [172]Novoselov, N. P.; Sashina, E. S.; Petrenko, V. E.; Zaborsky, M. Study of dissolution of cellulose in ionic liquids by computer modeling. Fibre Chem 2001,39,153-158.
    [173]Winterton, N. Solubilization of polymers by ionic liquids. J Mater Chem 2006, 16,4281-4293.
    [174]Provencher, S. W. A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 1982,27,229-242.
    [175]Huddleston, J. G; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 2001,3,156-164.
    [176]Moreno, M.; Castiglione, F.; Mele, A.; Pasqui, C; Raos, G Interaction of water with the model ionic liquid [bmim][BF4]:Molecular dynamics simulations and comparison with NMR data. JPhys Chem B 2008,112,7826-7836.
    [177]Modaressi, A.; Sifaoui, H.; Mielcarz, M.; Domanska, U.; Rogalski, M. Influence of the molecular structure on the aggregation of imidazolium ionic liquids in aqueous solutions. Colloid Surface A 2007,302,181-185.
    [178]Stillinger, F. H. Water Revisited. Science 1980,209,451-457.
    [179]Murthy, S. S. N. Detailed study of ice clathrate relaxation:Evidence for the existence of clathrate structures in some water-alcohol mixtures. J Phys Chem A 1999,103,7927-7937.
    [180]Manakov, A. Y.; Goryainov, S. V.; Kurnosov, A. V.; Likhacheva, A. Y.; Dyadin, Y. A.; Larionov, E. G. Clathrate nature of the high-pressure tetrahydrofuran hydrate phase and some new data on the phase diagram of the tetrahydrofuran-water system at pressures up to 3 GPa. J Phys Chem B 2003, 107,7861-7866.
    [181]Sorensen, C. M. Dynamic Light-Scattering Study of Tetrahydrofuran and Water Solutions. J.Phys.Chem.1988,92,2367-2370.
    [182]Yang, C.; Li, W.; Wu, C. Laser light-scattering study of solution dynamics of water/cycloether mixtures. JPhys Chem B 2004,108,11866-11870.
    [183]Jin, F.; Ye, J.; Hong, L. Z.; Lam, H. F.; Wu, C. Slow relaxation mode in mixtures of water and organic molecules:Supramolecular structures or nanobubbles? JPhys Chem B 2007,111,2255-2261.
    [184]Jin, F.; Ye, X. D.; Wu, C. Observation of kinetic and structural scalings during slow coalescence of nanobubbles in an aqueous solution. J Phys Chem B 2007, 111,13143-13146.
    [185]Jin, F.; Li, J. F.; Ye, X. D.; Wu, C. Effects of pH and ionic strength on the stability of nanobubbles in aqueous solutions of alpha-cyclodextrin. J Phys Chem B 2007,111,11745-11749.
    [186]Sedlak, M. Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids:Ⅱ. Kinetics of the formation and long-time stability. J Phys Chem B 2006,110,4339-4345.
    [187]Sedlak, M. Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids. Ⅲ. Correlation with molecular properties and interactions. JPhys Chem B 2006,110,13976-13984.
    [188]Georgalis, Y.; Kierzek, A. M.; Saenger, W. Cluster formation in aqueous electrolyte solutions observed by dynamic light scattering. J Phys Chem B 2000, 104,3405-3406.
    [189]Sedlak, M. Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids:1. Light scattering characterization. J Phys Chem B 2006,110,4329-4338.
    [190]Euliss, G. W.; Sorensen, C. M. Dynamic Light-Scattering-Studies of Concentration Fluctuations in Aqueous Tert-Butyl Alcohol-Solutions. J Chem Phys 1984,80, 4767-4773.
    [191]Vila, J.; Gines, P.; Rilo, E.; Cabeza, O.; Varela, L. M. Great increase of the electrical conductivity of ionic liquids in aqueous solutions. Fluid Phase Equilibr 2006,247,32-39.
    [192]Kanao, M.; Matsuda, Y.; Sato, T. Characterization of polymer solutions containing a small amount of aggregates by static and dynamic light scattering. Macromolecules 2003,36,2093-2102.
    [193]Brown, W., Ed.; Light Scattering:principles and development; Oxford University Press:New York,1996.
    [194]Rebelo, L. P. N.; Najdanovic-Visak, V.; Visak, Z. P.; da Ponte, M. N.; Szydlowski, J.; Cerdeirina, C. A.; Troncoso, J.; Romani, L.; Esperanca, J. M. S. S.; Guedes, H. J. R.; de Sousa, H. C. A detailed thermodynamic analysis of [C(4)mim][BF4] plus water as a case study to model ionic liquid aqueous solutions. Green Chem 2004,6,369-381.
    [195]Jeon, Y.; Sung, J.; Kim, D.; Seo, C; Cheong, H.; Ouchi, Y.; Wawa, R. Hamaguchi, H. O. Structural change of 1-butyl-3-methylimidazolium tetrafluoroborate plus water mixtures studied by infrared vibrational Spectroscopy. JPhys Chem B 2008,112,923-928.
    [196]Takamuku, T.; Nakamizo, A.; Tabata, M.; Yoshida, K.; Yamaguchi, T.; Otomo, T. Large-angle X-ray scattering, small-angle neutron scattering, and NMR relaxation studies on mixing states of 1,4-dioxane-water,1,3-dioxane-water, and tetrahydrofuran-water mixtures. JMolLiq 2003,103,143-159.
    [197]Marcus, Y. Effect of Ions on the Structure of Water:Structure Making and Breaking. Chem Rev 2009,109,1346-1370.
    [198]Hanke, C. G; Lynden-Bell, R. M. A simulation study of water-dialkylimidazolium ionic liquid mixtures. J Phys Chem B 2003,107, 10873-10878.
    [199]Kim, D. W.; Hong, D. J.; Seo, J. W.; Kim, H. S.; Kim, H. K.; Song, C. E.; Chi, D. Y. Hydroxylation of alkyl halides with water in ionic liquid:Significantly enhanced nucleophilicity of water. J Org Chem 2004,69,3186-3189.
    [200]Lynden-Bell, R. M; Atamas, N. A.; Vasilyuk, A.; Hanke, C. G. Chemical potentials of water and organic solutes in imidazolium ionic liquids:a simulation study. Mol Phys 2002,100,3225-3229.
    [201]Debye, P.; Bueche, A. M. Scattering by an inhomogeneous solid. J Appl Phys 1949,20,518-525.
    [202]Ornstein, L. S.; Zernike, F. Comment on the work of Mr K. C. Kar:The molecular dispersion of light in critical states. Physikalische Zeitschrift 1926, 27,761-763.
    [203]Kubisa, P. Application of ionic liquids as solvents for polymerization processes. Prog Polym Sci 2004,29,3-12.
    [204]Ueki, T.; Watanabe, M. Upper critical solution temperature behavior of poly(N-isopropylacrylamide) in an ionic liquid and preparation of thermo-sensitive nonvolatile gels. Chem Lett 2006,35,964-965.
    [205]Susan, M. A.; Kaneko, T.; Noda, A.; Watanabe, M. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc 2005,127,4976-4983.
    [206]Marcilla, R.; Blazquez, J. A.; Rodriguez, J.; Pomposo, J. A.; Mecerreyes, D. Tuning the solubility of polymerized ionic liquids by simple anion-exchange reactions. J Polym Sci Pol Chem 2004,42,208-212.
    [207]Snedden, P.; Cooper, A. I.; Scott, K.; Winterton, N. Cross-linked polymer-ionic liquid composite materials. Macromolecules 2003,36,4549-4556.
    [208]Fukushima, T.; Kosaka, A.; Ishimura, Y; Yamamoto, T.; Takigawa, T; Ishii, N.; Aida, T. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 2003,300,2072-2074.
    [209]Huglin, M. B. Light Scattering from Polymer Solutions; Academic Press: London and New York 1972.
    [210]Budhlall, B. M.; Landfester, K.; Sudol, E. D.; Dimonie, V. L.; Klein, A.; El-Aasser, M. S. Characterization of partially hydrolyzed poly(vinyl alcohol). Effect of poly(vinyl alcohol) molecular architecture on aqueous phase conformation. Macromolecules 2003,36,9477-9484.
    [211]Nagarajan, R.; Ganesh, K. Block Copolymer Self-Assembly in Selective Solvents:Theory of Solubilization in Spherical Micelles. Macromolecules 1989, 22,4312-4325.
    [212]Sedlak, M. The ionic strength dependence of the structure and dynamics of polyelectrolyte solutions as seen by light scattering:The slow mode dilemma. J Chem Phys 1996,105,10123-10133.
    [213]Wan, Z. Z.; Li, L.; Cui, S. X. Capturing the Portrait of Isolated Individual Natural Cellulose Molecules. Biopolymers 2008,89,1170-1173.
    [214]Zhang, J. M.; Zhang, H.; Wu, J.; Zhang, J.; He, J. S.; Xiang, J. F. NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 2010,12,1941-1947.
    [215]Pinkert, A.; Marsh, K. N.; Pang, S. S.; Staiger, M. P. Ionic Liquids and Their Interaction with Cellulose. Chem Rev 2009,109,6712-6728.
    [216]Forster, S.; Schmidt, M. Polyelectrolytes in Solution. Adv. Polym. Sci.1995, 120,51-133.
    [217]Benoit, H.; Doty, P. Light Scattering from Non-Gaussian Chains. J. Phys. Chem. 1954,57,958-963.
    [218]Mccormick, C. L.; Callais, P. A.; Hutchinson, B. H. Solution Studies of Cellulose in Lithium-Chloride and N,N-Dimethylacetamide. Macromolecules 1985,18,2394-2401.
    [219]Saalwachter, K.; Burchard, W.; Klufers, P.; Kettenbach, G; Mayer, P.; Klemm, D.; Dugarmaa, S. Cellulose solutions in water containing metal complexes. Macromolecules 2000,33,4094-4107.
    [220]Seger, B.; Burchard, W. Structure of Cellulose in Cuoxam. Macromol Symp 1994,83,291-310.
    [221]Cai, J.; Liu, Y. T; Zhang, L. N. Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Pol Phys 2006,44,3093-3101.
    [222]Kuang, Q. L.; Zhao, J. C; Niu, Y. H.; Zhang, J.; Wang, Z. G. Celluloses in an ionic liquid:the rheological properties of the solutions spanning the dilute and semidilute regimes. JPhys Chem B 2008,112,10234-10240.
    [223]Liu, W.; Cheng, L.; Zhang, H.; Zhang, Y; Wang, H.; Yu, M. Rheological Behaviors of Polyacrylonitrile/l-Butyl-3-Methylimidazolium Chloride Concentrated Solutions. IntJMol Sci 2007,8,180-188.
    [224]Aerov, A. A.; Khokhlov, A. R.; Potemkin, I. I. Why ionic liquids can possess extra solvent power. JPhys Chem B 2006,110,16205-16207.
    [225]Morgenstern, B.; Kammer, H. W. On the particulate structure of cellulose solutions. Polymer 1999,40,1299-1304.
    [226]Schulz, L.; Seger, B.; Burchard, W. Structures of cellulose in solution. Macromol Chem Phys 2000,201,2008-2022.
    [227]Roder, T.; Morgenstern, B. The influence of activation on the solution state of cellulose dissolved in N-methylmorpholine-N-oxide-monohydrate. Polymer 1999,40,4143-4147.
    [228]Cai, J.; Zhang, L.; Liu, S. L.; Liu, Y. T.; Xu, X. I; Chen, X. M.; Chu, B.; Guo, X. L.; Xu, J.; Cheng, H.; Han, C. C; Kuga, S. Dynamic Self-Assembly Induced Rapid Dissolution of Cellulose at Low Temperatures. Macromolecules 2008,41, 9345-9351.
    [229]Israelachvili, J. N., Ed.; Intermolecular and Surface Forces,2nd ed; Academic Press:London,1992; Vol. Chapter 12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700