用户名: 密码: 验证码:
中国沙棘体细胞胚胎的发生及BADH遗传转化拟南芥相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国沙棘(Hippophae rhamnoides L.subsp.sinensis Rousi)是广泛分布在欧亚大陆上,具有生态、医用、食用价值的多功能经济乔灌木;其优良苗木的繁殖因各种限制因素,难以满足市场的大量需求。近年来,又面临大面积死亡的现象,抗逆性不够被认为是根本原因,抗逆基因的转入可能是解决问题的最佳途径。中国沙棘体细胞胚胎发生体系的建立,既能提供大量优良苗木,又能为其转基因研究奠定基础。又由于中国沙棘被应用在食品、药品、饲料等生产领域中,抗逆性基因BADH作为目的基因与标记基因转入植物体内,可达到提高转化株的抗逆性及消除抗性标记的目的,意义重大。
     因此,本论文在前人有关研究的基础之上,通过2年的试验,成功建立了以中国沙棘以茎尖为材料通过间接途径诱导体细胞胚胎发生的再生体系,并对体细胞胚发生过程中的相关影响因素进行了探讨分析。在BADH遗传转化拟南芥(Arabidopsisthahana(Linn.)Heynh.)试验中,进行了其作为标记基因判断阳性植株的相关表型筛选依据的探索研究,为以后相关工作的开展提供坚实的背景资料。主要研究结果如下:
     1.以中国沙棘组培苗的茎尖为外植体,进行愈伤组织及胚性愈伤组织诱导试验,结果发现在1/4MS培养基上的愈伤组织发生率最高,对愈伤组织的诱导具有关键作用;而无论单独使用NAA还是2,4-D都不利于胚性愈伤组织的发生,所以在胚性愈伤组织诱导中,生长素与细胞分裂素的结合是必须的;同时得出结论:NAA与KT的结合能更有效的诱导胚性愈伤组织的发生。
     2.在中国沙棘愈伤组织及胚性愈伤组织诱导试验基础之上,深入探讨诱导中国沙棘胚性愈伤组织发生的影响因素。试验结果表明,以1/4MS+KT1.0mg/L+NAA0.3mg/L+琼脂粉6 5g/L+白砂糖30g/L为最适配方,愈伤组织诱导率达到90.10%,胚性愈伤组织诱导率达到77.67%,平均体细胞胚的发生数达到15.48。
     3.通过对中国沙棘子叶和下胚轴在诱导培养基上不同放置方式的研究发现,接种方式不同导致愈伤组织及胚性愈伤组织的诱导效果不同。子叶的愈伤组织和胚性愈伤组织的诱导率由高到低依次为:子叶切口向下>远轴面(背面)向下>近轴面(正面)向下;而下胚轴极性下端倾斜接触培养基比水平接触培养基更有利于愈伤组织和胚性愈伤组织的诱导。
     4.通过将中国沙棘茎尖、子叶、下胚轴分别接种在诱导培养基上的试验发现:茎尖的诱导效果远远高于子叶和下胚轴,分别能达到90.10%的愈伤组织诱导率和77.67%的胚性愈伤组织诱导率;而子叶仅为66.73%和14.80%;下胚轴为52.80%和34.87%,均低于茎尖。所以,确定中国沙棘组培苗茎尖为最佳外植体。
     5.通过进行基本培养基和KT对中国沙棘体细胞胚植株再生的影响试验,结果发现:4种基本培养基WPM、MS、1/2MS、1/4MS中,WPM培养基促进效果最明显。在进一步通过降低糖含量及调整细胞分裂素KT浓度的试验之后,确定中国沙棘体细胞胚植株再生的最佳配方为:WPM+KT0.05mg/L+白砂糖20g/L+琼脂粉6.5g/L,植株再生率达到60.30%。
     6.通过Trizol法提取菠菜RNA,用DNAMAN软件设计引物BH4.24.1:5'-CTCGCCTTACCCTCTCAACTC-3'和BH4.24.2:5'-CTGTAAACTCGACCTTCTCTGCG-3',用RT-PCR法克隆到BADH基因片段,经测序证实BADH基因被成功克隆。
     7.在己从菠菜中克隆到的BADH基因序列上、下游分别添加酶切位点BglⅡ(识别位点:agatct)和PmlⅠ(识别位点:cacgtg),成功构建pCAMBIA1305.2-BADH表达载体,并进行了野生型拟南芥的侵染转化试验。
     8.pCAMBIA1305.2-BADH表达载体上既含有BADH基因,又含有潮霉素抗性标记基因,可以用甜菜碱醛和潮霉素两种筛选介质来筛选转基因植株,起到互相验证转基因植株的作用。试验结果表明:在20mM甜菜碱醛(BA')筛选剂选择压力下,没有筛选到转基因株系;在含25mg/L潮霉素的筛选培养基上,获得4个转基因株系(HBT_0(1)、HBT_0(2)、HBT_0(3)、HBT_0(4)),4个对照株系(HKT_0(1)、HKT_0(2)、HKT_0(3)、HKT_0(4))。
     9.将通过25mg/L潮霉素筛选到的含BADH基因的拟南芥株系(HBT_0(1)、HBT_0(2)),通过PCR分子检测,证实BADH基因已转入拟南芥基因组中;将收获的T_1代种子在25mg/L潮霉素的培养基上筛选发现,转基因植株:非转基因植株的抗性筛选比率符合3:1的孟德尔遗传分离规律。
     10.含BADH基因的转基因株系(HBT_0(1)、HBT_0(2))的T_1代阳性植株及成熟种子在含不同浓度NaCl的培养基上,经过一段时间光培养和暗培养处理,根和下胚轴的生长都受到不同程度的影响,表现出一定抗盐能力;尤其在阳性植株表型分析中,含BADH基因的转基因株系在100mM NaCl培养基上,抗逆性明显优于对照株系,说明转基因株系能耐受100mM盐的逆境胁迫。
     11.含BADH基因的转基因株系(HBT_0(1)、HBT_0(2))的T_1代阳性植株及成熟种子在含20mM BA'的培养基上,经过一段时间光培养和暗培养处理,转基因株系的表型如根、下胚轴等形态指标比对照株系都有明显的伸长生长,表现出一定的抗逆性能;尤其在阳性植株表型分析中,含BADH基因的转基因株系与对照株系的表型差异仍表现在根的生长受到最明显的影响,与敏感性试验的结论一致,进一步验证了选用根的表型特征作为BADH基因筛选拟南芥转基因株系的筛选依据的可行性。另外,凭借根长表型为筛选判断依据进行试验时,发现以培养到15d左右为最合适判断时机,为BA'筛选转基因拟南芥提供了一定表型判断依据。
As a kind of multi-function economic tree, seabuckthorn (Hippophae rhamnoides L.) is distributed widely in Asia-Europe, which has some important values in the field of ecology, medicine, food and so on. But now, there were some limiting factors in seabuckthorn propagation, that results in a low output about seabuckthorn choiceness seedlings and could not meet the great demands of markets. In the recent years, there is a very serious problem about seabuckthorn, so lots of experts gave a kind of unanimous analysis about the phenomenon, that was low anti- adversity ability effecting on inferior growth of seabuckthorn, and genetic transformation method of anti-adversity gene maybe the best choice to settle problem. The regeneration system by indirection somatic embryogenesis, not only is an effective technique means to get a number of choiceness seedlings, but also give a good base to have related to genetic transformation research in seabuckthorn. As an important economic fruit tree, seabuckthorn are applied widely in the food, medicine and feedstuff field. If BADH gene as aim gene and marker gene at the same time is transferred into plant, not only transformation tree can get high anti-adversity ability, but also the latency harm problem can be avoided from resistance marker gene. So, it is very significative to develop BADE gene as marker gene in genetic transformation research.
     During two years, on the base of reported research, the regeneration system of indirected somatic embryogenesis in seabuckthorn was achieved and there were some discussions and analyses about related factors of somatic embryogenesis. In genetic transformation research of Arabidopsis thaliana,some phenotypic difference were discussed about using BADH as marker gene to screen positive plants and those work also can offer strong supports for next researches. The results were as follows:
     1.During experiment of callus and embryogenic callus induction using shoot tips from tissue culture plant of seabuckthorn as explants, callus incidence rate was the highest on 1/4MS medium, which had key function to induce callus. Either using NAA or 2,4-D alone, embryogenic callus could not be induced, indicating that the combination of auxin and cytokinin is necessary in the process of inducing embryogenic callus. On the same time, a conclusion was summarized that the combination of NAA and KT was effective to embryogenic callus induction in seabuckthorn.
     2.On the base of experiment of callus and embryogenic callus induction in seabuckthorn, some factors were discussed related to embryogenic callus initiation. Finally, the achievements were as follows: the induction frequency of callus reached 90.10%, the induction frequency of embryogenic callus was 77.67% and the average number of somatic embryogenesis could up to 15.48. So the suitable medium to inducing embryogenic callus and somatic embryos was 1/4MS +KT1.0mg/L +NAA0.3mg/L +granulated sugar 30g/L +agar6.5g/L +CH0.5g/L.
     3.By the research about different inoculation manners of seabuckthorn cotyledon and hypocotyl on inducing medium, the result showed that different inoculation manners could affect inducing effect of callus and embryogenic callus, and the inducing rate from high to low in turn about cotyledon was cotyledon incision downside >abaxial side downside > adaxial side downside, and the under side inoculation of inclined hypocotyl was better than horizontal placement.
     4.The research results about shoot tip, cotyledon, hypocotyl in seabuckthorn were inoculated respectively on inducing medium, indicated that the effect of shoot tip was better than cotyledon and hypocotyl, which had 90.10% callus inducing rate and 77.67% embryogenic callus inducing rate. Otherwise, the callus inducing rate and embryogenic callus inducing rate of cotyledon were only 66.73% and 14.80%, respectively, and the callus inducing rate and embryogenic callus inducing rate of hypocotyls were 52.80% and 34.87%, respectively. The inducing rate of both cotyledon and hypocotyl were all very lower than shoot tip's. As a result, shoot tip was the best explant during the inducing embryogenic callus experiment.
     5.By experiment of the plant regeneration from somatic embryo in seabuckthorn under the effect of KT and basal medium, WPM had the best effect on promoting few plants regeneration in seabuckthorn among MS, 1/2MS 1/4MS and WPM mediums. Meanwhile, reducing granulated sugar and design different concentrations KT were used to have the experiment of plant regeneration. Finally, the best regeneration medium was:WPM +KT 0.05mg/L +granulated sugar 20g/L +agar6.5g/L +CH0.5g/L. And regeneration frequency was 60.30% on the medium.
     6.Using Trizol method to extract RNA from spinach, using DNAMAN sofeware to design primer BH4.24 1:5'-CTCGCCTTACCCTCTCAACTC -3' and BH4.24.2:5'-CTGT AAACTCGACCTTCTCTGCG -3'and using RT-PCR method to clone BADH gene, the sequence was cloned successfully by DNA Sequencing analysis.
     7.After restriction sites BglⅡ(agatct) and PmlⅠ(cacgtg) were added successfully to upstream and downstream of the cloned BADH sequence from spinach, the expression vector pCAMBIA1305.2-BADH was constructed and transformed in Arabidopsis thaliana subsequently.
     8.Because of both BADH gene and hygromycin resistance gene existing on the expression vector pCAMBIA1305.2-BADH,transformed plant could be selected using BA' and hygromycin, which had a function to validate each other. The results showed that transformed plant was not selected on 1/2MS supplemented with 20mM BA'.On the other hand, four transformed plant lines (HBT_0(1),HBT_0(2),HBT_0(3),HBT_0(4)) and four control plant lines (HKT_0(1),HKT_0(2), HKT_0(3),HKT_0(4)) were got on 1/2MS supplemented with 25mg/L hygromycin, respectively.
     9.By PCR, transformed plant lines with BADH (HBT_0(1),HBT_0(2)) was detection, the test result showed BADH gene had been transformed into Arabidopsis thaliana DNA genome. After T_1 generation seeds were selected on selective medium supplemented with 25mg/L hygromycin, there was a 3:1 Mendelian's segregation law between transgene and non-transgene plants.
     10.T_1 generation positive plants and mature seeds from transgenic plant lines with BADH (HBT_0(1),HBT_0(2)) were cultured on different concentrations NaCl mediums in the condition of light and night, root and hypocotyl were affected at different extent and exhibited some anti-NaCl ability, especially at the phenotypic analyse of positive plants, transformed plant lines with BADH could survived and grew strongly than control plant lines on 100mM NaCl medium, indicating transformed plant could suffer the stress treatment of 100mM NaCl.
     11.T_1 generation positive plants and mature seeds from transgenic plant lines with BADH (HBT_0(1),HBT_0(2)) were cultured on 20mM BA' medium on the condition of light and night, the phenotypic characters of transformed plant with BADH, such as root and hypocotyl were longer than control plants, which indicated some resistance function in transformed plant lines, especially at the phenotypic analyse of positive plants, the difference of root was the best obvious between transgenic plants with BADH and control plants, which was consistent with the conclusion of sensitivity test and further verified the feasibility of using the root phenotypic characters to screen positive plants with BADH in Arabidopsis thaliana. On the side, by right of the selective standard in root length,15 days was the suitable time to judge transgenic plant lines, which offered some phenotypic selectable characters to select transformed Arabidopsis thaliana by BA' selective agent.
引文
[1] 包满珠.植物花青素基因的克隆及应用[J].园艺学报,1997,24:279-284.
    [2] 包文芳,李保桦,胡红瞩,等.沙棘属植物化学成分研究概况[J]。中国药物化学杂志,1997,.7(1):66-70.
    [3] 曹有龙,贾勇炯,陈放,等.枸杞花药愈伤组织悬浮培养条件下胚状体发生与植株再生[J].云南植物研究,1999,21(3):346-350.
    [4] 常志初.沙棘的药理研究进展[J].现代应用药学,1996,13(5):15.
    [5] 陈传芳,李义文,陈豫,等.通过农杆菌介导法获得耐盐转甜菜碱醛脱氢酶基因白三叶草[J].遗传学报,2004.,31(1):97-101.
    [6] 陈建文.食醋的保健作用[J].山东食品科技,2001,(6):23.
    [7] 陈渐宇.沙棘资源及其利用[J].宁夏农林科学院情报所,1996:117.
    [8] 陈锦屏,张文展,张伊利.沙棘果汁豆乳的稳定性研究[J].农业工程学报,2001,17(6):107-110.
    [9] 陈兴江.烟草抑芽基因克隆及遗传转化研究[D].海口:华南热带农业大学,2005.
    [10] 陈星,闫洁坤.复方沙棘茶的加工工艺及营养保健成分分析[J].沙棘,1995,8(4):29-31.
    [11] 陈夜江,赖钟雄.果树和林木体细胞胚发生的研究与利用[J].福建农业大学学报,2001,30(3):420-426.
    [12] 陈正华主编.木本植物组织培养及其应用[M].北京:高等教育出版社,1986:99.
    [13] 程康华,高拥军.沙棘油的综合开发利用[J].林产化工通讯,2004,38(6):42-46.
    [14] 程侣柏编.精细化工产品的合成及应用(第二版)[M].大连:大连理工大学出版社,1994:280-282
    [15] 崔广荣,廖玲玲,张子学,等.矮牵牛叶片体细胞胚胎发生发育的组织学观察[J].生物学杂志,2007,24(1):70-72.
    [16] 崔杰,李滨胜,史淑芝,等.植物甜菜碱醛脱氢酶基因工程研究进展[J].中国甜菜糖业,2006,(1):40-44
    [17] 崔凯荣,陈克明,王晓哲,等植物体细胞胚发生研究的某些现状[J].植物学通报,1993,10(1):14-20.
    [18] 崔凯荣,戴若兰主编.植物体细胞胚发生的分子生物学[M].北京:科学出版社,2000:156.
    [19] 崔凯荣,王君健,邢更妹,等.枸杞胚性细胞分化的超微结构和ATP酶的细胞化学定位研究[J].西北植物学报,1997,17(6):106-110.
    [20] 崔凯荣,王亚馥.石刁柏组织培养中体细胞胚发生的组织学观察[J].西北植物学报.1993,1(30):203-206.
    [21] 崔凯荣,邢更生,周攻克,等.体细胞胚发生的生化基础[J].生命科学,2001,13(1):28-33.
    [22] 戴良英.植物抗逆相关ERF转录因子研究综述[J].农业生物技术科学,2007.23(4):78-81.
    [23] 党长荣,陆相谟,张颖.整治国土的生物武器-沙棘[J].水利天地,1999,(1):28-29.
    [24] 董海滨,管荣展,张红生,等.播娘蒿甜菜碱醛脱氢酶基因的克隆和表达分析[J].分子植物育种,2006,4(2):209-215.
    [25] 董文琦,屈冬玉,王海波.消除转基因植物中选择标记的研究进展[J].中国生态农业学报,2004, 12:29-34.
    [26] 杜大至,王毅岩,崔国良.非豆科植株共生菌的研究Ⅱ.沙棘根瘤内生菌的分离与回接[J].徽生物学报,1984,24(1):41-45.
    [27] 杜江本,张芝凤.沙棘酸奶饮料的生产[J].中国乳业,2006,(6):50-51.
    [28] 杜鹃,田立国,母秋华,等.大豆体细胞胚胎发生及植株再生[J].吉林农业科学,1995(3):13-14.
    [29] 杜克久,曹慧娟,张辉,等.云南大叶茶体细胞胚发生及体细胞胚苗形成体系的建立[J].植物学报,1997,39(12):1126-1130.
    [30] 杜瑞,王林奎,杜毅.“营养国王”-野沙棘[J].致富之友,1999(2):11.
    [31] 樊龙江,周雪平编著.转基因作物安全性争论与事实[M].北京,中国农业出版社,2001:37.
    [32] 樊龙江.转基因作物安全性争论与事实[M].北京:中国农业出版社,2001.
    [33] 范双喜.植物组织培养中胚状体研究[J].北京农学院学报,1993,8(2):143.
    [34] 方红筠,李大力,王关林,等.转豇豆胰蛋白酶抑制剂基因抗虫甘蓝植株的获得[J].植物学报(英文版),1997,39(10):940-945.
    [35] 付立新,袁芳,赵晓南,等.沙棘果汁深加工研究及应用[J].北方园艺,2001,(1):31-32.
    [36] 付秀荣.沙棘胡萝卜复合果酱的研制[J].食品工业科技,1998,(4):53-54.
    [37] 高崇明,张爱琴.生物伦理学[M].北京:北京大学出版社,1999:4.
    [38] 高东迎,黄雪清,孙立华.水稻体细胞胚杂交研究进展[J].生物工程进展,2001,21(3):37-41.
    [39] 高锦明,张鞍灵.中国沙棘果实黄酮成分的研究[J].西北林学院学报,1999,14(3):52-55.
    [40] 高莉萍,包满珠.月季的植株再生及遗传转化研究进展[J].植物学通报,2005,22(3):231-237.
    [41] 高志民,彭镇华.甜菜碱合成调控基因共表达载体的构建与抗盐初步研究[J].林业科学研究,2005,18(3):231-235.
    [42] 谷祝平,郑国錩.红豆草组织培养中体细胞胚的形成及其胚胎学观察[J].实验生物学报,1987,20(1):23-29.
    [43] 关海宁,徐桂花,刁小琴.复方沙棘保健茶饮料的研制[J].食品工业,2007,(1):32-34.
    [44] 郭宝林,于树胜主编.经济林木高效栽培[M].石家庄:河北人民出版社,2001:161-162.
    [45] 郭北海,张艳敏,李洪杰,等.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达[J].植物学报,2000,42(3):279-283.
    [46] 郭成宇,栾广忠,孙楷.干红沙棘果酒的降酸研究[J].酿酒,2002,29(6):33-34.
    [47] 郭成宇,吴耕红,杨文钦.干红沙棘果酒的研制[J].食品工业科技,2002,(5):40-41.
    [48] 郭成宇,吴红艳.保健型沙棘豆粉的研制[J].食品科技,2002,(9):60-61.
    [49] 郭成字.保健型沙棘花生乳的研制[J].食品科技,2003,(2):83-84.
    [50] 郭成宇.纯天然胡萝卜沙棘饮料[J].食品与机械,2002,(5):22-23.
    [51] 郭春华,徐玉霞.沙棘优良品系茎尖组织培养技术初探[J].沙棘,2000,13(1):26-27.
    [52] 郭龙彪,薛大伟,王慧中,等.转基因与常规杂交相结合改良水稻耐盐性[J].中国水稻科学2006,20(2):141-146.
    [53] 郭秀林,张正斌,李景娟,等.cDNA-AFLP技术在植物抗逆性相关基因表达研究中的应用[J].西北农林科技大学学报(自然科学版).2006,34(11):87-92
    [54] 郭岩,张莉,肖岗,曹守云,等.甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究[J]中国科学:C辑,1997,27(2):151-155.
    [55] 郭勇,崔堂兵,谢秀祯.植物细胞培养技术与应用[M].北京:化学工业出版社,2003
    [56] 郭钟深,桂耀林.植物体细胞胚胎发生和人工种子[M].北京:科学出版社,1990:1-19
    [57] 郭祖宝,李学红,孙培良.影响胡萝卜体胚发生因素的研究[J].安徽农学通报,2006,12(12):35-36.
    [58] 韩德俊,陈耀锋,李春莲,等.转甜菜碱醛脱氢酶基因油菜的获得及其耐盐性研究[J].干旱地区农业研究,2007,25(4):6-11.
    [59] 郝建平,周小梅,李绍清.茴香组织培养中体细胞胚胎发生的组织细胞学研究[J].实验生物学报,1995,28(3):339-342.
    [60] 何军贤,傅家瑞.种子Lea蛋白的研究进展[J].植物生理学通讯,1996,32:241-246.
    [61] 何锶洁,董伟,李慧芬,等.转甜菜碱醛脱氢酶基因玉米及其耐盐性研究[J].高技术通讯,1999,2:50-52.
    [62] 何晓兰,侯喜林,吴纪中,等,三角叶滨藜甜菜碱醛脱氢酶(BADH)基因的克隆及序列分析[J].南京农业人学学报,2004,27(1):15-19.
    [63] 何宇锋,刘君,韩烈保,等CMO,BADH双基因植物表达载体的构建[J].生物技术通报,2005(5):63-66
    [64] 何月秋,池树友.激素对诱导湿地松成熟胚胚性愈伤组织影响的初步研究[J].四川林业科技,2007,28(1):74-76,80.
    [65] 贺凤美,王力,刘阳.落叶松体细胞胚发生研究进展[J].辽宁林业科技,2000,(6):33-35
    [66] 洪岚,叶万辉,沈浩,等.薇甘菊组织培养及体细胞胚胎发生的研究[J].浙江大学学报(农业与生命科学版),2005,31(5):572-578.
    [67] 侯彩霞,汤章城.细胞相容性物质的生理功能及其作用机制[J].植物生理学通讯,1999,35(1):1-7.
    [68] 侯彩霞,於新建,李荣,等.甜菜碱稳定PSⅡ放氧中心外周多肽机理[J].中国科学(C辑),1998,28(4):355-361.
    [69] 胡建忠和王愿昌.沙棘-一种解决干旱地区农村生活用柴的优良能源树种[J].林业科技开发,1994,(4):20-21.
    [70] 胡建忠主编.沙棘的生态经济价值及综合开发利用技术[M].郑州:黄河水利出版社,2000:22-23.
    [71] 胡霓云,杨增海主编.木本植物组织培养及应用[M].北京:高等教育出版社,1986:303-304.
    [72] 黄茜.神奇沙棘[J].中国林业,1997,(11):39.
    [73] 黄学林,李筱菊.高等植物组织离体培养的形态建成及其调控[M].北京:科学出版社,1995:150-205,200-210.
    [74] 纪铁鹏,崔雨荣.沙棘啤酒的酿制[J].酿酒,2006,33(1):81-83.
    [75] 贾庚祥,朱至清,李银心.甜菜碱与植物耐盐基因工程[J].植物学通报,2002,19(3):272-279.
    [76] 贾建航,王斌.植物抗病基因克隆研究进展[J].生物工程进展,2000,20(1):21-26.
    [77] 贾生平,张魁锋.红薯沙棘果酱[J].山西农业,2006,(7):43.
    [78] 贾士荣,吕群燕,张长青.转基因植物的安全性评价[M].见:宋守一.生物工程丛书之七:生物工程的安全问题.北京:化工出版社,1997.
    [79] 江波,杨映根,郭奕明,等.松柏类植物体细胞胚胎发生的研究进展[J].植物学通报.2004,21(4):495-505
    [80] 江香梅,黄敏仁,王明庥.植物甜菜碱合成途径及基因工程研究进展[J].中国生物工程杂志,2002,22(4):49-56.
    [81] 姜新兵,陈力耕,何新华.香榧体细胞胚发生的研究[J].园艺学报,2004,31(5):654-656.
    [82] 杰里迷·里夫全著.生物技术世纪[M].上海:上海科技教育出版社,2000.
    [83] 康冰,张广军,吕月玲,等.俄罗斯大果沙棘组织培养技术研究[J].西北农林科技大学学报(自然科学版),2002,30(6):162-166.
    [84] 寇晓虹,吴彩娥,张前进.复合营养芦笋酱的研制[J].食品工业科技,2000,21(3):45-46.
    [85] 赖家业,刘凯,兰健,等.转基因植物的生态安全性[J].广西科学,2005,12(2):152-155.
    [86] 李根前,唐德瑞,赵一庆.沙棘属植物资源与开发利用[J].沙棘,2000,13(2):22-26.
    [87] 李基洪,颜志红.沙棘冰激凌的研制[J].食品工业,2001,(1):12.
    [88] 李敬华.榛子沙棘酸乳的工艺研究[J].食品科技,2003,(4):77-78.
    [89] 李师翁,范小峰,卢长平.大果良种沙棘愈伤组织诱导及植株再生的研究[J].西北植物学报,2001,21(2):262-266.
    [90] 李朔.可调控的烟草叶绿体转基因表达体系研究[D].济南:山东大学,2005.
    [91] 李兴国.沙棘果胶提取工艺研究[J].沙棘,2005,18(1):40-42.
    [92] 李学宝,邓世学,董五辈,等.甘蓝型油菜抗虫转基因植株及其抗性分析[J].遗传学报,1999,26(3):262-268.
    [93] 李银心,常凤启,杜立群,等.转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性[J].植物学报,2000,42(5):480-484.
    [94] 李莹,张利民.植物甜菜碱及甜菜碱合成酶研究进展[J].杂粮作物,2006,26(3):191-193.
    [95] 李永华,尚玉萍,杨芳绒,等.小麦甜菜碱醛脱氢酶基因在烟草中的转化及表达[J].河南农业大学学报,2007,41(1):12-20.
    [96] 李永华,邹琦.小麦甜菜碱醛脱氢酶基因WBADH序列[J].植物生理与分子生物学报,2002,28(6):495-496.
    [97] 李云章,慈忠铃,严磊,等.沙棘繁殖方法和技术[J].内蒙古林学院学报,1994,16(1):59-63.
    [98] 李兆龙,俞福惠.柑桔果皮的综合利用[J].食品科学,1985,(10):31-34.
    [99] 李志英,赵二劳,张海容.紫外分光光度法测定沙棘中维生素C含量[J].山西大学学报(自然科学版),2003,26(4):339-340.
    [100] 李宗孝,李伯文.沙棘研究及其生态建设思考[J].中国基础科学,2004,6:40-44.
    [101] 梁慧敏,夏阳,王太明.植物抗寒冻、抗旱、耐盐基因工程研究进展[J].草业学报,2003,12(3):1-7.
    [102] 梁峥,马德钦,汤岚,等.菠菜甜菜碱醛脱氢酶基因在烟草中的表达[J].生物工程学报,1997,13(3):236-240.
    [103] 梁峥,赵原,汤岚,等.甜菜碱对呼吸酶的保护作用[J].植物学报,1994,36(12):947-951.
    [104] 刘宝琦,车振明.沙棘带肉果汁的研制[J].农牧产品开发,1999,(4):21-22.
    [105] 刘秉正,吴发启主编.黄土高原经济林(果)建设与开发[M].郑州:黄河水利出版社,2003:1-237.
    [106] 刘冲.沙棘-生态建设的关键树种[J].森林与人类,2002,(7):12.
    [107] 刘翠琼.中国沙棘和北美红杉体细胞胚的诱导及其组织细胞学的研究[D].北京:北京林业大学,2006.
    [108] 刘风华,郭岩,谷冬梅,等.转甜菜碱醛脱氢酶基因植物的耐盐性研究[J].遗传学报,1997,24(1):54-58
    [109] 刘何,谢令琴,赵建军.植物抗性相关基因的研究[J].华北农学报,2007,22(增刊):17,20.
    [110] 刘华英,萧浪涛,何长征.植物体细胞胚发生与内源激素的关系研究进展.湖南农业大学学报(自然科学版),2002,4:349-354.
    [111] 刘君,韩烈保,陈其军,等.CMO与BADH双基因表达载体构建及在烟草中的表达[J].中国生物工程杂志,2006,26(8):5-9.
    [112] 刘路,刘峥.沙棘果醋的研制[J].沙棘,2002,15(3):30-31.
    [113] 刘强,张友贵,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465-1474.
    [114] 刘尚前,王罡,季静,等.大豆体细胞胚对卡那霉素和PPT敏感性的研究[J].河北北方学院学报(自然科学版),2007,23(1):9-12.
    [115] 刘尚前,王罡,季静,等.农杆菌介导法转化大豆最佳条件的研究[J].吉林农业大学学报,2007,29(1):44-47.
    [116] 刘炜.神奇的沙棘[J].山西林业,2001,(6):25-26.
    [117] 刘卫东.植物转基因技术及安全性研究进展[J].南京农专学报,2002,18(1):6-12.
    [118] 刘晓辉,李剑梅,朱万芹,等.沙棘酸乳的研制[J].沙棘,2004,17(2):34-36.
    [119] 刘欣,李云.转录因子与植物抗逆性研究进展[J]中国农学通报2006,22(4):61-65.
    [120] 刘延吉.沙棘茎尖培养与嫩枝扦插繁殖技术及机理的研究[D].沈阳:沈阳农业大学,2004,1-69.
    [121] 刘玉杰,候志敏.沙棘及其繁殖方法[J].农村实用科技,2005(3):19.
    [122] 刘振林.甘菊BADH基因启动子的克隆及瞬时表达分析[J].北京:北京林业大学,2006.
    [123] 卢德赵,王慧中,华志华,等.转甜菜碱醛脱氢酶基因水稻的获得及其耐盐性研究[J].科技通报,2003,19(3):179-182.
    [124] 路静,赵华燕,何奕现,等.高等植物启动子及其应用研究进展[J].自然科学进展,2004,14(8):856-862
    [125] 吕慧涓,龚祖埙.转基因植物中标记基因的剔除[J].植物生理与分子生物学学报,2004,30:121-126.
    [126] 吕荣森.沙棘在中国西部生态环境建设中的作用[J].沙棘,2003,16(1):3-7.
    [127] 吕月玲,张广军,康冰.俄罗斯大果沙棘离体快繁研究[J].湖南农业大学学报(自然科学版),2002,28(5):405-407.
    [128] 栾金水,王南舟,徐刚.沙棘复配酒的保健成分测定[J].沙棘,2000,13(4):17-20.
    [129] 骆爱玲,刘家尧,马德钦,等.转甜菜碱醛脱氢酶基因烟草叶片中抗氧化酶活性增高[J].科学通报,2000,45(18):1953-1956.
    [130] 骆爱玲,刘家尧,马德欣,等.不同基因型小麦和高粱的抗旱性与其种芽甜菜碱醛脱氢酶的关系[J].植物学报,2001,43(1):108-110.
    [131] 骆爱玲,赵原,汤岚,等.甜菜碱醛脱氢酶在细胞中的定位[J].植物生理学报,1995,21(2):117-122.
    [132] 马超德.当前我国防治沙棘林木蠹蛾虫害的探讨[J].沙棘,2003,16(2):15-17.
    [133] 马研,周世明.无刺大果沙棘优良系嫩枝扦插试验[J].辽宁农业科学,2001(2):54-55.
    [134] 马义德,邢更生,戴若兰,等.生物组织切片图像的计算机三维重建技术现状[J].生物技术通讯,2000,11(4):303-308.
    [135] 倪万潮,张震林,郭三堆等.转基因抗虫棉的培育[J].中国农业科学,1998,31(2):8-13.
    [136] 牛辰.沙棘组织培养的研究[D].北京:北京林业大学,1989:1-34.
    [137] 牛德水,秦金山.枸杞悬浮培养条件下的胚状体发生[J].遗传,1990,12(6):5-7.
    [138] 牛广财,朱丹,王宪青,等.沙棘果冻的研制[J].沙棘,2006,19(3):33-36.
    [139] 齐力旺.落叶松等针叶树种体细胞胚胎发生的研究技术、现状与对策[J].国林业科学研究院林业研究所所庆学术报告会报告文集.北京:中国林业科学研究院林业研究所,2002:72-89.
    [140] 冉雄林,张金昌.沙棘温棚嫩枝扦插育苗技术[J].甘肃林业科技,2003,28(3):54-55.
    [141] 山永凯,崔贵平.红景天速溶保健茶的工艺研究[J].食品与机械,2003,(5):42-43.
    [142] 邵永权.向沙荒“收复失地”的英雄-沙棘[J].绿化与生活,1994,(5):37.
    [143] 沈宝成,李梅,石纪成,等.绿色荧光蛋白及其在GMO_8生态监测中的应用[J].植物学通报,2007,24(2):134-140.
    [144] 沈海龙主编.植物组织培养[M].北京:中国林业出版社,2005:1-217.
    [145] 施季森.迎接21世纪现代林木生物技术育种的挑战[J].南京林业大学学报,2000,24(1):1-6.
    [146] 石井克明.树木的组织培养[J].[日]组织培养,1995,21(6):197-200.
    [147] 舒卫国,艾万东,陈受宜.菠菜甜菜碱醛脱氢酶基因全序列分析[J].科学通报,1997,42(22):2441-2445
    [148] 苏宇静.沙棘搅拌型酸奶的研制[J].食品科学,2000,21(12):76-78.
    [149] 孙翠焕,王艳华,冀宝营,等.沙棘蛋奶的生产工艺研究[J].沙棘,2006,19(2):27-29.
    [150] 孙兰英,单金友,王春艳,等.沙棘组织培养培养基筛选试验[J].沙棘,1998(3):114-161
    [151] 孙兰英.沙棘组织培养与植株再生研究[J].国际沙棘研究与开发,2004,2(2):28-30.
    [152] 孙孝义,伊桂珍.优良的固沙和耐碱树种-沙棘[J].吉林林业科技,1995,(2):15-16.
    [153] 汤浩茹,王水清,任正隆.果树体细胞胚发生[J].四川农业大学学报,1999,17(1):69-79
    [154] 汤浩茹.核桃的体细胞胚胎发生与转基因研究[D].雅安:四川农业大学,2000.
    [155] 唐巍,欧阳藩,郭仲琛.针叶树体细胞无性系研究和应用进展[J].生物工程进展,1997,17(4):2-9.
    [156] 唐巍,杨映根,桂耀林,等.松柏类植物体细胞胚胎发生的研究与应用[J].植物学通报.1996,13(1):25-31.
    [157] 唐巍.火炬松胚性愈伤组织诱导和植株再生的研究[J].林业科学,1998,34(3):115-119.
    [158] 唐锡华.植物胚胎发育生物学的一些研究进展[J].植物生理学通讯,1983,(3):15-23
    [159] 土小宁,安宝利,许涛,等.沙棘开发利用的前景[J].陕西林业科技,2004(2):1-4
    [160] 汪丽虹,王星,崔凯荣,等.石刁柏及党参体细胞胚发生中的淀粉代谢动态[J].植物学通报,1996,13(1):41-45.
    [161] 王傲雪,李景富.植物体细胞胚状体的诱导研究及应用[J].黑龙江农业科学.1999,2:39-41
    [162] 王博英,王淑清.人类的绿色瑰宝-沙棘[J].防护林研究,1995:15-17,34.
    [163] 王春明,袁金铎,尹苗,等.甜菜碱的生物合成及其基因工程的研究进展[J].山东师范大学学报(自然科学版),2004,19(2):88-91.
    [164] 王大为,张艳荣,张雁南.发酵型沙棘果酒生产工艺的研究[J].食品科学,2003,24(5):118-122.
    [165] 王大伟.沙棘扦插育苗技术[J].塔里木农垦大学学报,2002,14(4):26-28.
    [166] 王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002:3-61.
    [167] 王关林.植物基因工程原理与技术[M].北京:科学出版社,1998:552-555.
    [168] 王金英,马中国,宗灿华,果胶的提取与应用[J].中国林副特产,2000,(2):17-18.
    [169] 王静,孙郁柱,王立民.沙棘果实用于蛋黄着色的研究[J].黑龙江畜牧兽医,2001,(5):14.
    [170] 王静,王睛,徐鑫.沙棘果实黄色素的应用研究[J].食品科学,2000,21(11):27-29.
    [171] 王强龙,王锁民,张金林,等.根癌农杆菌介导AtNHxl基因转化紫花苜蓿的研究[J].草业科学,2006,23(1):55-59.
    [172] 王琴芳,薛爱红,黄大昉,等.转基因植物产业化现状与发展趋势[J].中国农业科技导报,2002,2(2):33-36.
    [173] 王仁祥,雷秉乾.农业转基因生物的应用概况与安全性争论[J].湖南农业大学学报(社会科学版),2002,3(3):26-29.
    [174] 王树林.沙棘果肉浑浊型瓶装饮料产品的配方及工艺研究[J].食品科技,2006,(1):87-90.
    [175] 王维升.浅谈沙棘在保护路基及绿化方面的作用[J].沙棘,2001,14(1):10-12.
    [176] 王喜东,李寿军,刘勇,等.沙棘酒的研制及非生物稳定性的研究[J].酿酒科技,2000,(5):83-84.
    [177] 王晓哲,王昌虎,陈雄,等.小麦体细胞胚发生的细胞组织学研究[J].兰州大学学报(自然科学版),1996,32(31:112-116.
    [178] 王亚馥,崔凯荣,陈克明,等.小麦组织培养中体细胞胚胎发生的细胞胚胎学及淀粉消长动态的研究[J].实验生物学报,1993,26(3):259-267
    [179] 王亚馥,崔凯荣,汪丽虹,等.小麦体细胞胚发生的超微结构研究[J].植物学报,1994,36(6):418-422.
    [180] 王亚馥,徐庆,刘志学.红豆草细胞悬浮培养中体细胞胚的形成[J].实验生物学报.1990,23(3): 369-373.
    [181] 王玉田,金嫘,王宏,等.富含V_C沙棘酸牛乳的研制[J].食品工业,2004,(1):33-34.
    [182] 王喆之,李克勤,郝联芳,等.槐树的组织培养及植株再生[J].植物生理学通讯,1992(2):131.
    [183] 吴大伟,张建华,张成林,等.沙棘果汁饮料的研制[J].食品工业,2006,(2):18-19.
    [184] 吴月亮,蔡明,蒋细旺,等.植物甜菜碱合成相关酶及其基因工程研究进展[J].安徽农业科学,2007,35(18):5348-5349.
    [185] 武福亨,苏联的沙棘系列药物[J].沙棘,1991,4(2):38-41.
    [186] 武福亨.苏联沙棘研究概况[J].山西农业科学,1991,(1):26-29.
    [187] 武芸,丁莉.转基因农作物的安全性及其发展前景[J].安徽农业科学,2007,35(7):2096-2097.
    [188] 夏阳,梁慧敏,陈受宜,等.四倍体刺槐转甜菜碱醛脱氢酶基因的研究[J].中国农业科学,2004,37(8):1208-1211.
    [189] 肖尊安,植物生物技术[M].北京:化学工业出版社,2005:43-53.
    [190] 肖岗,张耕耘,陈受益,等.山菠菜甜菜碱醛脱氢酶基因研究[J].科学通报,1995,40(8):741-745.
    [191] 信金娜,韩烈保,刘君,等.基因枪转化法获得草地早熟禾(Poa pratensis L.)转基因植株[J].中国生物工程杂志,2006,26(8):10-14.
    [192] 邢洁,王尚义,张久红,等.果胶酶澄清沙棘果汁最佳工艺研究[J].沙棘,2006,19(1):20-23.
    [193] 邢亚娟,黄福伦,罗玉亮,等.俄罗斯大果沙棘无性繁殖技术的研究[J].植物研究,2002,22(2):231-235
    [194] 徐虹,梁宗锁.沙棘组织培养技术的研究[J].西北植物学报,2001,21(2):267-272.
    [195] 徐虹,王俊峰,梁宗锁.沙棘组织培养技术研究现状及存在问题[J].沙棘,1999,12(1):11-13.
    [196] 徐雅琴,蓝晓霞,徐永清,等.沙棘黄色素稳定性的研究[J].化学世界,2001,(6):306-308.
    [197] 徐雅琴,于泽源,徐永清,等.沙棘黄色素最佳提取条件的研究[J].沙棘,2000,13(2):31-33.
    [198] 许慕农,徐京标,王志江,等.沙棘茶的功效及炒制工艺[J].中国水土保持,1989,(3):44-46.
    [199] 许勇,余阳俊,段渺香.黄瓜成熟胚胚性细胞悬浮系的建立[J].农业生物技术学报,1993,1(1):79-83
    [200] 杨贵春,高继国,邢少辰.植物抗非生物胁迫基因工程的研究进展[J].吉林农业科学,2005,30(4):25-30.
    [201] 杨建霞,刘建鹏.大果沙棘无菌外植体的获取[J].防护林科技,2007(增刊):37-39.
    [202] 杨丽琛.转基因食品中标记基因的生物安全性研究进展及对策[J].卫生研究,2003,32(3):239-245.
    [203] 杨丽萍,张虎林,赵秀梅.沙棘离体快速繁育技术研究[J].国际沙棘研究与开发,2004,2(1):12-16.
    [204] 杨倩.沙棘体细胞胚途径组织培养再生体系的研究[J].呼和浩特:内蒙古农业大学,2007.
    [205] 杨增海.园艺植物组织培养[M].北京:农业出版杜,1987.
    [206] 杨铮,钟鸣,张丽.甜菜碱合成途径及其在基因工程育种中的应用[J].分子植物育种.2006,4(3(S)):67-79
    [207] 尹春雷.天然沙棘豌豆新制品的开发研究[J].山西食品工业,2001,(4):32-34.
    [208] 余爱丽,徐景升,周会,等.玉米BADH基因的克隆与序列分析[J].分子植物育种,2004,2(3):365-368
    [209] 应奇才,王慧中.松树根特异性启动子驱动的转CMO/BADH基因水稻的耐盐性研究[J].杭州师范学院学报(自然科学版),2006,5(1):46-49.
    [210] 于倬德,敖复,廉永善.中国沙棘属植物的起源、分类、群落和资源[J].沙棘,1993,(3):19-24
    [211] 员冬梅,陈玉琴.沙棘植物资源的综合利用[J].江西园艺,2005(4):9-11.
    [212] 袁志发,周静芋主编.试验设计与分析[M].北京:高等教育出版社,2000
    [213] 翟大才,陈先中,李善春.林木无性繁殖及其在林业中应用进展[J].贵州林业科技,2004,32(1):43-48.
    [214] 张德华,张占甲,坤明,等.银杏组织培养研究-不同培养条件对银杏愈伤组织形成的影响[J].西北植物学报,1949,6(1):29-32.
    [215] 张二芳.沙棘的种植和利用的研究现状[J].吕梁高等专科学校学报,2005,21(3):21-22.
    [216] 张凤霞.发展沙棘生产 防止水土流失[J].科技资讯,2006,(18):132.
    [217] 张广军,康冰,吕月玲,等.引进俄罗斯良种沙棘的组培系统研究与构建[J].沙棘,2002,15(1):8-9.
    [218] 张恒涛.无籽西瓜体细胞胚发生及其细胞学观察[D].郑州:河南农业大学,2004.
    [219] 张锦芳,鲁长征.保健沙棘醋酸饮料的研制[J].国际沙棘研究与开发,2005,3(2):10-11.
    [220] 张兰芳.沙棘在西部生态建设中的重要作用[J].内蒙古草业,2005,17(4):32-33.
    [221] 张林静,桂明珠,胡宝忠主编.小浆果栽培生物学[M].北京:中国农业出版社,2002:96-116.
    [222] 张世瑜,郑国钼.当归胚性愈伤组织的诱导及胚状体发生的组织细胞学研究[J].植物学报,1989,(28):241-244.
    [223] 张守攻,韩素英,汪泉,等.小叶杨胆碱单氧化物酶(CMO)基因的克隆与转化杂种落叶松及表达[J].分子植物育种,2006,4(4):483-488.
    [224] 张涛.芸芥体细胞胚胎发生及植株再生体系的建立[J].西北植物学报,2007,27(1):39-43.
    [225] 张骁,束梅英.沙棘药理研究进展[J].沙棘,1999,12(3):40-44.
    [226] 张小民,翼颐之,张吉科.沙棘茶叶毒理学研究[J].沙棘,2001,14(1):38-40.
    [227] 张艳敏,丁占生,温之雨,等.逆境下转BADH基因小麦甜菜碱醛脱氢酶活性表达与甜菜碱积累[J].华北农学报,2003,18(院庆专辑):36-39.
    [228] 张有林,张善宝,陈锦屏.苦菜沙棘复合饮料的研制[J].食品科学,1994,(4):65-66.
    [229] 张哲民.苏联沙棘油研究利用的进展与对策[J].沙棘,1990,(3):42-47.
    [230] 赵二劳,韩永花.沙棘的营养保健功能与开发利用[J].食品研究与开发,2005,26(4):182-184.
    [231] 赵国林等.沙棘的组织培养和植株共生[J].植物生理学报,1989,25(1):421.
    [232] 赵军,李强,马正潭,等.沙棘保健茶感官品质及成分分析[J]沙棘,1997,10(4):22-25
    [233] 赵勇刚,高克姝.论林木的无性繁殖及其应用[J].山西林业科技,1996(3):12-15.
    [234] 郑均宝,王进茂,杜克久,等.油松体细胞无性系的建立[J].遗传学报,1996,23(4):317-314.
    [235] 郑子成,何淑勤.大果沙棘组织培养技术[J].中南林学院学报,2003,23(4):42-45.
    [236] 周俊彦.植物体细胞在组织培养中产生胚状体[J].植物生理学报,1981,7(4):329-397.
    [237] 周俊彦.植物休细胞在组织培养中产生的胚状体Ⅰ:植物体细胞胚状体的发生[J].植物生理学报,1981,7(4):389-396
    [238] 周俊彦.植物体细胞在组织培养中产生的胚状体Ⅱ:影响植物胚状体发生和发育的因素[J].植物生理学报,1982,8(1):91-99.
    [239] 周俊彦,郭扶兴.细胞分裂素类物质在植物体细胞胚发生中的作用[J].植物生理学通讯,1996,32(4):247-253.
    [240] 周松坤,宋西德,张宗勤,等.良种沙棘“实优1号”组织培养研究[J].西北林学院学报,2006,21(3):67-71.
    [241] 周张章,周才琼,阚健全,沙棘的化学成分及保健作用研究进展[J].食品科技,2005,12(2):15-18.
    [242] 周兆澜,朱祯.植物抗虫基因工程研究进展[J].生物工程进展.1994,14(4):23-25.
    [243] 朱万靖,倪培德,江志炜.沙棘资源开发与沙棘黄酮提取[J].西部粮油科技,2001,26(2):39-41.
    [244] 朱万芹,杨泽涛,张莉,等.利用组织培养技术快速繁育沙棘苗的研究[J].沙棘,2002,15(3):39-40.
    [245] 祝朋芳,罗凤霞,陈长青,等.日本落叶松胚性愈伤组织的诱导及体胚的形成[J].辽宁农业科学,2001,(5):46-47.
    [246] 宗世祥,贾峰勇,骆有庆,等.沙棘木蠹蛾危害特性与种群数量的时空动态研究[J].北京林业大学学报,2005,27(1):70-74.
    [247] 宗世祥,骆有庆,许志春,等.沙棘主要蛀干害虫危害特性及种群动态变化[J].中国森林病虫,2006,25(1):7-10.
    [248] RAZZAQ Abdul,张艳敏,赵和,等.通过基因枪和农杆菌介导用BADH基因转化小麦[J].华北农学报,2005,20(5):1-9.
    [249] Abdoulaye T.(ed.):Somatic Embryogenesis,Embryo Conversion, Micropropagation and Factors Affecting Genetic Transformation of Theobroma cacao L[D].Pennsylvania,USA,UMI Dissertation Services,2000:1-134.
    [250] Ahlandsberg S,Sathish P, Sun C X,et al.Green fluorescent protein as a reporter system in transformation of barley cultivars[J].Plant Physiol,1999,107:194-200.
    [251] Alvarado M C,Zsigmond L M,Kovacs I,et al.Gene trapping with firefly luciferase in Arabidopsis.Tagging of stress-responsive genes[J].Plant Physiol,2004,134:18-27.
    [252] Anadana S,Beekwilder M J,Kuipers G,et al.Cloning of the chrysthemumUPEl promoter and comparative expression in florets and leaves of Dendranthema grandiflora[J].Transgenic Reseacrh,2002,11:437-445.
    [253] Andresen P A,Kaasen I,Styrvold O B,et al.Molecular cloning, physical mapping and expression of the bet genes governing the osmoregulatory choline-glycine betaine pathway of Escherichia coli[J].J Gen Microbiol,1988,134.1737-1746.
    [254] Arakawa K,Takabe T.Sugiyama T.et al.Punfication of betaine aldehyde dehydrogenase from spinach leaves and preparation of its antibody[J].J Biochem(Tokyo),1987,101(6).1485-1488.
    [255] Arakawa K.Leaves of betaine and BADH activity in the green leaves and etilated leaves and root of barley[J].plant Cell Physiol,1990,31(6):797-811.
    [256] Anmboor R.Venugopalan V V.Sannkumar K,et al.Integrated processing of fresh Indian sea buckthorn (Hippophae rhamnoides) berries and chemical evaluation of products[J].Journal of the Science of Food and Agriculture.2006,86(14):2345-2352.
    [257] Ballester A.Cervera M.Pe(?)a L.Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination[J].Plant Cell Rep,2007,26,39-45.
    [258] Bandyopadhyay S.Hamill J D.Ultrastructural studies on somatic embryos of Eucalyptus nitens and comparisons with zygotic embryos found in mature seeds[J].Annals of Bot.2000,86: 237-244.
    [259] BawaA S,Farhath K,Brahma S.Seabuckthonva wonder plant[J].Natural Product Radiance, 2002,1:8-14.
    [260] Bernath J.Foldesi D.Seabuckthorn (Hippophae rhamnoides L.):a promising new medicinal and food crop[J].Journal of Herbs,Spices,& Medicinal Plants ,1992,1:27-35.
    [261] Bertolla F.Kay E.Simont P. Potential dissemination for antibiotic restistane genes from transgenic plants to microorganisms[J].Infect Control HospEpidemiol,2000,2l:575-582.
    [262] Bizily S P,Rugh C L.Summers A O.et al.Phytoremediation of methylmercury pollution;merB expression in Arabidopsis thaliana confers resistance to organomercurials[J].Proc Natl Acad Sci USA,1999,96:6808- 6813.
    [263] Boch J.Kempf B,Schmid R,et al.Synthesis of the osmoprotectant glycine betaine in Bacillussubtilis:chanctenzation of the gbsAB gene[J].J Bacteriol,1996,178:5121-5129.
    [264] Boutler D,et al.Sixth Annual Meeting of the International Program on Rice Biotechnology[A].Chiang Mai, Thailand,1993.
    [265] Calheiros M B P,Vieira L G E,Fuentes S R L.Effects of exogenous polyamines on direct somatic embryogenesis in coffee[J].Rivista Brasileira de Fisiologia Vegetal,1994,6(2):109-114
    [266] Cheliak W M,Klimaszewska K.Genetic variation in somatic embryogenic respose m open pollinated families of black spruce[J].Theor Appl Genet,1991,82:185-190.
    [267] Chen X J,Wang J L,Zhao Y X,et al.The research on cDNA fragment of betame aldehyde dehydrogenase (BADH) gene in Atriplex centralasiatica lljin[J].Acta Phytophysiologica Sinaca,2001,27(4):309-312.
    [268] Chernenko T V,U(?)chenko N T,Glushenkova A.Fruits of two seabuckthorn varieties[J]. Chemistry of Natural Compounds,2004,40(6):529-531.
    [269] Claudio S,Llsheng K,Edward C Y.et al.Maturation of somatic embryos in conifers: morphogenesis, physiology,biochemistry.and molecular biology[J].In Vitro Cellular & Developmental Biology.2002,38(2):93-105.
    [270] Clive James.Global Status of Transgenic Crops in l997[EB/OL].http://www.isaaa.org/publications/briefs/Brief_5.htm/2002-3-28.
    [271] Cossuta D.Simandi B.Hohmann J.et al.Supercritical carbon dioxide extraction of sea buckthorn(Hippophae rhamnoides L.) pomace[J].Journal of the Science of Food and Agriculture, 2007.87(13):2472-2481.
    [272] Cuellar W,Gaudin A,Solorzano D.et al.Self- excision of the antibiotic resistance gene nptll using a heat inducible Cre-loxP system from transgenic potato[J].Plant Mol Biol,2006,62:71-82.
    [273] Cui M L,Takayanagi K,Kamada H.et al.Transformation of Antirrhinum majus L.by a rol-type muli-auto -transformation (MAT) vector system[J].Plant Sci,2000,159:273-280.
    [274] Daigny G,Paual H,Sangwan R S,et al.Factors influencing secondary somatic embryogenesis in Malus× domestica Borkh.(cv'Gloster 69')[J].Plant Cell Rep,l996,16:153-157.
    [275] Dale E C,0w D W.Gene transfer with subsequent removal of the selection gene from the host genome [J].Proc Natl Acad Sci USA,1991,88:10558-10562.
    [276] Daley M,Knauf V C,Summerfelt K R.et al.Co-transformation with one Agrobacterium-tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic
    [277] Daniell H,Krishnan M,McFadden B A.Expression of b-glucuronidase gene in different cellular compartments following biolistic delivery of foreign DNA into wheat leaves and calli[J].Plant Cell Rep,1991,9:615-619.
    [278] Daniell H,Muthukumar B,Lee S B.Marker free transgenic plants engineering the chloroplast genome without the use of antibiotic selection[J].Curr Genet,200l,39:109-116.
    [279] Daniell H,Vivekananda J,Nielsen B L,et al.Transient foreign gene expression in chloroplast of cultured tobacco cells after biolistic delivery of chloroplast vectors[J].Proc Natl Acad Sci USA, 1990,87:88-92.
    [280] Darbani B,Eimanifar A,Neal Stewart Jr C,et al.Methods to produce marker-free transgenic plants[J].Biotechnol J,2007,2:83-90.
    [281] De Vetten N,Wolters A M,Raemakers K,et al.A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop[J].Nat Biotechrnol,2003,21:439-442.
    [282] Deshnium P,Los D A,Hayashi H,et al.Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress[J].Plant Mol Bio,1995,29:897-907.
    [283] Dewald S G,Litz R E,Moore G A.Optimizing somatic embryo production in mango[J].J Am Soc Hortic Sci,1989b,114(4):712-716.
    [284] Dewald S G,Litz R E,Moore G A.Maturation and germination of mango somatic embryos[J].J Am Soc Hortic Sci,1989a,11.4(5):837-841.
    [285] Dodds John H.Koberts Lonn W.Experiments in plant tissues culture[M].Cambridge University Press. 1995
    [286] Dunja L L,Natasa B.Snjezana M.et al.Somatic embryogenesis in pumpkin (Cucurbita pepo L.):control of somatic embryo development by nitrogen compounds[J].J Plant Physiol,2004.161:229-236.
    [287] Dunstan D I.Tautorus T E.ThorpeT A.Somatic embryogenesisin woody plants[J].In:Thorpe T A(ed.) In vitro embryogenesisin plants,1995:471-538.KluwerT Academic Publishers,Dordrecht.
    [288] Ebmuma H.Komamme A.Mat (Multi-Auto-Transformation) vector system.The oncogenes of Agrobacterium as positive markers for regeneration and selection of mark-free transgenic plants[J].In Vitro Cell Dev-Pl,2001,37:103-113.
    [289] Ebmuma H,LSugita K,Matsunaga E.et al.Systems for the removal of a selection marker and their combination with a positive marker[J].Plant Cell Rep,2001,20:383-392.
    [290] Ebmuma H.Sugita K,Matsunaga E.et al.Selection of marker-free transgenic plants using the isopentenyl transferase gens[J].Proc Natl Acad Sci USA,1997,94:2117-2121.
    [291] Eccleston C.Baoru Y.Tahvonen R,et al.Effects of an antioxidant-nch juice (sea buckthorn) on risk factors.for coronary heart disease in humans[J].Journal of Nutritional Biochemistry,2002,l3(6):346-354.
    [292] Ellis D D.CCabe D EM.Clnnis R Ramachandran SM,et al.Stable transformation of Picea glauca by particle acceleration[J].Bio/technology,1993,11:84-89.
    [293] Ellis D D.McCabe D E.Russel D.et al.Expression of inducible angiospermpromotors in a gymnosperm Picea glauca (white spruce) [J] Plant Mot Biol,1991,17:19.
    [294] Faure O.Mengoli M,Nougarede A.et al.Polyamine pattern and biosynthesis in zygotic and somatic embryo stages of Vitis vinifela[J].Plant Physiol,1991,138:54.
    [295] Feher A,Pasternak T P,Dudits D.Transition of Somatic plant cells to an embryogenic state[J].Plant Cell,Tissue,and Organ Culture,2003,74:201-228.
    [296] Fitch M M M,Anshardt R M M,Gonsalves D.et al.Transgenic papaya plants from Agrobacteriumme-mediated transformation of somatic embryos[J].Plant Cell Rep,1993,12:245-249.
    [297] Fitchet M.Induction of embryogenic callus from flower shoot tips of dwarf Cavendish banana[J].Acta Hort,1990,275:275-284.
    [298] Flor H H.Current status of the gene-for-gene concept[J].Annu Rev Phytopathol,l971,9:275-296.
    [299] Fuchs F L.Safety assessment of the neomycin phosphotransferase Ⅱ (NPT Ⅱ) protein[J].Bio/Technology,1993(11):1543-1547.
    [300] Gaj M.D.Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana L. Heynh[J].Plant Growth Regulation,2004,43:27-47.
    [301] Gallo-Meagher M.Green J.Somatic embryogenesis and plant regenation from immature embryos of saw palmetto.an important landscape and medicinal plant[J].Plant Cell Tiss.Org.Cult.2002,68:253-256.
    [302] Gao Z S,Xie X J,Ling Y.et al.Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system[J].Plant Biotechnol J,2005,8:591-599.
    [303] Gatz C.Chemical control of gene expression[J].Annu Rev Plant Physiol Plant Mol Biol,l991,48:89-108.
    [304] Gilmour S J,Zarka D G,Stockinger E J.et al.Low temperature regulation of the Arabidopsis CBF family of AP-transcriptional activators as an early step in cold-induced COR gene expression[J].The Plant J ournal,1998,16(4):433-442.
    [305] Goldsbrough A P,Lastrella C N,Yoder J I.Transposition mediated repositioning and subsequent elimination of marker genes from transgenic tomato[J].Biotechnology (N Y),1993,11:1286-1292.
    [306] Gough K C,Hawes W S,Kilpatrick J.et al.Cyanobacterial GR6 Glutamate-1-semialdehyde Aminotransferase:A novel Enzyme-based Selectable Marker for Plant Transformation[J].Plant Cell Rep,2001,20:296-300.
    [307] Gregory C P.Invited review:in vitro morphogenesis in plants-recent advances[J].In Vitro Cell Dev Biol-Plant,2004,40:342-345.
    [308] Gronlund J T.Stemmer C,Lichota J.et al.Functionality of the β/six Site-Specific Recombination System in Tobacco and Arabidopsis .A. Novel Tool for Genetic Engineering of Plant Genomes[J].Plant Mol Biol,2007,63:545-556.
    [309] Gupta P K,Pullman G,Timmis R,et al.Forestry in the 21~(st) century:The biotechnology of somatic embryogenesis[J].Bio/Technology,1993,11:454-459.
    [310] Gupta P K,Pullman G S.Method for reproducing coniferous plants by somatic embryogenesis using adscisic acid and somatic potential varition[J].US Patent,1991,5(1):36.
    [311] Hakman I,Fowke L,Von Arnold S,et al.The development of somatic embryos in tissue culture initiated from immature embryos of Picea abies (Norway spruce)[J].Plant Sci,1985,38(l):53-59.
    [312] Haldrup A,Petersen S G,Okkels F T.Positive selection.plant selection principle based on xylose isomerase,an enzyme used in the food industry[J].Plant Cell Rep,1998,18:76-81.
    [313] Haldrup A,Petersen S G,Okkels F T.The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent [J].Plant Mol Biol,1998,37:287-296.
    [314] Handson A D,Rathinasabapathi B,Rivoal J,et al.Osmorprotective compounds in the Plumbaginacae:A natural experiment in matabolic engineering of stress tolerance[J]Plant Biol,l994,91:306-310.
    [315] Hanson A D,May A M.Betaine synthesis in chenopods:Localization in chloroplasts[J].Pro Natl Acad Sci USA,1985,82(1):3678-3695.
    [316] He Z Q.Duan Z Z.Liang W.et al.Mannose selection system used for cucumber transformation[J].Plant Cell Rep,2006,25:953-958.
    [317] Helena L.Hana K.Invited review:somatic embryogenesis in conifers:the role of carbohydrate metabolism[J].In vitro cellular & developmental biology,2004.40:23-30.
    [318] Hibino T.Meng Y L.Kawamitsu Y.et al.Molecular cloning and functional characterization of two kinds of betaine aldehyde dehydrogenase in betaine accumulating mangrove Avicennia marina (Forsk.) Vierh[J].Plant Mol Bio,2001,45:353-363.
    [319] Hilder V A.et al.Transgenic plants expressing M. sexta protease inhibitor[J]. Nature,1987,330:160-163.
    [320] Holmstrom K O.Welin B.Mandal A.et al.Production of the Eschenchia coli betame-aldehyde dehydrogenase.an enzyme required for the synthesis of the osmoprotectant glycine betaine,in transgenic plants[J].Plant J,1994,6(5):749-758.
    [321] Holton T A.Cornish E C.Genetics and biochemistry of anthocyanin biosynthesis[]].Plant Cell,1995,7:1071-1083.
    [322] Hraska M.Rakousky S.(?)urn V.Green fluorescent protein as a vital marker for non-destructive detection of transformation events in transgenic plants[J].Plant Cell Tissue Organ Cult.2006,86:303-318.
    [323] ICRTS & Seabuckthorn Office of Water Conservancy Commission of the Yellow River(ed).Worldwide Research and Development of Seabuckthorn:Proceeding of International Workshop on Seabuckthorn,1995,Beijing,China,China Sci- Tech.Press,1997:1-8.
    [324] Ishitani M,Nakamura T,Han S Y.et al.Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid[J].Plant Mol Biol,l995,27(2):307-315.
    [325] Jain S M.Somatic embryogenesis in woody plants[J].Kluwer Academic Publishers, 1995-1999.
    [326] Jaiwal P K,Sahoo L.Dolendro Singh N,et al.Strategies to deal with the concern about marker genes in transgenic plants:some environmentfriendly approaches[J].Curr Sci,2002.83:128-136.
    [327] James D J,Passey C,Deeming C.Adventitious embryogenesis and the in vitro culture of apple seed parts[J].J.Plant Physiol,1984,115:217-229.
    [328] Joersbo M.Advances in the selection of transgenic plants using non-antibiotic marker genes[J].Physiol Plant,2001,111:269-272.
    [329] Joersbo M,Donaldson I,Kreiberg J,et al.Analysis of mannose selection used for transformation of sugar beet[J].Mol Breed,1998,4:111-117.
    [330] Joersbo M,Okkels F T.A novel principle for selection of transgenic plant cells:posotive selection[J].Plant Cell Rep,l996,l6:219-221.
    [331] Jordan M C.Green fluorescent protein as a visual marker for wheat transformation[J].Plant Cell Rep,2000,19:1069-1075.
    [332] Kamada H,Harada Y.Studies on the organogenesis in carrot tissue culture Ⅱ:effects of amino caid and inorganic nitrogenius componus on somatic embryogenesis[J].Z Pflznzephysiol,1979:255-256.
    [333] Karppler H F,Menon G K,Skadsen R W.et al.Transgenic oat plants via visual selection of cells expressing green fluorescent protein[J].Plant Cell Rep,2000,19:661-666.
    [334] Kasuga M.Liu Q.Miura S.et al.Improving Plant drought,salt and freezing tolerance by gene transfer of a single stressinducible transcnption factor[J].Nat Biotechnol,1999,17:287-291.
    [335] Khan R,Chin D,Nakamura Let al.Production of marker-free transgenic Nierembergia caerulea using MAT vector system[J].Plant Cell Rep,2006,25:914-919.
    [336] Klein T M,Roth B A,Fromm M E.Regulation of anthocyanin biosynthetic genes introduced into intact maize tissues by microprojectiles[J].Proc Natl Acad Sci USA,1989,86:6681-6685.
    [337] Konar R M,Thomas E,Street H E.Origin and structure of embryoids arising from epidermal cells of the stem of Ranunculus sceleratus L.[J].J Cell Sci,l972,11:77-93.
    [338] Kondrak M,Van Der Meer I M,Banfalvi Z.Generation of Marker-and Backbone-Free Transgenic Potatoes by Site-Specific Recombination and a Bi-Functional Marker Gene in a Non-Regular One-Border Agrobacterium Transformation Vector[J].Transgenic Res,2006,15:729-737.
    [339] Kosugi S,Ohashi Y,Nakajima K,et al.An improved assay for β-Glucuronidase in transformed cells:methanol almost completely suppresses a putative endogenous β-Glucuronidase activity[J].Plant Sci,1990,70:133-140.
    [340] Lafayette P R,Parrott W A.A non-antibiotic marker for amplification of plant transformation vectors in E.coli[J].Plant Cell Rep,2001,20:338-342.
    [341] Laine E,David A.Recovery of plants from cryopreserved embryogenic cell suspensions of Pinus caribaea[J].Plant Cell Reports,1992,11:295.
    [342] Lakshmanan P,Taji A.Somatic embryogenesis in leguminous plants[J].Plant Biol,2000,2:136-148.
    [343] Lamthan S,Day A.Removal of antibiotic resistance genes from transgenic tobacco plastids[J].Biotechnology(N Y),2000,18:1172-1176.
    [344] Leeuwen W V,Hagendoorn M J M,Ruttink T,et al.The Use of the Luciferase Reporter System for in Planta Gene Expression Studies[J].Plant Mol Biol Rep,2000,18:143a-143t.
    [345] Legaria J,Rajsbaum R,Munoz-Clares R A,et al.Molecular characterization of two genes encoding betaine aldehyde dehydrogenase from amaranth.Expression in leaves under short-term exposure to osmotic stress or abscisic acid[J].Gene,1998,218:69-76.
    [346] LeRudulier D,Strom A R,Dandekar A M,et al.Molecular biology of osmoregulation[J].Science,1984,224:1064-1068.
    [347] Li H Q,Kang P J,Li M L,et al.Genetic transformation of Torenia fournieri using the PMI/mannose selection system[J].Plant Cell Tissue Organ Cult,2007,90:103-109.
    [348] Li Q L,Gao X R,Yuan X D,et al.Rapid amplification of 3'cDNA end of Suaeda liaotungensis betaine aldehyde dehydrogenase using one-step PCR[J].Hereditas,200224(2): 179-181.
    [349] Li Q L.Gao X R,Fan Q.et al.Rapid amplification of 5' cDNA end of S.Liaotungensis betaine aldehyde dehydrogenase by inverse nested PCR[J].High Technology Letters,2000,11:17-19.
    [350] Li Xiang-qian.Sergei F K,Schuyler S KSomatic embryogenesis.secondary somatic embryogenesis,and shoot organogenesis in Rosa[J].J.Plant Physiol.2002,159313-319.
    [351] Liu C Q,Xia X L,Yin W L.et al.Direct somatic embryogenesis from leaves.cotyledons and hypocotyls of Hippophae rhamnoides[J] Biologia plantarum.2007.51(4):635-640.
    [352] Lloyd A M.Walbot V,Davis R W.Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and Cl[J].Science,1992,258:1773-1775.
    [353] Long L M.Preece J E.Van Sambeek J W.Adventitious regenetation of Juglans nigra L.(Eastern black walnut) [J].Plant Cell Rept,1995,14(12):799-803.
    [354] Lou H,Kako S.Role of high sugar concentration in induting somatic embryogenesis from cucumber cotbledons[J].Sci Hortic,1995,64:11-20.
    [355] Lu S G.Bao W L.Meng X T.Exploitation and ultilization of seabuckthorn in China[M].In:China Sci-Tech.Press,l997:1-10.
    [356] Lucca P,Ye X D,Potrykus I. Effective selection and regeneration of transgenic nice plants with mannose as selective agent[J].Mol Breed,2001,7:43-49.
    [357] Ma B.Mayfield M B.Gold M H.The green fluorescent protem gene functions as a reporter of gene expression in Phanerochaete chrysosporium[J].Appl Environ Microbiol,2001.67:948-955.
    [358] Ma D Q,Lv W.Tang L.et al.A cDNA clonmg and sequence encoding betaine aldehyde dehydrogenase (BADH) from spinach[J].Chinese Journal of Biotechnology, 1996,12:65-70.
    [359] Malia P.Engineering the plastid genome of higher plants[J].Curr Opin Plant Bio,2004,15(2):164-172.
    [360] Mariam B S,Hesham F O.Invited review:shoot apical meristem:a sustainable explants for genetic transformation of cereal crops[J].In Vitro Cell Dev Biol-Plant,2005,41:187-200.
    [361] Matsunaga E,Sugita K,Ebinuma H.A sexual production of selectable marker-free transgenic woody plants, vegetatively propagated species[J].Mol Breed ,2002,10:95-106.
    [362] McCormac A C,Wu H,Bao M,et al.The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Thticum aestivum L.) and barley (Hordeum vulgare L.)[J].Euphytica,1998,99:17-25.
    [363] McCue K F,Hanson A D.Salt-inducible betaine aldehyde dehydrogenase from sugar beetxDNA cloning and expression[J].Plant Molecular Biology,1992,18:1-11.
    [364] McGranahan G H,Leslie C A,Uratsu S L.et al.Improved efficiency of the walnut somatic embryo gene transfer system[J].Plant Cell Rep,1990,8:512-516.
    [365] McNeil S D,Nuccio M L,Hanson A D.Betaines and related osmoprotectants.Targets for metabolic engineering of stress resistance[J].J Plant Physiology,1999,120:945-949.
    [366] Mcneil S D.Nuccio M L,Ziemak M J.et al.Enhanced synthesis of choline and glycine Betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase[J].Proc Natl Acad Sci USA,2001,98:10001-10005.
    [367] Merkle S A,Parrott W A M,Flinn B S.Morphogenic aspects of somatic embryogenesis[J].In:Thorpe TA(ed.).In Vitro Embryogenesis in Plants,l995:155-203.Kluwer Academic Publishers.Dordrecht.
    [368] Merkle S A.Somatic embryogenesis from immative seeds of yellow popular[R].Plant tissue culture concept and laboratory exercise,CRC Press,1996.183-190.
    [369] Mohan R H Y,Mehta U.Rao R I V,et al.Haploid induction in legumes[J].In:Fujiwara A(ed.),Plant Tissue Culture,1982:541-545.Japanese Saaociation for Plant Tissue Culture,Tokyo.
    [370] Monsalud M J,Mathews H,Litz RE,et al.Control of hyperhydricity of mango somatic embryos[J].Plant Cell Tissue and Organ Culture,1995,42:195-206.
    [371] Montpetit-D,et al.In vitro propagation and subsequent nodulation of the actinorhizal Hippophae rhamnoides L.[J].Plant Cell Tissue Organ Culture,1988,15(3):189-199.
    [372] Mullins M G,Archie Tang F C,Facciotti D.Agrobacterium-mediated genetic transformation of grapevines.transgenic plants of Vitis rupestris Scheele and buds of Vitis vinifera L[J].Biotechnology (N Y),1990,8:1041-1045.
    [373] Murray F,Brettell R,Matthews P,et al.Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes[J].Plant Cell Rep,2004,22:397-402.
    [374] Nakamura T,Nomura M,Mori H,et al.An isozyme of betaine aldehyde dehydrogenase in barley[J] Plant Cell Physiol,2001,42(10):1088-1092.
    [375] Nakamura T,Yokota S,Muramoto Y,et al.Expression of a betaine aldehyde dehydrogenase gene in rice,a glycine betaine nonaccumulator,and possible localization of its protein in peroxisomes[J].Plant
    [376] Narayanaswamy S.Regeneration of plants from tissue culture[J].In Reiner & Bajaj(eds) Applied and Fundamental Aspects of Plant Cell,Tissue and Organ Culture.Spring-Verlag,l977: 179-248.
    [377] Natarajan S,Turna J.Excision of selectable marker genes from transgenic crops as a concern for environmental biosafety[J].J Sci Food Agric,2007,87:2547-2554.
    [378] Nehra N S,Chibbar R N,Leung N,et al.Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs[J].Plant Jour,1994,5.285-297.
    [379] Okkels F T,Ward J L,Joersbo M.Synthesis of cytokinin glucuronides for the selection of transgenic plant cells[J].Phytochemistry,1997,46:801-804.
    [380] Ozcan S,Firek S,Draper J.Selectable marker genes engineered for specific expression in target cells for plant transformation[J].Biotechnology (N Y). 1993,11:218-221.
    [381] Ozias-Akins P.Vasil I K.Improved efficiency and normalization of somatic embryogenesis in Tritium aeutivum (wheat)[J].Protoplasma,1983,117:40-44.
    [382] Pan S M,Moreau R A,Yu C.et al.Betaie accumulation and betame aldehyde de hydrogenase in spinach leaves[J].Plant Physiol,1981,67:1105-1108.
    [383] Park J,Lee Y K,Kang B K,et al.Co-transformation using a negative selectable marker gene for the production of selectable marker gene-free transgenic plants[J].Theor Appl Genet,2004,109:1562-1567.
    [384] Parniske M.Intracellular accommodation of microbes by plants:a common developmental program for symbiosis and disease[J],Current Opinion in Plant Biology,2000,3:320-328.
    [385] Parrot W A,Bailey M A.Characterization of recurrent somatic embryogenesis of alfalfa on auxin-free medium[J].Plant Cell Tissue Organ Cult,1993,32:69-76.
    [386] Patricia G P,Eddo R.Influence of plant growth regulators,carbon sources and iron on the cyclic secondary somatic embryogenesis and plant regeneration of transgenic cherry rootstock Coh (Prunus avium ×P.pseudocerasus)[J].Plant cell,Tissue and Organ Culture,2004.79:223-232.
    [387] Pérez-Clemente R M,Pérez-Sanjuán A,García-Férriz L,Beltran J P,Ca(?)as L A.Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker[J].Mol Breed,2005,14:419-427.
    [388] Perl A.Galili S,Shaul O.et al.Bactenal Dihydrodipicolinate synthase and Desensitized Aspartate Kinase:Two Novel Selectable Markers for Plant Transformation[J].Biotechnology (N Y),1993,11:715-718.
    [389] Peter C H,Hollman.Analysis and bealth effects of flavonoids[J].Food Chemistry, 1996,57(1): 43-46.
    [390] Plata E,Ana M.Vieitez.In virto rergeneration of Camellia riticulata by somatic embrogenesis [J].Horti Sci,1990,65:707-714.
    [391] Puchta H.Removing selectable marker genes: taking the shortcut[J].Trends Plant Sci,2000,5:273-274.
    [392] Puchta H.Towards the ideal GMP:Homologous recombination and marker gene excision[J].J Plant Physiol,2003,160:743-754.
    [393] Quattrocchio F,Wing J F,Leppen H,et al.Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes [J].Plant Cell,1993,5:1497-1512.
    [394] Raemarkers C J J MJacobsen E,Visser R G F.Secondary somatic embryogenesis and applications in plant breeding[J].Euphytica,1995,81:93-107.
    [395] Raffo A,Paoletti F,Antonelli M.Changes in sugar.organic acid,flavonol and carotenoid composition during ripening of berries of three seabuckthorn (Hippophae rhamnoides L.) cultivars[J].European Food Research and Technology A,2004,219(4):360-368.
    [396] Raghavan V.Adventive embryogenesis:Induction of diploid embryoids[A].In:Raghavan V(ed).Experimental Embryogenesis in Vascular Plants. Chapter 14.London:Academic Press,1976:349-381.
    [397] Ramessar K,Peremarti A,Gómez-Galera S,et al.Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants:a case of the science not supporting the politics[J].Transgenic Res,2007,16:261-280.
    [398] Rao P S.In vitro induction of embryonal proliferation in Santalum album L.[J].Phytomorph, 1965,15:175-179.
    [399] Rathinasabapathi B,McCue K F.Gage D A,et al.Metabolic engineering of glycine betaine synthesis:plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance[J].Planta,1994,193(2):155-162.
    [400] Ravishankar V,McComb J.Direct somatic embryogenesis from mature embryos of sandal wood[J].Plant Cell Tiss Org Cult,2002,69(1):65-70.
    [401] Reinert J.Uber die Kontrolle der Morphogenes and die Induktion von Adventive-embryonen an Gewebekulturen aus Karotten[J].Plant,1959,53:318-333.
    [402] Reinert James A,Knauf T A,MaranzSteven J,et al.Effect of beauveria bassiana fungus on the boxelder and red shouldered bugs(Hemiptera.rhopalidae)[J].Florida Entomologist,l999,82(3)469-474.
    [403] Ronald Mills W,Lea P J,Mifhn B J.Photosynthetic formation of the aspartate family of amino acids in isolated chloroplasts[J].Plant Physiol,1980,65:1166-1172.
    [404] Rozwadow ski K L,Khachatourians G G,Selvaraj G.Choline oxidase,a catabo licenzyme in Arthrobacter pascens,facilitates adaptation to osmotic stress in Escherichia coli[J].J Bacteriol,199l,173:472-478
    [405] Rugh C L,Dayton Wilde H, Stack N M,et al.Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene[J].Proc Natl Acad Sci USA,1996,93:3182-3187.
    [406] Sabir S M,Ahmed S D,Lodhi N.Morphological and biochemical variation in Sea buckthorn Hippophae rhamnoides ssp.turkestanica,a multipurpose plant for fragile mountains of Pakistan[J].South African Journal of Botany,2003,69(4):587-592.
    [407] Sakamoto A,Murata N.Genetic engineering of glycinebetaine synthesis in plants:current status and implica- tions for enhancement of stress tolerance[J].J Exp Bot,2000,51(342):81-88.
    [408] Sara von A,Izabela S,Peter B.Developmental pathways of somatic embryogenesis[J].Plant cell,tissue and organ culture,2002,69:233-249.
    [409] Schaart J G,Krens F A,Pelgrom K T B.et al.Effective production of marker-free transgenic strawberry plants using inducible site-specific recombination and a bifunctional selectable marker gene[J].Plant Biotechnol J.2004,2:233-240.
    [410] Sherf B A,Wood K V.Firefly luciferase engineered for improved genetic reporting [J] Promega Notes,1994,49:14-21.
    [411] Shu W G,Ai W D.Chen S Y.Analysis of betaine aldehyde dehydrogenase DNA sequence in Spmacia oleracea[J]. Chinese Science Bulletin,1997,42:2441-2445.
    [412] Slater A.Zhang C L.Chen D F.et al.Use of the GFP reporter as a vital marker for Agrobacterium mediated transformation of sugar beet (Beta vulgaris L.)[J].Mol Biotechnol.2001,17:109-117.
    [413] Sondahl M R,Sharp W R.High frequence induction of somatic embryos in cultured leaf explants of Coffea arabica L.[J].Z.Pflanzenphysiol,1977,81:395-408.
    [414] Sreekala C.Wu L,Gu K,et al.Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system[J].Plant Cell Rep,2005,24:86-94.
    [415] Stasolla C.Kong L.Yeung E C.et al.Maturation of somatic embryos m conifers:morphogenesis physiology,biochemistry.and molecular biology[J].In Vitro Cellular & Developmental Biology.2002.38(2):83-105.
    [416] Steward F C.Mapes M O.Mwars K.Growth and organized development of cultured cells Ⅱ [J].Origanization in cultures grown from suspended cells Amer.f.Bot,1958,45.705-708.
    [417] Stewart C J.Richards H A, Halfhill M D.Transgenic plants and biosafety.science misconceptions and public perceptions[J].Biotechniques 2000,29(4).832-838.
    [418] Street H E.Withers L A.The anatomyof embryogenesis in culture[A].In: Street HE(ed). Tissue Culture and Plant sciece Proceeding 3rd Internatinoal Congress of Plant Tissue Culture. London:Academic Press,1974:71-100.
    [419] Strickland S G,Nichol J W.McCall C M,et al.Effect of carbohydrate source on alfalfa somatic embryogenesis[J].Plant Sci,1987,48:113-121.
    [420] Sugita K,Matsunaga E,Ebinuma H.Effective selection system for generating marker-free transgenic plants independent of sexual crossing[J].Plant Cell Rep,1999,18:941-947.
    [421] Suk W K,Seung C O,Dong S Let al.Plant regeneration of rose(Rosa hybridia) from embryogenic cell-derived protoplasts[J].Plant cell,Tissue and Organ Culture,2003b,73.15-19.
    [422] Tang X,Kalviainen N,Tuorila H.Sensory and Hedonic Characteristics of Juice of Sea Buckthorn(Hippophae rhamnoides L.) Origins and Hybrids[J].Lebensmittel-Wissenschaftund- Technologie,2001,34(2): 102-110.
    [423] Tang X.Intnnsic change of physical and chemical properties of sea buckthorn (Hippophae rhamnoides) and implications for berry maturity and quality[J].The Journal of Horticultural Science and Biotechnology,2002,77(2):177-185.
    [424] Tapan K M,Amita B.Anil S,et al.Factors affecting germination and conversion frequency of somatic embryos of Tea(Camellia sinesis L.O.Kuntze.)[J].Journal of plant physiology.2002,159.1317-1321.
    [425] Thomashow M E.Plant cold acclimation:freezing tolerance genes and regulatory[J].Plant Molecular Biology,1999,50:571-599.
    [426] Thomasset B,Menard M,Boetti H,et al.β-Glucuronidase activity in transgenic and non-transgenic tobacco cells:specific elimination of plant inhibitors and minimization of endogenous GUS background [J].Plant Sci,1996,113:209-219.
    [427] Tulecke W,Durzan D J.Cell and culture in forestry[J].Martinus Nijhoff Publisher,1987,2(61):88-93.
    [428] Urbanek A.Zechmann B,MOIIer M.Plant regeneration via somatic embryogenesis in Styrian pumpkin:cytological and biochemical investigations[J].Plant Cell,Tissue and Organ Culture,2004,12:329-340.
    [429] Vacek M et al.Control of fruit ripening and senescence in plants[J].Nature,1987,328:33-37.
    [430] Vancanneyt G.Schmidt R,O'connor-Sanchez A,et al.Construction of an intron-containing marker gene:Splicing of the intron in transgenic plants and its use in monitoring early events on Agrobacterium- mediated plant transformation[J].Mol Gen Genet,1990,220:245-250.
    [431] Vooková B,Kormuták A.Effect of sucrose concentration, charcoal,and indole-3-butyric acid on germination of Abies numidica somatic embryos[J].Biol Plant,2001,44:181-184.
    [432] Walker K,Sato S.Morphogenesis in callus tissue of Medicago sativa:the role of ammonium ion in somatic embryogenesis[J].Plant Cell Tiss Org Cult,1981,1:109-121.
    [433] Wang D X, Zhao Q, Zhu D Y,et al.Particle-Bombardment-Mediated Co-Transformation of Maize with a Lysine Rich Protein Gene (sb401) from potato[J].Euphytica,2006,150:75-85.
    [434] Weigel P,Weretinyk E A,Hanson A D.Betaine aldehyde oxidation by intact spinach chloroplasts[J].Plant physiol,1986,8:753-759.
    [435] Weisser P,Kramer R,Sprenger G A.Expression of the Escherichia coli pmi gene, encoding phosphomannose- isomerase in Zymomonas mobilis,leads to utilization of mannose as a novel growth substrate,which can be used as a selective marker[J].Appl Environ Microbiol,l996,62:4155-4161.
    [436] Weretilnyk E A,Hanson A D.Betaine aldehyde dehydrogease polymorphism in spinach genetic and biochemical characterization[J].Biochem Genet,1988,26:143-151.
    [437] Weretilnyk E A,Hanson A D.Betaine aldehyde dehydrogenase from spinach leaves.purification,in vitro translation of the mRNA,and regulation by salinity[J].Arch Biochem Biophys,l989,271(1):56-63.
    [438] Weretilnyk E A,Hanson A D.Molecular cloning of a plant betaine aldehyde dehydrogenase,an enzyme implicated in adaptation to saline and drought[J].Proc Natl Acad Sci,1990,87(7):2745-2749.
    [439] Wetherell D F,Dougall D K.Sources of nitrogen supporting growth and embtyogenesis in culture wild carrot tissue[J].Physiol Plant,1976.37:97-103.
    [440] Wood A J.Saneoka H.Rhode D.et al.Betame aldehyde dehydrogenase in sorghum[J].Plant Physiol,1996,110:1301-1308.
    [441] Wyn Jones R G.et al.A hypothesis on cytoplasm icosmo regulation [A].Marre E.CiferriO.eds.Regulation of cellmembrane activities in higher plants[C].Am stredam:Elsevier/North Holland Publication Corporation,1977:121-136.
    [442] Yadav J.SRajam M V.Spatiald istnbutionof free and conjugaged polyaminesin leaves of Solanumm elongena L.associated with differential morphogenetic capacity[J].Exp Bot,l997,48(313):l537-l545.
    [443] Yang B.Kallio H.Composition and physiological effects of sea buckthorn (Hippophae) lipids[J].Trends in Food Science and Technology,2002,13(5): 160-167.
    [444] Yang B.Kallio H.Effects of Harvesting Time on Triacylglycerols and Glycerophospholipids of Sea Buckthorn (Hippopha(?) rhamnoides L.) Berries of Different Origins[J].Journal of Food Composition and Analysis,2002,15(2):143-l57.
    [445] Yao Y M.et al.Micropropagation of seabuckthorn(Hippophae rhamnoides L.)[J].Agricultural Science in Finland,1995,(4):5-6,503-512.
    [446] Yasuomi I.Kenji K.Automation of somatic embryo production[J].Plant cell,tissue and organ culture 2001,65:179-199.
    [447] Yin L P.Liu W Z.Liu X L,et al.DDRT-PCR Analysis under iron-deficient condition m wheat roots and different of ABC gene expression[J].Agricultural Science in China.2002,l(12):1317.
    [448] Zadernowski R,Naczk M.Czaplicki S.et al.Composition of phenolic acids in sea buckthorn (Hippophae rhamnoides L.) berries [J].Journal of the American Oil Chemists 'Society, 2005.82(3):175-179.
    [449] Zee S Y,Wu S C.Somatic embryogenesis in the leaf explants of Chinese celery[J].Aust J Bot,1980,28:429-436.
    [450] Zelasco S,Ressegotti V,Confalonieri M,et al.Evaluation of MAT-vector system in white poplar (Populus alba L.) and production of ipt marker-free transgenic plants by 'single-step transformation'[J].Plant Cell Tissue Organ Cult,2007,91:61-72
    [451] Zhao Y,Qian Q,Wang H Z,et al.Co-transformation of gene expression cassettes via particle bombardment to generate safe transgenic plant without any unwanted DNA[J].In Vitro Cell Dev Biol Plant,2007,43:328-334.
    [452] Zubko E,Scutt C,Meyer P.Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes[J].Biotechnology (N Y),2000,18:442-445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700