用户名: 密码: 验证码:
4G69汽油机台架标定试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车节能减排是我国汽车工业,甚至是全球汽车工业奋斗的方向。近几年,我国汽车工业得到了飞速的发展,随之而来的是能源紧张程度的不断加深,政府对环境保护的力度不断加大,加上发动机新技术的不断涌现,促使国内发动机市场竞争的加剧,使开发低排放、低油耗的新型发动机成为各家汽车企业的紧迫任务。汽车节能减排的发展趋势为发动机电喷行业带来巨大机遇,汽油机电喷技术属于汽车核心零部件技术,直接决定了汽油机的排放和综合性能水平。
     本文以沈阳航天三菱汽车发动机有限公司生产的4G69(2.4L)汽油机为研究对象,就优化充气效率、点火提前角、空燃比及EGR率进行了试验研究。对标定后发动机的性能与4G64发动机的性能进行了比对试验研究,标定过的发动机经搭载整车后,进行整车油耗测试试验。试验结果表明:
     (1)充气效率优化设定可避免混合气过浓或过稀,提高了发动机运行稳定性,对燃油经济性也有一定的贡献;
     (2)空燃比优化设定对尾气排放、发动机的动力性和经济性都有很大的影响。同时,各工况下最佳空燃比能保证发动机排气温度控制在合适范围之内,可延长三效催化转换器的使用寿命;
     (3)汽油机的点火提前角对发动机的性能影响巨大,点火过早或过迟都会直接影响汽油机的动力性、经济性和排放特性等性能;
     (4)EGR率的优化设定是控制NOx排放技术的关键,能使NOx在各种不同工况下,控制在合适的范围内。
     通过试验,分析了进气损失、排气损失及燃油品质等对发动机性能的影响,总结了能够满足发动机动力性,经济性的各项参数的合理设定方法,并提出了采用EGR控制NOx排放关键技术的应用要求。在实现整车厂对发动机要求的开发目标值的同时,满足了我国汽车燃油消耗量第二阶段限值标准的要求。
In recent years, with the rapid surge in automobile possessing capacity, automobile exhaust emissions and pollution is serious day by day, furthermore, the scarcity of resource in the world let automobile consumers bear great oil price pressure. Therefore, energy conservation and environmental protection have been the common focus of the manufacturers and the consumers, which means that the automobile companies must change the growth mode from extensive to intensive, accurate, economical type. In the future, energy conservation, consumption reduction, emission reduction will be the new standard in the automobile industry, the new threshold.
     In the trend of automobile energy conservation,in order to meet increasingly stringent emissions and fuel consumption regulations, Geely Automobile Company decide to replace old engine in an SUV vehicle. Because the original 4G64-type engine applies single overhead camshaft, natural aspiration way, and the valve lift could not be changed, so it is hard to reach ideal distribution phase and optimal charge efficiency,and also improve fuel economy and power further. To this end, we develop 4G69 MIVEC gasoline engine to achieve to enhance engine power, improve fuel economy and emission characteristics, while meeting our current implementation emissions and fuel consumption regulations.
     The Mitsubishi MIVEC variable valve timing mechanism are elaborated. In the low-medium speed, the valve lift difference is used to strengthen the swirling of the mixture, and improve the mixing homogeneity of the mixture. The small valve overlap can decrease internal EGR rate and improve low-speed combustion stability, thus improve fuel consumption and reduce emissions. At the same time, the low valve lift can reduce friction loss and the scavenging volume, so the charge efficiency is increased and the low-speed torque is raised in return. In the high-speed, the high valve lift and scavenging impulse improve the charge efficiency and engine power.
     The engine bench test for performance evaluation is used to verify the factors affecting engine power, the results show that import and exhaust system optimization design optimization, rational distribution, can reduce the import and exhaust resistance and improve the engine's charge efficiency, then improve engine power performance. Ethanol gasoline has an small effect on engine power,and make contributions to reduce emissions significantly, engine can be used directly without needing major changes; In addition, the engine test bench is used to verify the factors affecting engine economy,the results show that strict control exhaust temperature, stable fuel supply pressure, is technical support to achieve to control air-fuel ratio precisely, thus improving fuel economy. Through the bench Verifying, measures are proposed to improve the engine power and economy, and prepared for engine bench calibration.
     The specific requirements and workflow are given for the engine bench calibration optimize the important EMS system parameters such as charge efficiency, air-fuel ratio, ignition timing, EGR rate so that the 4G69 engine calibrated get a large power, low emission, low fuel consumption. Particularly optimization of EGR rate, NOx emissions are controlled effectively. After the data verified by vehicle test meet the requirements, then it can be fixed, the engine calibrated performance test show that the engine's low speed torque and high speed performance is improved clearly, fuel consumption get better and economic region get wider obviously. Finally, BYD company's vehicle fuel consumption test was carried out to verify the design project. The results show that the performance and fuel consumption reach the original development target, the vehicle equipped with the engine calibrated can meet the second-step limit of the standard for automobile fuel consumption.
     The summary of the research for this thesis is as follows:
     1)import and exhaust system optimization design, rational distribution, can reduce the import and exhaust resistance and improve the engine's charge efficiency, thus improve the engine's power;
     2) MIVEC variable valve timing technology can improve the engine power in high speed region, while improving the engine fuel economy in low-medium speed region;
     3) strict control exhaust temperature, stable fuel supply pressure, is technical support to achieve to control air-fuel ratio precisely, thus improving fuel economy;
     4) through the EMS engine management system calibration, to meet high demand of the engine power, economy and emission characteristics, compared to 4G64 model, rated power and rated torque increased by 20% and 10% above;
     5) the reasonable control of the EGR rate reduce NOx emissions by 30% or more in the engine feedback region, while improving fuel economy;
     6) the engine bench test show that power and fuel consumption reach the original development target, in addition, the vehicle equipped with the engine calibrated can meet the second-step limit of the standard for automobile fuel consumption.
引文
[1]卢青伟.中国汽车工业市场和展望[J].汽车研究与开发.1995.4
    [2]姜奎华.中国汽车工业的发展和对环境的影响[J].武汉汽车工业大学学报.1999.4
    [3]Industry Technology& Strategy Study Group. Report on Technologies and Strategies in the Automobile Industry[C]. JSAE, March 2000
    [4]卓斌,刘启华.车用汽油机燃料喷射与电子控制[M].机械工业出版社.1999.8
    [5]许拔民.汽车油耗标准及技术法规的现状与发展[J].CVEC通讯.2003.2
    [6]陈家瑞.汽车构造(上册)(第2版)[M].机械工业出版社.2005.1
    [7]蒋德明.内燃机原理[M].机械工业出版社.1986
    [8]李景渊.发动机进气系统性能分析研究[D].重庆大学.2005
    [9]林华.发动机排气系统的发展.汽车维修.1995.5
    [10]王长林.进排气系统压力波模拟计算的发展[J].内燃机工程.1999年04期
    [11]乔莉.汽车发动机压缩比与用油[J].石油商林.2004.8
    [12]周龙保,刘巽俊,高宗英.内燃机学[M].机械工业出版社.1999
    [13]龚允怡.内燃机燃烧基础[M].哈尔滨船舶工程学院出版社.1988
    [14]郭和军,方茂东,杜传进.汽油品质对车辆尾气排放影响的试验研究[J].武汉理工大学学报.2005年09期
    [15]李建,秦大同,韩维建.燃油品质特性对车辆排放性能的影响[J].重庆大学学报(自然科学版).2005年07期
    [16]Richard Stradling, Neville Thompson, Roberto Bazzani. et al. Fuel effects on regulated emissions from modern gasoline vehicles[J]. SAE Papers 2004-01-1886
    [17]CONCAWE (2003) Fuel effects on emissions from modern gasoline vehicles-part 1-sulphur effects. Report No.5/03. Brussels:CONCAWE
    [18]CONCAWE (2003) Fuel effects on emissions from modern gasoline vehicles-part 2-aromatics, olefins and volatility effects. Report No.2/04. Brussels:CONCAWE
    [19]Jack D. Benson, Gregory Dana. The Impact of MMT Gasoline Additive on Exhaust Emissions and Fuel Economy of Low Emission Vehicles (LEV) [J]. SAE 2002-01-2894
    [20]余志生.汽车理论(第3版).机械工业出版社.2004.1
    [21]《汽车工程手册》编辑委员会.汽车工程手册设计篇[M].人民交通出版社.2001.5
    [22]刘峥,王建昕.汽车发动机原理教程[M].清华大学出版社.2001
    [23]张少华.新型发动机降单位油耗的途径[J].重型汽车.2005,3
    [24]徐军,张希圣.发动机油耗及影响因素[J].内燃机配件.2004.3
    [25]朱玲玉.降低机油耗的途径和措施[J].山东内燃机.2001.1
    [26]蔡锐彬,陈子健,杨建威,蔡涌泉.车用汽油机排气温度特性研究.华南理工大学学报(自然科学版).1999年第07期
    [27]张新权.喷油压力过高过低的危害.新农村.1998.4
    [28]范永,杨世文.车用内燃机的发展与展望[J].机械管理开发.2007.2
    [29]张志永.车用内燃机环保节能技术研究的新进展[J].北京汽车.2006.2
    [30]于京诺,陈燕,王昕彦.汽油机稀薄燃烧技术[J].交通标准化.2004.10
    [31]杨世春,李君,李德刚.缸内直喷汽油机技术发展趋势分析[J].车用发动机.2007.5
    [32]江俊锋,张建昭.新型汽油机缸内直喷燃烧系统的研究[J].汽车技术.2003第02期
    [33]王志,王建昕,帅石金等.火花点火对缸内直喷汽油机HCCI燃烧的影响[J].内燃机学报.2005.2
    [34]Michael Grady. Gasoline Direct Injection [J]. Motor Age,2006,125(6):112-117
    [35]Zhao Fu-Quan,Lai Ming-chai,David L Harrington. A Review of Mixture Preparation and Combustion Control Strategies for Spark-ignitied Direct Injection Gasoline Engines[C]. SAE Paper 970627,1997
    [36]Carlos Queiroz,Eduardo Tomanik, Gasoline Direct Injection Engines a Bibliographical Review[C].SAE Paper 973113,1997
    [37]Mike Fry. Jason King,Carl White. A Comparison of Gasoline Direct Injection Systems and Discussion of Development Techniques[C].SAE Paper 1999-01-0171
    [38]Spidover U. Resis J. Kech JM, et al. Gasoline Direct Injection(GDI) Engines-Development Potentialities[C]. SAE Paper 1999-01-2938
    [39]David C Arters., EW a A Bardasz., Elizabeth A, et al. A Comparison of Gasoline Direct Injection and Port-fuel-injection Vehicles:(Part 1) Fuel System Deposits and Vehicles Performance[C]. SAE Paper 1999-01-1498
    [40]LI Yu-fang, ZHAO Hua, Nikolaos Brouzos. Effect of Injection Timing On Mixture and CAI Combustion in a GDI Engine with an Air-assisted Injector[C]. SAE Paper 2006-01-0206
    [41]Turner J W G,Pearson R J,Kenchington S A, et al. Concepts for Improved Fuel Economy from Gasoline Engines[J], International Journal of Engine Research, 2005,6(2):137-157
    [42]Cao L,Zhao H,Jiang X,et al. Mixture Formation and Controlled Auto-ignition Combustion in Four-stroke Gasoline Engines with Port and Direct Fuel Injection[J]. International Journal of Engine Research,2005,6(4):311-330
    [43]K. Hatano, et al.:Development of a new multi-mode variable valve timing engine[J]. SAE Paper 930878.1993
    [44]T. Fukui, T. Nakagami, H. Endo, et al.:Mitsubishi Orion-MD A New Variable Displacment Engine[J]. SAE Paper 831007.1983
    [45]A. Takahashi, K. Tsunetomi, K. Akishino, et al.:Mitsubishi Compound Intake System Engine[J]. SAE Paper 850035.1985
    [46]K. Inoue, K. Nagahiro, Y. Ajiki et al.:A High Power, Wide Torque Range, Efficient Engine with a Newly Developed Variable-Valve-Timing Mechanism[J]. SAE Paper 890675
    [47]K. Maekawa, N. Ohsawa, A. Akasaka. Development of a Valve Timing Control System[J]. SAE Paper 890680.1989
    [48]马元骥,施润昌.内燃机测试技术[M].浙江大学出版社.1986.9
    [49]彭美春,吴昭润,王文涛.发动机管理系统在505SX型车上的应用研究.汽车技术.2004.10
    [50]苏琴.发动机与汽车动力性、燃料经济性匹配的模拟计算[D].河北工业大学.2000年
    [51]夏广文,张云龙,韩韶辉,康晓敦.汽油机电控系统标定试验方法的研究[J].内燃机工程.2002年04期
    [52]向禹,颜伏伍,邹斌,唐永华.汽油发动机管理系统的匹配方法研究[J].内燃机.2006年01期
    [53]朱辉,黄海燕,陈立明等.电控技术与汽油机的匹配技术研究.车用发动机,1997年05期
    [54]钱耀义.汽车发动机电子控制系统.北京机械工业出版社.1999.
    [55]August Goers,et al. Calibration of an Aftermarket EFI Conver2sion System for Increased Performance and Fuel Economy with Reduced Emissions,SAE 2003-01-1051.
    [56]陈立明,朱辉,郭少平等.汽油发动机管理系统稳态工况参数标定方法研究(J)内燃机工程.2000年01期.
    [57]李想.电控汽油机标定系统设计及试验研究[D].吉林大学.2008年
    [58]陆孝宽.发动机设计参数对充气效率影响的计算方法[J].汽车技术.1980年01期
    [59]胡明勃.汽油机点火提前角和空燃比与节油[J].武汉理工大学学报(交通科学与工程版).1984年03期
    [60]中国内燃机学会,刘巽俊.内燃机的排放与控制[M].机械工业出版社.2002.11
    [61]郑乃金.汽车排放控制技术发展趋势[J].汽车技术.1996年04期
    [62]李东江,宋良玉,王秀娣.现代汽车电子控制技术[M].科学技术文献出版社.1998.8
    [63]邱先文.降低车用稀燃汽油机有害排放物NOx的排气再循环的研究[D].天津大学.2003
    [64]徐百龙,郭英男,谭满志,刘金山,姜立永.利用排气再循环降低轻型车NOx排气污 染物[J].车辆与动力技术.2000年03期
    [65]姚春德,敬章超,傅晓光,刘文胜.废气进气方式对汽油机性能及NOx排气影响的研究.汽车工程.2004.2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700