用户名: 密码: 验证码:
动力用煤混烧生物质燃烧特性及污染物排放特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用热分析技术,研究了三种不同变质程度的动力用煤和六种常见生物质(瓜子皮、甘蔗渣、糠醛渣、酒糟、梧桐木和玉米芯)及其混合物的燃烧特性,深入探讨了生物质种类、升温速率和混合比例等参数对样品燃烧特性的影响,进而得到各样品燃烧的动力学特性;应用静态燃烧试验系统对生物质和煤单独燃烧及混合燃烧的污染物排放特性进行了研究,分析了炉温、混合比例等条件对污染物排放特性的影响。
     首先,本文利用TGA/SDTA851e综合热分析仪对动力用煤混烧生物质的燃烧特性进行了研究。生物质的燃烧失重分为两个阶段:第一阶段(240~380℃)是生物质中纤维和木质裂解以及挥发分释放燃烧阶段;第二阶段(>380℃)是生物质裂解后焦炭燃烧阶段。第一阶段失重范围较大,反应温度区间较窄,为生物质燃烧的主体阶段。在该区域,农业废弃物(瓜子皮、甘蔗渣、梧桐木和玉米芯)的失重率高达70%以上,工业废弃物(糠醛渣和酒糟)失重率亦在50%以上;第二阶段失重相对缓和,反应的温度变化范围较宽,此阶段的失重量和失重速率明显低于第一阶段。生物质以不同比例与煤混合燃烧的燃烧速率试验曲线与按比例折算后的曲线基本吻合,但略有差别:挥发分析出阶段试验值比折算值稍低,而在焦炭燃烧阶段试验值比折算值偏高。随着升温速率的提高,不论是单煤、单生物质还是混煤,TG曲线都向高温区移动,DTG曲线最高峰的位置也向右偏移,最大失重速率相应增大,燃烧时间缩短,可燃性指数增大。
     其次,本文利用Freeman-Carroll法、改进Coats-Redfern法和Ozawa法等不同热分析曲线处理方法对试验数据进行了计算处理,求解其燃烧反应动力学参数。根据改进Coats-Redfern法,计算得到了六种生物质和三种不同变质程度煤燃烧机理函数的最佳n值,并求出了其各阶段表观活化能。结合三种动力学分析方法,可以得到,对于生物质与煤单独燃烧,在着火初始阶段,生物质和煤的反应活化能和频率因子均较大,而对于其燃烧的主要阶段来说,随着升温速率的升高,活化能和频率因子均逐渐减小,从而使生物质和煤的燃烧速率随升温速率的升高而逐渐增大,说明升温速率的升高有利于生物质和煤活性的提高。Ozawa法求解结果从另一角度进一步表明,在不同的燃烧阶段,生物质与煤燃烧反应的活化能是不同的,随着反应度α的增大,生物质的活化能先增大后减小,而煤及生物质混煤的活化能则逐渐减小。
     最后,本文利用静态燃烧试验系统研究了动力用煤混烧生物质时的硫、氮污染物排放特性,并考察了炉温及混合比例等因素对其影响规律。研究表明,单一煤燃烧时,SO2排放明显分为两个阶段:第一阶段对应煤挥发分析出着火阶段,为煤中有机硫和部分黄铁矿硫燃烧形成;第二阶段为需要更高温度才能燃烧的有机硫燃烧、黄铁矿硫及少量的硫酸盐硫形成。单一生物质燃烧时,除糠醛渣外,均形成单一SO2释放峰,而糠醛渣的SO2释放特点则与煤相似。除糠醛渣外,生物质与煤混烧时,随着生物质比例增大,SO2释放峰减小,SO2排放总量减小,SO2排放时间缩短;对于糠醛渣,随着糠醛渣比例的增大,当其含硫量低于煤时,SO2排放总量减小;当其含硫量高于煤时,SO2排放总量则增大。对于生物质混煤,在燃烧前期,炉温越低,易分解有机硫析出越快,SO2析出越快,燃烧后期则是炉温越高,难分解有机硫析出越快,SO2析出越快,与单一煤的规律基本一致;除甘蔗渣和梧桐木外,随着炉温的升高,SO2排放总量先增大后减小,而甘蔗渣和梧桐木混煤的SO2排放总量则逐渐增大;随着炉温的升高,SO2排放时间缩短,SO2转化率先增大,后减小。
     单一煤燃烧时,烟煤形成两个NO释放峰,贫煤和无烟煤均形成较平坦的一个NO释放峰;单一生物质燃烧时,除酒糟和糠醛渣外,生物质皆为一个NO释放峰,而酒糟的NO释放呈明显的双峰结构,糠醛渣的NO释放不均匀,但总体上呈双峰趋势;相对于煤来说,生物质的NO释放时间较短,主要集中在燃烧前期。煤和生物质单独燃烧时,随着样品含氮量的增大,煤和生物质的NO转化率总体呈减小趋势,但NO排放总量与样品自身含氮量之间无明显的规律性。生物质与不同变质程度的煤混烧时,生物质的加入使得NO释放提前,释放所用时间缩短,且随着生物质比例的增大,NO排放时间越来越短。除酒糟外,随着生物质比例的增大,NO排放总量呈下降趋势,而对于含氮量大于煤的酒糟,NO排放总量则是先增大,后减小。
In this paper, the combustion characteristics of three different ranks of steam coal and six common biomass (including sunflower-seed husks, bagasse, furfural residue, vinasse, platanewood and corncob) and their blending were studied using thermo-gravimetric analysis technique respectively, and impacts of biomass type, heating rate and the blending ratio on the combustion characteristics of samples were researched, which led to the dynamics of the sample combustion; a tube heating furnace was applied to study the pollutant emission characteristics of separate biomass, coal and their blending, and analyze the impacts of furnace temperature and blending ratio on the pollutant emission characteristics.
     First, this paper utilized TGA/SDTA851e comprehensive thermal analyzer to study the combustion characteristics of steam coal blended with biomass. Weight loss of biomass combustion fell into two stages:the first stage (240~380℃) was cellulose and lignin pyrolysis and release and combustion of volatile; the second one (>380℃) was the coke combustion stage. The scope of weight loss in the first phase was large, with a narrow temperature range, which was the main phase of biomass combustion. In the region, the weight loss rate of agricultural waste (sunflower-seed husks, bagasse, platanewood and corncob) was as high as 70%, and that of industrial waste (furfural residue and vinasse) was 50% or more. The weight loss in the second stage was relatively smoothing, with a wide reaction temperature range, whose weight loss and weight loss rate were significantly lower than those of the first stage. The actual burning rate curves of coal blended with biomass in various ratios were basically in agreement with calculated ones, but slightly different:the experimental data of devolatilization stage was slightly lower than the calculated value, and that of coke combustion stage was higher than the calculated value. With the increase of heating rate, to whether single coal, biomass or their blending, TG curves moved to higher temperature, DTG curve peak position was also deviated to the right, the maximum weight loss rate correspondingly increased, while the combustion time reduced, and flammability index increased.
     Secondly, in this paper, different treatments of thermal analysis curves containing Freeman-Carroll method, improved Coats-Redfern method and Ozawa method were utilized to compute the experimental data, solving the kinetic parameters of its combustion. According to the improved Coats-Redfern method, the best'n'value of combustion mechanism function of six kinds of biomass and three different ranks of coal were calculated, solving the apparent activation energy of their various stages. With a combination of three kinds of dynamic analysis methods, it was found that for the combustion of biomass and coal alone, in the initial stages of combustion, the reaction activation energy and frequency factor of biomass and coal were large, and for the main stage of combustion, as the heating rate increased, the activation energy and frequency factor were gradually reduced, so that burning rate of biomass and coal gradually increased with the increased heating rate, indicating the increase of heating rate was conducive to biomass and coal activity. Ozawa method results further showed from another side, in different stages of combustion, combustion activation energy of biomass and coal was different, and as the reaction degree'a'increased, the activation energy of biomass increased first and then decreased, while activation energy of coal and blending of coal and biomass was decreased.
     Finally, using the tube heating furnace the sulfur and nitrogen emission characteristics of combustion of steam coal blended with biomass, and influence laws of factors such as furnace temperature and blending ratio were investigated. The results showed that in coal combustion, SO2 release was divided into two phases:the first one corresponded to the combustion stage of devolatilization in coal, which was formed by combustion of the organic sulfur and part of pyrite sulfur in coal; the second one was formed by organic sulfur, pyrite sulfur and a small amount of sulfate sulfur, whose combustion needed a high temperature. In biomass combustion except furfural residue, one single peak of SO2 release was formed, and SO2 release characteristics of furfural residue were similar to coal. Except furfural residue, in the combustion of coal blended with biomass, as the proportion of biomass increased, there was a reduction in SO2 release peak, SO2 emissions, and SO2 emission time; for furfural residue, with the increase of the furfural residue ratio, SO2 emissions reduced when its sulfur content was lower than coal; when higher, SO2 emissions increased. For coal blended with biomass, in the former combustion, the lower furnace temperature was, the faster the precipitation of easily decomposable organic sulfur was, the faster SO2 release was, and in the latter combustion, the higher the furnace temperature was, the faster the precipitation of refractory organic sulfur was, the faster SO2 release was, which was consistent with the rule of single coal; Except bagasse and platanewood, with the rise of furnace temperature, SO2 emissions first increased and then decreased, while for coal blended with bagasse and platanewood, SO2 emissions increased gradually; With the increase of furnace temperature, SO2 emission time decreased, and SO2 conversion ratio first increased, then decreased.
     In single coal combustion, NO release of bituminous coal formed two peaks, while that of lean coal and anthracite both formed one relatively flat peak; While in single biomass combustion, except vinasse and furfural residue, the NO release of all biomass was one peak, while that of vinasse was apparent double peak structure, and that of furfural residue was uneven, with a overall double peak trend. Compared with coal, the NO release time of biomass was short, and mainly concentrated in the former combustion. In combustion of coal and biomass alone, with the increase of nitrogen content in samples, the NO conversion ratio of coal and biomass decreased overall, but the NO emissions had no obvious regularity with nitrogen content of the sample itself. In combustion of coal blended with biomass, the biomass made NO release earlier, and release time decrease, and with the increase of the biomass ratio, NO emission time reduced. Except vinasse, with the increase of biomass ratio, NO emissions decreased, while for vinasse whose nitrogen was higher than that of coal, NO emissions first increased, then decreased.
引文
[1]张无敌,宋洪川,韦小岿等.21世纪发展生物质能前景广阔[J].中国能源.2001,(5):35—38.
    [2]蒋建春.生物质能源转化技术与应用(Ⅰ)[J].生物质化学工程.2007,41(3):59—65.
    [3]V. Dornburg, G. Termeer, A. P. C. Faaij. Economic and greenhouse gas emission analysis of bioenergy production using multi-product crops-case studies for the Netherlands and Poland [J]. Biomass & Bioenergy,2005,28 (5):454-474.
    [4]顾树华.开发利用生物质能是我国农林业发展的重要领域[J].中国能源,2006,28(9):11—15.
    [5]吴创之,马隆龙主编.生物质能现代化利用技术[M].北京:化学工业出版社,2003.
    [6]魏学峰,罗婕,田学达.生物质燃料的开发利用现状与展望[J].冶金能源,2004,23(6):45—49.
    [7]万泉.能源植物的开发和利用[J].福建林业科技,2005,32(2):1-5.
    [8]R.B. Keey, Recent progress in solids processing:some current developments in drying[J]. Chemical Engineering Research and Design,1986,64:83 - 88.
    [9]世界能源理事会,阎季惠译.新的可再生能源未来发展指南[M].北京:海洋出版杜,1998.
    [10]吴创之,阴秀丽.欧洲生物质能利用的研究现状及特点[J].新能源,1999,21(3):30—35.
    [11]吕灿仁,马一太,王怀信等.热力学、环境、能源与可持续性发展[A].面向21世纪热科学论文集[M].北京:高等教育出版杜,1999.
    [12]中国能源研究会.世界与中国能源数据[J].能源政策研究,2005,6.
    [13]邱钟明,陈砺.生物质气化技术研究现状及发展前景[J].可再生能源,2002,(4):16—19.
    [14]M.R. Nouni, S.C. Mullickb, T.C. Kandpal. Biomass gasifier projects for decentralized power supply in India:A financial evaluation[J]. Energy Policy,2007, 35(2):1373-1385.
    [15]蒋剑春.生物质能源转化技术与应用(Ⅰ)[J].生物质化学工程,2007,41(3):59—65.
    [16]张百良,樊峰鸣,李保谦等.生物质成型燃料技术及产业化前景分析[J].河南农业大学学报,2005,39(3):111—115.
    [17]Sinisa N. Dodic, Stevan D. Popov et al. An overview of biomass energy utilization in Vojvodina [J]. Renewable and Sustainable Energy Reviews,2010, 14(1):550-553.
    [18]Mazharul Islam, Amir Fartaj et al. Current utilization and future prospects of emerging renewable energy applications in Canada [J]. Renewable and Sustainable Energy Reviews,2004,8(6):493-519.
    [19]李俊峰,王仲颖.中华人民共和国可再生能源法解读[M].北京:化学工业出版杜,2005.
    [20]雷廷宙,沈胜强,崔俊贞等.固定床生物质气化机组主要技术性能试验研究[J].河南科学,2006,24(1):118-121.
    [21]张全臣,臂廷宙主编.农业废弃物气化技术[M].北京:化学工业出版社,2006.
    [22]雷廷宙,张全国,范振山等.沼液中全氮含量的影响因素试验研究[J].太阳能学报,2005,26(3):396—399.
    [23]Ayhan Demirbas. Sustainable cofiring of biomass with coal [J]. Energy Conversion and Management,2003,44:1465 - 1479.
    [24]李平,徐浩泉.蔗糠燃料特性与煤粉混烧技术的研究[J].工业锅炉,2001,(1):31—33.
    [25]盛昌栋,张军.煤粉锅炉共燃生物质发电技术的特点和优势[J].热力发电,2006,35(3):8—11.
    [26]肖军,段菁春,庄新国,王华.生物质与煤共燃研究(Ⅰ)生物质的低温热解[J].煤炭转化,2003,26(1):61—66.
    [27]蒋恩臣,何光设.稻壳、锯末成型燃料低温热解特性试验研究[J].农业工程学报,2007,23(1):188—191.
    [28]M Sami, K Annamalai, M Wooldridge. Co-firing of Coal and Biomass Fuel Blends[J]. Progress in Energy and Combustion Science,2001,27(2):171-214.
    [29]P.Grammelis et al. Thermal exploitation of wastes with lignites for energy production [J]. Journal of the Air & Waste Management Association,2003,53(11): 1301-1311.
    [30]肖军,段菁春,王华等.生物质与煤共燃研究(Ⅱ)燃烧性质分析[J].煤炭转化,2003,26(2):43—47.
    [31]徐朝芬,陈汉平.生物质与煤共燃特性的研究[J].实验技术与管理,2006,23(9):35—38.
    [32]M.Otero, C.Diez, L.F.Calvo, A.Garcia, A.Moran. Analysis of the co-combustion of sewage sludge and coal by TG-MS[J]. Biomass and Bioenergy, 2002,22(4):319-329.
    [33]刘豪,邱建荣,董学文等.生物质与煤混烧的燃烧特性研究[J].热能动力工程,2002,17(5):451—454.
    [34]闵凡飞,张明旭.生物质与不同变质程度煤混合燃烧特性的研究[J].中国矿业大学学报,2005,34(2):236—241.
    [35]刘豪,邱建荣,董学文等.生物质和煤混合燃烧实验[J].燃烧科学与技术,2002,8(4):319—322.
    [36]乐园,李龙生.秸秆类生物质燃烧特性的研究[J].能源工程,2006,(4):30—33.
    [37]段菁春,肖军,王杰林,庄新国.生物质与煤共燃研究[J].电站系统工程,2004,20(1):1—4.
    [38]孙学信.燃煤锅炉燃烧试验技术与方法[M].中国电力出版社,2002.
    [39]聂其红,孙绍增,李争起等.褐煤混煤燃烧特性的热重分析法研究[J].燃烧科学与技术,2001,7(1):72—76.
    [40]闵凡飞,张明旭.生物质燃烧模式及燃烧特性的研究[J].煤炭学报,2005,30(1):104—108.
    [41]A. Kazagic, I. Smajevic. Experimental investigation of ash behavior and emissions during combustion of Bosnian coal and biomass[J]. Energy,2007, 32(10):2006-2016.
    [42]刘豪,邱建荣,吴昊等.生物质和煤混合燃烧污染排放特性研究[J].环境科学学报,2002,22(4):484—488.
    [43]张小英,马晓茜,邹治平.循环流化床中谷壳与煤共燃降低SO2排放实验研究[J].工业锅炉,2005,(5):1—4.
    [44]张小英,马晓茜,邹治平.循环流化床中谷壳与煤共燃SO2生成特性研究[J].煤炭转化,2005,28(4):50—52.
    [45]Hou-Peng Wan, Ying-Hsi Chang, Wen-Cheng Chien et al. Emissions during co-firing of RDF-5 with bituminous coal, paper sludge and waste tires in a commercial circulating fluidized bed co-generation boiler[J]. Fuel,2008,87:761-767.
    [46]周俊虎,方磊,程军等.煤液化残渣与生物质混合燃烧过程中硫污染物动态排放特性研究[J].燃料化学学报,2005,33(5):626—629.
    [47]毛健雄,毛健全,赵树民.煤的清洁燃烧[M].北京:科学出版社,1998.
    [48]肖军,段菁春,王华等.低温热解生物质与煤共燃的污染性能和经济性能评价[J].再生资源研究,2003,(2):28—33.
    [49]苏仕芸,马晓茜.煤粉与木粉共燃的NOx生成特性分析[J].锅炉技术,2003,34(1):45—50.
    [50]Chunyang Wu, Dale Tree, Larry Baxter. Reactivity of NH3 and HCN during low-grade fuel combustion in a swirling flow burner[J]. Proceedings of the Combustion Institute,2007,31:2787-2794.
    [51]廖艳芬,马晓茜.生物质能利用技术控制污染物排放的作用[J].环境污染与防治,2006,28(5):369—372,387.
    [52]王晶红,刘皓,陆继东等.生物质燃料与煤混燃NOx/N2O排放的研究[J].华中理工大学学报,1998,26(1):72—74.
    [53]B.X. Shen, T. Mi, D.C.Liu, B.Feng, Q. Yao, Franz Winter. N2O emission under fluidized bed combustion condition [J]. Fuel Processing Technology,2003, 84:13-21.
    [54]Christopher Y.H. Chao, Philip C.W. Kwong, J.H. Wang, C.W. Cheung, Gail Kendall. Co-Wring coal with rice husk and bamboo and the impact on particulate matters and associated polycyclic aromatic hydrocarbon emissions [J]. Bioresource Technology,2008,99(1):83-93.
    [55]沈伯雄,姚强,刘德昌.流化床中煤和生物质混烧N2O和NOx排放规律研究[J].电站系统工程,2002,18(2):51-53.
    [56]董长青,金保升,仲兆平.城市固体废弃物与煤循环流化床混燃过程中N2O排放的实验研究[J].能源研究与利用,2001,(4):33—35.
    [57]P. Vriesman, E.Heginuz et.al. Biomass gasification in a laboratory-scale AFBG:influence of the location of the feeding point on the fuel-N conversion[J]. Fuel,2000,79:1371-1378.
    [58]李戈,池作和,斯东坡等.生物质废弃物再燃降低NOx排放的试验研究[J].热力发电,2004,33(2):41—44.
    [59]张强,李彦鹏,徐益谦等.生物质能再燃烧还原氮氧化物(NOx)的探讨[J].能源研究与利用,2001,(1):31—32.
    [60]路春美.钙基材料用于燃煤煅烧固硫过程研究[D].山东大学博士毕业论文,2002.
    [61]容銮恩,袁镇福,刘志敏,田子平.电站锅炉原理[M].北京:中国电力出版社,1997.
    [62]岑可法,周昊,池作和等.大型电站锅炉安全及优化运行技术[M].中国电力出版社,2002.
    [63]梁爱云,惠世恩,徐通模等.几种生物质的TG-DTG分析及其燃烧动力学特性研究[J].可再生能源,2008,26(4):56—61.
    [64]Morgan P A, Robertson S D and Unsworth J F. Combustion Studies by ermo gravimetric Analysis-1 Coal Oxidation[J]. Fuel,1986,65:1546-1551.
    [65]Zeriouh A, Belbir L. Thermal decomposition of a Moroccan wood under a nitrogen atmosphere [J]. Thermochimica Acer,1995,258(1):243-248.
    [66]张海清.生物质混煤燃烧及污染物排放特性研究[D].山东大学硕士研究生论文,济南:2007.
    [67]N.V. Russell, T.J. Beeley, C.-K. Man et al. Development of TG measurements of intrinsic char combustion reactivity for industrial and reseach purposes[J]. Fuel Processing Technology,1998,57(2):113-130.
    [68]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.
    [69]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985.
    [70]郑明东,何孝军.动力煤的燃烧性能[J].化工学报,2003,(3):374—378.
    [71]肖三霞,方庆艳,傅培舫等,煤的热天平燃烧反应动力学特性的研究[J].工程热物理学报,2004,25(5):891—893.
    [72]Zhang S.Y., Lv J.F., Zhang J.M. et al. The transition of the activation energy of the char from raw and de-mineralized coal. In Proceeding of the 8 the International Couference of Circulating fluidized Beds. K.F. Cen(Ed.), Hangzhou. China,2005,439-445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700