用户名: 密码: 验证码:
QSPR/QSAR在化学、药物化学和环境科学中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
定量结构-性质/活性关系(Quantitative Structure- Property /Activity Relationship, QSPR/QSAR)方法是目前非常热门的研究领域之一,它主要应用各种统计学方法和分子结构参数研究化合物的结构与其各种物理化学性质以及生物活性之间的关系。随着计算机技术日新月异的发展并被应用到化学领域,QSPR/QSAR的研究提高到了一个新的水平,其研究对象包括化合物的生物活性、毒性、药物在人体的吸收率等,研究领域涉及化学、药物化学、环境科学和药物设计等诸多学科。
     化合物的性质(活性)是由其化学结构决定的,即化合物结构发生变化,其性质(活性)也会相应发生变化。因此化合物的结构与性质(活性)之间存在着一定的关系。我们可以用多种不同的线性或者非线性方法来表示化合物结构与性质(活性)之间的关系,如启发式方法(HM),多元线性回归(MLR),人工神经网络(Artificial Neural Network, ANN),支持向量机(Support Vector Machine,SVM),最小二乘支持向量机(Least-Squares Support Vector Machine, LS-SVM)以及投影寻踪回归(Projection Pursuit Regression, PPR)方法等。
     QSPR/QSAR研究的对象主要是有机小分子,也就是对接中的药物配体分子。而如果研究生物大分子即药物受体分子,由于结构非常复杂,用QSPR/QSAR方法很难解决我们的化学问题。幸运的是,各种复杂的化学问题都可以通过解量子化学方程式,即薛定谔方程得到答案,但是解薛定谔方程相当复杂,尤其是用于生物大分子体系几乎是不可能的。量子化学拓扑方法(Quantum Chemical Topology, QCT)为我们用非常复杂的量子化学波函数来解决化学问题起到了一个衔接作用。量子化学拓扑方法主要是研究原子中电子云的排布来获得我们想要的化学信息,比如,在研究原子-原子之间静电作用势能时,为了得到更为精确的计算结果,用电子云的偶极、三极、以及多极拓扑性质代替点电荷进行计算。
     本论文第一章简述了QSPR/QSAR的基本原理及研究现状,着重介绍了QSPR/QSAR的实现步骤;详细描述了SVM, LS-SVM,和PPR算法的基本原理并概述它们在QSPR/QSAR中的应用研究。同时,对量子化学拓扑理论研究及其应用进行了阐述。
     论文第二章介绍了LS-SVM方法在QSPR/QSAR中的应用研究。主要包括以下几个方面的研究工作:
     (1)应用LS-SVM回归方法预测红葡萄酒的蜜糖成分中易挥发有机化合物的气相色谱保留时间。用启发式方法(HM)和最小二乘支持向量机方法(LS-SVM)对45个有机化合物的5个分子结构描述符与其保留时间之间分别建立了线性和非线性QSPR模型。对于测试集的均方根误差RMSE分别为2.728和2.193,表明非线性的LS-SVM模型的预测能力高于线性的HM模型,而且预测值和实验值是非常一致的。这一研究提供了一种新的有效的从分子结构预测易挥发有机化合物保留时间的方法。
     (2)应用LS-SVM分类方法对一系列新颖的肾上腺黑皮质素(melanocortin-4,MC4)选择性抑制剂进行分类研究。用前向逐步线性判别分析(LDA)方法从这62个对二氮己环化合物所计算出的大量分子描述符中选出5个作为LS-SVM的输入。LS-SVM分类模型对训练集的准确率为97.62%,测试集为95%。该分类模型的应用对判别MC4选择性抑制剂的活性提供了一种有效、可靠的方法。
     论文第三章介绍了PPR方法在QSPR/QSAR中的应用研究。主要包括以下几个方面的研究工作:
     (1)应用HM, SVM和PPR方法建立预测CCR5受体和79个氨基化合物的结合力与它们分子结构描述符之间的定量结构活性关系模型。用HM方法建立了线性相关模型,然后用相同的描述符作为SVM和PPR的输入,建立了非线性的定量结构活性相关模型。HM模型对测试集的均方误差(squared standard error, s2)是0.238,相关系数R2是0.715。SVM和PPR模型对测试集的s2分别为0.210和0.207,R2分别为0.732和0.726。比较HM,SVM和PPR的结果可以看出:非线性模型的预测能力好于线性模型。
     (2)应用PPR方法预测吸附在云杉表面的PCDD/Fs在阳光照射下的光分解半衰期(t1/2)。用HM和PPR方法分别建立了线性和非线性模型。线性和非线性方法都给出令人满意的预测结果:对于整个数据集均方根误差RMSE分别为0.042和0.032,相关系数R2为0.828和0.893。通过分析模型,可以找出影响PCDD/Fs在阳光照射下的光分解半衰期(t1/2)的结构因素。同时本工作为预测PCDD/Fs的光分解半衰期(t1/2)提供了两种快速、有效的方法。
     论文第四章介绍了基于量子化学拓扑理论的新的力场的研究。主要研究工作为:应用高阶拓扑多极距计算crambin蛋白分子中原子-原子之间的静电相互作用势能。Crambin中含有N,H,O,C和S五种元素,共有15种原子相互作用类型,用电子云高阶拓扑多极距计算原子间的静电作用能,并且得到每种原子相互作用类型静电势能收敛的最小作用距离。另外,将QCT计算得到的静电势能与用点电荷的AMBER力场计算得到的结果进行比较:量子化学拓扑方法计算得到的结果与实际结果非常接近,而AMBER结果却很不理想。通过分析计算结果可以得出,在分子模拟中,当前广泛应用的力场,如AMBER力场,计算结果并不令人满意。而我们希望研究一种新的基于量子化学拓扑理论的力场用于计算原子间的静电相互势能和模拟化学反应过程。
Quantitative structure-property/activity relationships (QSPR/QSAR) methods, as one of the most important research fields, have been widely used for the prediction of various physicochemical properties and biological activities of organic compounds by using different statistical methods and various kinds of molecular descriptors. Due to the rapid development of computer science and its extensive application in chemistry, the studies of QSPR/QSAR met a new age. The main objects that QSPR/QSAR studied are biological activities, toxicity of organic compounds, and various physicochemical properties and have been widely used in chemistry, medicinal chemistry, environment chemistry and drug design.
     There is some relationship between molecular structures and properties/activities. We can deal with there liner or nonlinear relationships by constructing QSPR/QSAR models through various machine learning methods, such as heuristic method (HM), multiple linear regression (MLR), artificial neural network (ANN), support vector machine (SVM), least-squares support vector machine (LS-SVM), and projection pursuit regression (PPR).
     What QSPR/QSAR mainly studied are orgnic molecules or drug ligands in docking. If we want to study biological macromolecules (or drug acceptors), however, it is hard for QSPR/QSAR methods to do these studies. In addition, complicated phenomena in chemistry are controlled by a series of physical laws, which are part of quantum mechanics. The equations of quantum mechanics are very hard to solve for real systems. Fortunately, the advent of powerful computers made it possible to make predictions. However, this computational success leaves open the main question of finding a reliable link between chemical concepts and quantum mechanics. The former have been developed over time based on phenomena observable at the human level. The theory of Quantum Chemical Topology (QCT) represents a bridge between the concepts used to explain chemistry and the highly complicated wave function of quantum mechanics. QCT uses p(r) as a main source of information. Multipole moments in the representation of atomic electron density are vital for modeling electrostatic interactions accurately.
     In Chapter 1, a brief description of the QSPR/QSAR principle, research methods and status was presented. Much emphasis was put on the realization process of QSPR/QSAR. In this section, we also introduced the SVM, LS-SVM, and PPR and an overview of the application in QSPR/QSAR field. In addition, QCT theory and its application were also introduced in this chapter.
     In Chapter 2, we concluded the application of LS-SVM in the QSPR/QSAR studies. A brief description was given below:
     (1) Prediction of volatile components retention time in blackstrap molasses by least-squares support vector machine. Heuristic Method (HM) and LS-SVM were used to develop the linear and nonlinear QSPR models between the retention time (RT) and five molecular descriptors of 45 volatile compounds. The root mean-square errors (RMSE) in RT predictions for the test data set given by HM and LS-SVM were 2.193 and 2.728, respectively, which showed the performance of LS-SVM model was better than of the HM model. The prediction results are in agreement with the experimental values very well. This paper provided a new and valid way to predict the logRT values of the volatile compounds.
     (2) Classification study of novel piperazines as antagonists for the melanocortin-4 receptor based on least-squares support vector machines.5 descriptors calculated solely from the molecular structures of compounds by forward stepwise linear discriminant analysis (LDA) were used as inputs of the LS-SVM model. The accuracy of training set for LS-SVM was 97.62% and the test set was 95%. It gave a useful and alternative way for classification of the activity of MC4 selective inhibitors.
     In Chapter 3, we concluded the application of PPR in the QSPR/QSAR studies. A brief description was given below:
     (1) QSAR models for 79 CCR5 receptors binding affinity of substituted 1-(3,3-diphenylrpopyl)-piperidinyl amides and ureas based on HM, SVM and PPR. A subset of eight molecular descriptors selected by HM in CODESSA was used as inputs for SVM and PPR. The results obtained by nonlinear SVM and PPR models were compared with those obtained by the linear heuristic method. The prediction results of the SVM and PPR models were better than that obtained by HM. The models of SVM and PPR led to a correlation coefficient square (R2) of 0.732 and 0.726 and root mean-square error (RMSE) of 0.210 and 0.207 for the test set and the values for HM model were 0.715 and 0.238 respectively.
     (2) Prediction of photolysis of PCDD/Fs adsorbed to spruce (Picea abies (L.) Karst.) needle surfaces under sunlight irradiation based on projection pursuit regression. HM and PPR were used to develop linear and nonlinear models, respectively. Both the linear and the nonlinear model can give very satisfactory prediction results:the RMSE in prediction for overall data set were 0.042 and 0.032, and the R2 were 0.828 and 0.893, respectively. By the analysis of the proposed model, we can conclude that the factors influencing the photolysis half-life (t1/2) values of PCDD/Fs under sunlight irradiation mainly included the electrostatic features and stability of molecules. This paper proposed two rapid, effective methods to predict the t1/2 values of PCDD/Fs.
     In Chapter 4, concluded the application of QCT in the biological systems studies. A brief description was given below:
     Atom-atom electrostatic energy studies using high-rank topological multipole moments for protein crambin. We calculate the atom-atom elestrostatic energy using multipole moments which was based on the method of QCT. In crambin, there are 5 elements and in total 15 types of atom-atom interactions that were grouped based on the element. the minimum values of the energy multipole expansion in the convergent regions for all the fifteen types of atom-atom interactions are obtained. In addition, A comparison between AMBER results and QCT results was carried out to show that use of multipole moments can improve the accuracy of electrostatic energy at short-range. The next major task is to work out a force field which includes the multipole moments and polarization to get better energy results.
引文
[1]王连生,韩朔睽.《分子结构、性质与活性》.北京,化学工业出版社,1997。
    [2]许禄,胡昌玉。《应用化学图论》.北京,科学出版社,2000。
    [3]Murugan, R., Grendze, M.P., Toomey, J.E. Predicting physical properties from molecular structure. Chemtech.1994,24,17-23.
    [4]Katritzky, A.R., Lobanov, V.S., Karelson, M. QSPR:The correlation and quantitative prediction of chemical and physical properties from structure. Chem. Soc. Rev.1995, 24,279-287.
    [5]王连生,支正良.《分子连接性与分子结构-活性》.北京,中国环境科学出版社,1992.
    [6]周家驹,王亭.《药物设计中的分子模型化方法》.北京,科学出版社,2001.
    [7]陈凯先,蒋华良,诶汝运.《计算机辅助药物设计-原理、方法及应用》.上海,上海科学技术出版社,2000.
    [8]俞庆森,朱龙观.《分子设计导论》.北京,高等教育出版社,2000.
    [9]Karelson, M., Maran, U., Wang, Y., Katritky, A.R. QSPR and QSAR models derived using large descriptor spaces. A review of CODESSA applications. Collect. Czech. Chem. Commum.1999,64,1551-1571.
    [10]Katritzky, A.R., Maran, U., Lobanov, V.S., Karelson, M. Structurally diverse quantitative structure-property relationship correlaltions of technologically relevant physical properties. J. Chem. Inf. Comput. Sci.2000,40,1-18.
    [11]叶永德.《计算机辅助药物设计导论》.北京,化学工业出版社,2004。
    [12]Patel, H., Schultz, T.W., Cronin, M. Physico-chemical interpretation and prediction of the dimyristoyl phosphatidyl choline-water partition coefficient. J. Mol. Struct. (Theochem).2002,593,9-18.
    [13]Ghose, A.K., Crippen, GM. Atom physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships.1. modeling dispersive and hydrophobic interactions. J. Chem. Inf. Comput. Sci.1987, 27,21-35.
    [14]Ghose, A. K., Pritchett, A., Crippen, G M. Atomic physicochemical parameters for 3-dimensional-structure-directed quantitative structure-activity relationaships.2. modeling dispersive and hydrophobic interactions. J. Comput. Chem.1988,9,80-90.
    [15]Convard, T., Dubost, J.P., Le Solleu H. Smilogp. A program for fast evaluation of theoretical logP from smiles code of a molecule. Quant Struct-Act Relat.1994,13, 34-37.
    [16]Hou, T.J., Xu, X.J. ADME evaluation in drug discovery.2. prediction of partition coefficient by atom-additive approach based on atom-weighted accessible surface areas. J. Chem. Inf. Comput. Sci.2003,43,1058-1067.
    [17]Hansch, C, Leo, A. Substituent constants for correlation analysis in chemistry and biology. New York, NY:Wiley,1979.
    [18]Leo, A. Comprehensive medicinal chemistry. Vol 4. Oxford:Pergamon,1990.
    [19]Klopman, G, Li, J.Y., Wang, S., Dimayuga, M. Computer automated logP calculations based on an extended group-contribution approach. J. Chem. Inf. Comput. Sci.1994,34,752-781.
    [20]Meylan, W.M., Howard, P.H. Atom fragment contribution method for estimating octanol-water partition-coefficients. J. Pharm. Sci.1995,84,83-92.
    [21]Hammett, L. P. Physical organic chemistry. New York:MaGraw-Hill Book Co., 1940.
    [22]Branch, GE.K., Calvin, M. The Theory of Organic Chemistry. New York:Prentice Hall,1941.
    [23]Karelson, M. Molecular Descriptors in QSAR/QSPR. John Wiley & Sons:New York, 2000.
    [24]Todeschini, R., Consonni, V. Handbook of Molecular Descriptors. Wiley-VCH: Weinheim, Germany,2000.
    [25]Karelson, M., Lobanov, V.S., Katritzky, A.R. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev.1996,96,1027-1043.
    [26]Charton, M. Nature of ortho effect. ii. Composition of the Taft steric parameters. J. Am. Chem. Soc.1969,91,615-618.
    [27]Kutter, E., Hansch, C. Steric parameters in drug design. Monoamine oxidase inhibitors and antistamines. J. Med. Chem.1969,12,647-652.
    [28]Katritzky, A.R., Lobanov, V.S., Karelson, M. CODESSA:Reference Manual. Version 2, University of Florida,1994.
    [29]Devillers, J., Balaban, A.T.Eds. Topological Indices and Related Descriptors in QSAR and QSPR. Gordon and Breach:Amsterdam, The Netherlands,1999.
    [30]Karelson, M. Molecular Descriptors in QSAR/QSPR. John Wiley & Sons:New York, 2000.
    [31]Todeschini, R., Consonni, V. Handbook of Molecular Descriptors. Wiley-VCH: Weinheim, Germany,2000.
    [32]Balaban, A.T. From Chemical Topology to 3D Geometry. J. Chem. Inf. Comput. Sci. 1997,37,645-650.
    [33]Balaban, A.T. Topological and stereochemical molecular descriptors for databases useful in QSAR, similarity/dissimilarity and drug design. SAR QSAR Environ. Res. 1998,8,1-21.
    [34]Connolly, M.L. Analytical molecular surface calculation. J. Appl. Crystallogr.1983, 16,548-558.
    [35]Richards, F.M. Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng.1977,6,151-176.
    [36]Connolly, M.L. Computation of molecular volume. J. Am. Chem. Soc.1985,107,
    1118-1124.
    [37]Katritzky, A.R., Mu, L., Lobanov, V.S., Karelson, M. Correlation of boiling points with molecular structure.1. A training set of 298 diverse organics and a test set of 9 simple inorganics. J. Phys. Chem.1996,100,10400-10407.
    [38]Handbook of Chemistry and Physics, CRC Press, Cleveland OH,1974, p.F-112.
    [39]Rohrbaugh, R.H., Jurs, P.C. Descriptions of molecular shape applied in studies of structure/activity and structure/property relationships. Anal. Chim. Acta.1987,199, 99-109.
    [40]Stanton, D.T., Jurs, P.C. Development and use of charge partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies. Anal. Chem.1990,62,2323-2329.
    [41]Livingstone, D.J. The characterization of chemical structures using molecular properties. A Survey J. Chem. Inf. Comput. Sci.2000,40,195-209.
    [42]Gasteiger, J., Sadowski, J., Selzer, P., Steinhauer, L, Steinhauer, V. Chemical information in 3D space.J. Chem. Inf. Comput. Sci.1996,36,1030-1037.
    [43]Gasteiger, J., Burkard, S.U., Hemmer, M.C., Herwig, A., von Homeyer, A., Hollering, R., Kleinoder, T., Kostka,T., Schwab,C., Selzer, P., Steinhauer, L. Decision Support systems for chemical structure representation, reaction modeling, and spectra simulation. SAR QSAR in Environm. Res.2002,13,89-110.
    [44]Engel, T., Gasteiger, J. Chemical structure representation for information exchange. Online Information Review,2002,26,139-145.
    [45]Todeschini, R., Gramatica, P. New 3D Molecular Descriptors:The WHIM theory and QSAR applications. Kubinyi, H., Folkers, G and Martin, Y.C. In 3D QSAR in Drug Design. Kluwer/Escom, Dordrecht, The Netherlands, pp.355-380.
    [46]Bravi, G., Gancia, E., Mascagni, P., Pegna, M., Todeschini, R., Zaliani, A. MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties:a comparative 3D-QSAR study in a series of steroids. J. Computer-Aided Mol. Des.1997,11,79-92.
    [47]Chiorboli, C., Piazza, M., Gramatica, P., Pino, A., Todeschini, R.3D-modelling and prediction by WHIM descriptors. Part 7. Physico-chemical properties of haloaromatics:comparison between WHIM and topological descriptors. SAR QSAR Environ. Res.1997,7,133-150.
    [48]Todeschini, R., Gramatica, P.3D-modelling and prediction by WHIM descriptors. Part 6. Applications of the WHIM descriptors in QSAR studies. Quant. Struct.-Act. Relat.1997,16,120-125.
    [49]Todeschini, R., Moro, G., Boggia, R., Cosentino, U., Lasagni, M., Pitea, D. Modeling and prediction of molecular properties. Theory of Grid-Weighted Holistic Invariant Molecular (G-WHIM) descriptors. Chemometrics & Intell. Lab. Syst.1997, 36,65-73.
    [50]Todeschini, R., Gramatica, P.3D-modelling and prediction by WHIM descriptors. Part 5. Theory development and chemical meaning of the WHIM descriptors. Quant. Struct.-Act. Relat.1997,16,113-119.
    [51]Todeschini, R., Vighi, M., Finizio, A.& Gramatica, P.3D-modelling and prediction by WHIM descriptors. Part 8. Toxicity and physico-chemical properties of environmental priority chemicals by 2D-TI and 3D-WHIM descriptors. SAR QSAR Environ. Res.1997,7,173-193.
    [52]Todeschini, R., Gramatica, P. The WHIM Theory:New 3D molecular descriptors for QSAR in environmental modelling. SAR QSAR Environ. Res.1997,7,89-115.
    [53]Todeschini, R., Vighi, M., Provenzani, R., Finizio, A., Gramatica, P. Modeling and prediction by using WHIM descriptors in QSAR studies:Toxicity of heterogeneous chemicals on Daphnia magna. Chemosphere,1996,32,1527-1545.
    [54]Todeschini, R., Bettiol, C., Giurin, G., Gramatica, P., Miana, P., Argese, E. Modeling and prediction by using WHIM descriptors in QSAR studies:Submitochondrial Particles (SMP) as toxicity biosensors of chlorophenols. Chemosphere,1996,33, 71-79.
    [55]Todeschini, R., Gramatica, P., Marengo, E., Provenzani, R. Weighted Holistic Invariant Molecular descriptors. Part 2. Theory development and applications on modeling physico-chemical properties of PolyAromatic Hydrocarbons (PAH). Chemometrics & Intell. Lab. Syst.1995,27,221-229.
    [56]Todeschini, R., Lasagni, M., Marengo, E. New molecular descriptors for 2D and 3D-structures. Theory. J. Chemometrics,1994,8,263-273.
    [57]http://www.tripos.com/
    [58]Puri, S., Chickos, J.S., Welsh, W.J. Three-dimensional quantitative structure-property relationship (3D-QSPR) models for prediction of thermodynamic properties of polychlorinated biphenyls (PCBs):enthalpy of sublimation. J. Chem. Inf. Comput. Sci.2002,42,109-116.
    [59]Puri, S., Chickos, J.S., Welsh, W.J. Three-dimensional quantitative structure-property relationship (3D-QSPR) models for prediction of thermodynamic properties of polychlorinated biphenyls (PCBs):enthalpy of vaporization. J. Chem. Inf. Comput. Sci.2002,42,299-304.
    [60]Hopfinger, A.J., Burke, B.J., Dunn, W.F., Ⅲ A generalized formalism of three-dimensional quantitative structure-property relationship analysis for flexible molecules using tensor representation. J. Med. Chem.1994,37,3768-3774.
    [61]Hopfinger, A.J., Wang, S., Tokarski, J.S., Jin, B., Albuquerque, M., Madhav, P. J., Duraiswami, C. Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J. Am. Chem. Soc.1997,119,10509-10524.
    [62]Duca, J.S., Hopfinger, A.J.4D-QSPR analysis and virtual screening of calcite growth inhibitor libraries. Chem. Mater.2000,12,3821-3829.
    [63]Klein, C.D., Hopfinger, A.J. Pharmacological activity and membrane interactions of antiarrhythmics:4D-QSAR/QSPR analysis. Pharm. Res.1998,15,303-311.
    [64]Duca, J.S., Tseng, Y.-F., Hopfinger, A.J.4D-QSPR analysis and virtual screening in materials science. Adv. Mater.2001, 13,1713-1717.
    [65]http://www.mdli.com/.
    [66]http://www.daylight.com/.
    [67]卢纹岱.SPSS for Windows.统计分析,北京,电子工业出版社,2002.
    [68]陈念贻.《模式识别方法在化学化工中的应用》.北京,科学出版社,2000。
    [69]徐筱杰,侯廷军,乔学斌,章威.《计算机辅助药物分子设计》.北京,化学工业出版社,2004.
    [70]Rogers, D., Hopfinger, A.J. Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J. Chem. Inf. Comput. Sci.1994,34,854-866.
    [71]Kubinyi, H. Variable selection in QSAR studies.1. An evolutionary algorithm. Quant. Struct.-Act. Rel. 1994,13,285-294.
    [72]王连生,韩朔睽.《有机物定量结构活性相关》.北京,中国环境科学出版社,1993.
    [73]北京林学院.《数理统计林业专业用》。北京,中国林业出版社,1980.
    [74]陈仲生.《基于Matlab 7.0的统计信息处理》.长沙,湖南科技出版社,2005.
    [75]Mazerska, Z., Mazerski, J., Ledochowski, A.QSAR of acridines. Ⅱ. Features of nitracrine analogs for high anti-tumor activity and selectivity on mice, searched by PCA and MRA methods. Anticancer Drug Des.1990,5,169-87.
    [76]Nelson, P.R.C., MacGregor, J. F., Taylor, P.A. The impact of missing measurements on PCA and PLS prediction and monitoring applications. Chemometrics & Intell. Lab. Syst.2006,80,1-12
    [77]Luco, J.M., Ferretti, F.H. QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives. Chem. Inf. Comput. Sci.1997,37,392-401.
    [78]陈安进,石杰.计算机辅助药物设计中用于建模的计算方法研究进展.中国海洋大学学报,2005,35,407-411.
    [79]Livingstone, D. Data analysis for chemists:application to QSAR and chemiscal product design. OUP, Oxford,1995.
    [80]Devillers, J. Neural networks in QSAR and drug design. Academic Press, London, 1996.
    [81]Burden, F.R., Ford, M.G, Whitley, D.C., Winkler, D. A. The use of automatic relevance determination in QSAR studies using Bayesian neural networks. J. Chem. Inf. Comput. Sci.2000,40,1423-1430.
    [82]Lucic, B., Trinajstic, N. Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J. Chem. Inf. Comput. Sci.1999, 39,121-132.
    [83]Zupan, J., Gasteiger, J.著.潘忠孝,陈玲然.译.张懋森.校.《神经网络及其在化 学中的应用》.合肥,中国科学技术大学出版社,2000.
    [84]Sboner, A., Eccher, C., Blanzieri, E., Bauer, P., Cristofolini, M., Zumiani, G., Forti, S. A multiple classifier system for early melanoma diagnosis. AI in Medicine,2003,27, 29-44
    [85]薛春霞.博士毕业论文:SVM在QSPR中的应用及基于配体的计算机辅助药物设计.兰州大学,2005
    [86]赵春燕.博士毕业论文:QSAR研究在生命分析化学和环境化学中的应用.兰州大学,2006.
    [87]Zupan, J., Gasteiger, J.著.潘忠孝,陈玲然.译.张懋森.校.神经网络及其在化学中的应用.合肥,中国科学技术大学出版社,2000.
    [88]Orr, M.J.L. Introduction to Radial basis function networks, center for cognitive science, Edinburgh University:1996.
    [89]Orr, M.J.L. MATLAB routines for subset selection and ridge regression in linear neural networks, center for cognitiVe science, Edinburgh University:1996.
    [90]Walczak, B., Massart, D.L. Local modelling with radial basis function networks. Chemometrics & Intell. Lab. Syst.2000,50,179-198.
    [91]Walczak, B., Massart, D.L. The Radial Basis Functions-Partial Least Squares approach as a flexible non-linear regression technique. Anal. Chim. Acta.1996,331, 177-185.
    [92]Walczak, B., Massart, D.L. Application of Radial Basis Functions-Partial Least Squares to non-linear pattern recognition problems:diagnosis of process faults. Anal. Chim. Acta.1996,331,187-193.
    [93]Tetteh, J., Howells, S., Metcalfe, E., Suzuki T. Optimisation of radial basis function neural networks using biharmonic spline interpolation. Chemometrics & Intell. Lab. Syst.1998,41,17-29.
    [94]Pulido, A., Ruisnchez. I., Rius, F. X. Radial basis functions applied to the classification of UV-visible spectra. Anal. Chim. Acta.1999,388,273-281.
    [95]Stubbings, T., Hutter, H. Classification of analytical images with radial basis function networks and forward selection. Chemometrics & Intell.Lab.Syst.1999,49,163-172.
    [96]Loukas, Y.L. Radial basis function networks in host-guest interactions:instant and accurate formation constant calculations. Anal. Chim. Acta.2000,417,221-229.
    [97]Evans, P., Persaud, K.C., McNeish, A.S., Sneath, R., W.; Hobson, N., Magan, N. Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data. Sensors and Actuators B:Chemical,2000,69, 348-358.
    [98]Vapnik, N. Statistical Learning Theory. John Wiley & Sons, New York.1998.
    [99]Schlkopf, B., Smola, A. Learning with Kernels. MIT Press, Cambridge, MA,2002.
    [100]叶晨洲,杨杰,姚莉秀,陈念贻.统计学习理论的原理与应用.计算机与应用化学,2002,19,712-716.
    [101]陈念贻,陆文聪,陆治荣.优化建模技术和机器学习理论的新发展.计算机与应用化学,2002,19,677-682.
    [102]Cristianini, N., Shawe-Taylor, J. An Introduction to Support Vector Machines. Cambridge University Press, Cambridge, UK,2000.
    [103]Thorsten J. Learning to Classify Text Using Support Vector Machines:Methods, Theory, and Algorithms. Kluwer,2002
    [104]陈念贻,陆文聪,叶晨洲,李国正.支持向量机及其它核函数算法在化学计量学的应用.计算机与应用化学,2002,19,691-696.
    [105]陈念贻,陆文聪.支持向量机算法在化学和化工中的应用.计算机与应用化学,2002,19,673-676.
    [106]陆文聪,陈念贻,叶晨洲,李国正.支持向量机算法和ChemSVM介绍.计算机与应用化学,2002,19,697-702.
    [107]Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc.1998,2,121-167.
    [108]Belousov, A.I., Verzakov, S.A., von Frese, J. Applicational aspects of support vector machines. J. Chemomet.2002,16,482-489.
    [109]Belousov, A.I., Verzakov. S.A., von Frese, J. A flexible classification approach with optimal generalisation performance:support vector machines, Chemometrics & Intell. Lab. Syst.2002,64,15-25.
    [110]Gunn, S.R., Brown, M., Bossley, K.M. Network performance assessment for neurofuzzy data modeling. Lect. Notes Comput. Sci.1997,1280,313-323.
    [111]刘焕香.博士毕业论文:基于支持向量机方法的QSAR/QSPR在化学、生物及环境科学中的应用研究.兰州大学,2005.
    [112]栾锋.博士毕业论文:支持向量机(SVM)和径向基神经网络(RBFNN)方法在化学、环境化学和药物化学中的应用研究.兰州大学,2006.
    [113]Suykens, J.A.K., Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett.1999,9,293-300.
    [114]Viaene, S., Baesens, B., Van Gestel, T., Suykens, J.A.K, Van den Poel, D., Vanthienen, J., De Moor, B., Dedene, G Knowledge discovery in a direct marketing case using least squares support vector machines. Int. J. Intell. Syst.2001,16, 1023-1036.
    [114]Chua, K.S. Efficient computations for large least square support vector machine classifiers. Pattern Recogn. Lett.2003,24,75-80.
    [116]Suykens, J.A.K., Vandewalle, J. Chaos control using least-squares support vector machines. Int. J. Circ. Theor. Appl.1999,27,605-615.
    [117]Suykens, J.A.K., Vandewalle, J., De Moor, B. Optimal control using least-squares support vector machines. Neural Networks,2001,14,23-35.
    [118]Yuan,Y.N., Zhang R.S., Luo L.Y. Classification study of novel piperazines as antagonists for the melanocortin-4 receptor based on least-squares support vector machines. Chemometrics & Intell. Lab. Syst.2009,96,144-148.
    [119]Suzuki, T. Kudo, Y. Automatic 1gP-estimation based on combined additive modeling methods.J. Comput.-Aided. Mol. Des.1990,4,155-198.
    [120]Hammett, L.P. Physical organic chemistry. New York:MaGraw-Hill Book Co., 1940.
    [121]Li, J.Z., Liu, H.X., Yao, X.J., Liu, M.C., Hu, Z.D., Fan, B.T. Quantitative structure-activity relationship study of acyl ureas as inhibitors of human liver glycogen phosphorylase using least squares support vector machines. Chemometrics & Intell. Lab. Syst.2007,87,139-146.
    [122]Li, J.Z., Liu, H.X., Yao, X.J., Liu, M.C., Hu, Z.D., Fan, B.T. Structure-activity relationship study of oxindole-based inhibitors of cyclin-dependent kinases based on least-squares support vector machines. Anal. Chim. Acta.2007,581,333-342.
    [123]Yuan, Y.N., Zhang, R.S, Hu, R.J, Ruan, X.F. Prediction of Volatile Components Retention Time in Blackstrap molasses by Least-Squares Support Vector machine. QSAR & Combinatorial Science,2008,27,535-542.
    [124]Kruskal, J.B.T[J] Academic, In Statistical Computation Milton, R.C., Nelder. Ed., J.A. Toward a practical method which helps uncover the structure of a set of multivariate observations by finding the linear transformation which optimizes a new index of condensation.1969, New York.
    [125]Kruskal, J.B. Linear transformation of multivariate data to reveal clustering. In Multidimensional Scaling. Theory and Application in the Behavioral Sciences. I, Theory.1972.
    [126]Switzer, P. Numerical Classification. In Geostatistics. New York:Plenum Press,1970
    [127]Friedman, J.H., Tukey, J.W. A projection pursuit algorithm for exploratory data analysis. IEEE Tra nsactions on Computers,1974, C-23,881-890.
    [128]Huber, P.:Projection pursuit. The Annals of Statistics,1985,13,435-475.
    [129]Ren, Y.Y., Liu, H.X., Yao, X.J., Liu, M.C. Prediction of ozone tropospheric degradation rate constants by projection pursuit regression. Analytica Chimica Acta, 2007,559,150-158.
    [130]Ren, Y.Y., Liu, H.X., Li, S.Y., Yao, X.J., Liu, M.C. Prediction of binding affinities to b1 isoform of human thyroid hormone receptor by genetic algorithm and projection pursuit regression. Bioorganic & Medicinal Chemistry Letters,2007,17,2474-2482.
    [131]任月英.博士毕业论文:QSPR/QSAR在药物、分析化学和环境科学中的应用.兰州大学,2007.
    [132]Yuan, Y.N., Zhang, R.S., Hu, R.J., Ruan, X.F. Prediction of CCR5 receptor inding affinity of substituted 1-(3,3-diphenylrpopyl)-piperidinyl amides and ureas based on the heuristic method, support vector machine and projection pursuit egression. Eur J Med Chem.2009,44,25-34.
    [133]Yuan, Y.N., Zhang, R.S., Hu, R.J. Prediction of photolysis of PCDD/Fs adsorbed to spruce (Picea abies (L.) Karst.) needle surfaces under sunlight irradiation based on projection pursuit regression. QSAR & Combinatorial Science,2009,28,155-162.
    [134]Donoho, D.L. Minimum entropy deconvolution. Applied time series II.1981.
    [135]Fill, J.A., Johnsone, I. On projection pursuit measures of multivariate location and dispersion. The Annals of Statistics,1984,12,127-141,
    [136]Liu, H.X., Yao, X.J., Liu, M.C., Hu, Z.D., Fan, B.T. Prediction of gas-phase reduced ion mobility constants (KO) based on the multiple linear regression and projection pursuit regression. Talanta,2007,71,258-263.
    [137]Kvalheim, O.M., Liang, Y.Z. Heuristic evolving latent projections:resolving two-way multicomponent data.1. Selectivity, latent-projective graph, datascope, local rank, and unique resolution. Anal Chem.1992,64,936-946.
    [138]Ren, S.J. Modeling the toxicity of aromatic compounds to tetrahymena pyriformis: the response. Surface methodology with nonlinear methods. J. Chem. Inf. Comput. Sci.2003,43,1679-1687.
    [139]Hu, Q.N., Liang, Y. Z., Peng, X.L., Yin, H., Fang, K.T. Structural interpretation of topological index. (1) external factor variable connectivity index (EFVCI). J. Chem. Inf. Comput. Sci.2004,44,437-446.
    [140]Klinke, S., Grassmann, J. Projection pursuit regression and neural networks. http://edoc.hu-berlin.de/seres/sfb-373-papers.
    [141]胡之德,刘焕香.定量结构-性质关系在分析化学中的应用研究进展.分析测试技术与仪器,2005,11,234-249.
    [142]焦龙.硕士毕业论文:定量结构-活性/性质关系研究方法在毛细管电泳中的应用研究.西北大学,2005.
    [143]孙伟.硕士毕业论文:污染物的微生物降解动力学及定量结构性质关系预测的新概念算法研究.湖南大学,2004.
    [144]Bader, R. F. W. Atoms in Molecules. A Quantum Theory.; Oxford Univ. Press: Oxford, Great Britain,1990.
    [145]Popelier, P. L. A. Atoms in Molecules. An Introduction.; Pearson Education: London,2000.
    [146]Stone, A. J. The Theory of Intermolecular Forces,1 ed.; Clarendon Press: Oxford,1996.
    [147]Popelier, P. L.A., Joubert, L., Kosov, D. S. Convergence of the electrostatic interaction based on topological atoms. J. Phys. Chem. A.2001,105,8254-8261.
    [148]Rafat, M., Popelier, P. L. A. Atom-atom partitioning of total (super)molecular energy:the hidden terms of classical force fields. J.Comp.Chem.2007,28, 292-301.
    [149]Jensen, F. Introduction to computational chemistry.,2nd Ed ed.2006.
    [150]Rafat, M., Popelier, P. L. A. Long range behavior of high-rank topological multipole moments. J. Comput. Chem.2007,28,832-838.
    [1]Levine, O.S., Levine, M.M. Houseflies (Musca domestica) as mechanical vectors of shigellosis. Rev. Infect. Dis.1991,13,688-696.
    [2]Moriya, K., Fujibayashi, T., Yoshihara, T., Matsuda, A., Sumi, N., Umezaki, N., Kurahashi H., Agui, N., Wada, A., Watanbe, H. Verotoxin-producing Escherichia coli O157:H7 carried by the housefly in Japan. Med. Vet. Entomol.1999,13,214-216.
    [3]Iwasa, M., Makino, S., Asakura, H., Kobori, H., Morimoto, Y. Detection of Escherichia coli O157:H7 from Musca domestica (Diptera:Muscidae) at a cattle farm in Japan.J. Med. Entomol.1999,36,108-112.
    [4]Kobayashi, M., Sasaki, T., Saito, N., Tamura, K., Suzuki, K., Watanbe, H., Agui, N. Houseflies:not simple mechanical vectors of enterohemorrhagic Escherichia coli O157:H7. Am. J. Trop. Med. Hyg.1999,61,625-629.
    [5]Sasaki, T., Kobayashi, M., Agui, N. Epidemiological potential of excretion and regurgitation by Musca domestica (Diptera:Muscidae) in the dissemination of Escherichia coli O157:H7 to food. J. Med. Entomol.2000,37,945-949.
    [6]Olsen, A.R., Hammack, T.S. Qualitative detection of tetracycline residues in milk with a luminescence-ased microbial method:the effect of milk composition and assay performance in relation to an immunoassay and a microbial inhibition assay. J. Food Protection.2000,63,958-960.
    [7]Mian, L.S., Maag, H., Tacal, H.V. Isolation of Salmonella from muscoid flies at commercial animal establishments in San Bernardino County. J. Vector Ecol.2002,27, 82-85.
    [8]Escheverria, P., Harrison, B.A., Tirapat, C., McFarland, A. Flies as a source of enteric pathogens in a rural village in Thailand. Appl. Environ. Microbiol.1983,46,32-36.
    [9]Fotedar, R. Vector potential of houseflies (Musca domestica) in the transmission of Vibrio cholerae in India. Acta Trop.2001,78,31-34.
    [10]Sin, D.W.M., Wong, Y.C., Sham, W.C., Wang, D. Development of an analytical technique and stability evaluation of 143 C3-C12 volatile organic compounds in Summa canisters by gas chromatography-mass spectrometry. Analyst.2001,126, 310-321.
    [11]Pankow, J.F., Luo, W., Isabelle, L.M., Bender, D.A., Baker, R.J. Determination of a wide range of volatile organic compounds in ambient air using multisorbent adsorption/thermal desorption and gas chromatography/mass spectrometry. Anal. Chem. 1998,70,5213-5232.
    [12]Ito, T., Otani, Y., Namiki, N. Separation of volatile organic compound vapor by an ionization and electrical migration—separation model. Ind. Eng. Chem. Res.2003,42, 5617-5621.
    [13]Fan, Z.H., Paullioy, C., Howardkipen, N., Zhang, J.F. Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions. Environ. Sci. Technol 2003,37,1811-1821.
    [14]Compendium Method TO-17, United States Environmental Protection Agency, Cincinnati, OH,1997.
    [15]Compendium Method TO-14A, United States Environmental Protection Agency, Cincinnati, OH,1997.
    [16]Roman, K., Marion, A., Straten, V., Michal, M., Carel, A.C., Henk, C.A. Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modem stationary phises hy using quantitative strutture retention relationships! J. Chromatogr. A 1999,855,455-486.
    [17]Karelson, M. Molecular Descriptors in QSAR/QSPR, Wiley, New York,2000.
    [18]Todeschini, R., Consonni, V. Handbook of Molecular Descriptors. Wiley-VCH, Weinheim, Germany,2000.
    [19]Devillers, J., Balaban (Eds.), A.T. Topological Indices and Related Descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam, The Netherlands,1999.
    [20]Cortes, C., Vapnik, V. Support Vector Networks. Machine Learning,1995,20, 273-297.
    [21]Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Know. Disc,1998,2,1-47.
    [22]Vapnik, V. Statistical Learning Theory. Wiley, New York,1998.
    [23]Qin, S., Liu, H.X., Wang, J., Yao, X.J., Liu, M.C., Hu, Z.D., Fan, B.T. Quantitative structure-activity relationship study on a series of novel ligands binding to central benzodiazepine receptor by using the combination of heuristic method and support vector machines. QSAR & Comb. Sci.2007,26,443-451.
    [24]Luan, F., Ma, W.P., Zhang, X.Y., Zhang, H.X., Liu, M.C., Fan, B.T. QSAR study of polychlorinated dibenzodioxins, dibenzofurans, and biphenyls using the heuristic method and support vector machine. QSAR & Comb. Sci.2006,25,46-55.
    [25]Suykens, J.A.K., Vandewalle, J. Least squares support vector machines classifiers. Neural Process. Lett.1999,9,293-300.
    [26]Katritzky, A.R., Lobanov, V.S., Karelson, M. CODESSA:Reference Manual. University of Florida, Gainesville, F.L.,1994.
    [27]Katritzky, A.R., Lobanov, V.S., Karelson, M. CODESSA:Training Manual. University of Florida, Gainesville, F.L.,1995.
    [28]Quinn, B.P., Bernier, U.R., Geden, C.J., Hogsette, J.A., Carlson, D.A. Analysis of extracted and volatile components in blackstrap molasses feed as candidate house fly attractants. Journal of Chromatography A,2007,1139,279-284.
    [29]ISIS Draw 2.3, MDL Information Systems, Inc.,1990-2000.
    [30]HyperChem 6.03, Hypercube, Inc.,2000.
    [31]Stewart, J.P.P. MOPAC 6.0:Quantum Chemistry Program Exchange QCPE, No.455, Indiana University, Bloomington, IN,1989.
    [32]Pelckmans, K., Suykens, J.A.K., Van Gestel, T., De Brabanter, D., Lukas, L., Hamers, B., De Moor, B., Vandewalle, J. LS-SVMlab:a Matlab/C toolbox for least squares support vector machine. Internal Report 02-44, ESATSISTA, K.U. Leuven, Leuven, 2002.
    [33]Strouf, O. Chemical Pattern Recognition. Wiley:New York,1986.
    [34]Katritzky, A.R., Kuanar, M., Fara, D.C., Karelson, M., Acree, W.E. QSPR treatment of rat blood:air, saline:air and olive oil:air partition coefficients using theoretical molecular descriptors. J. Bioorg. Med. Chem.2004,12,4735-4748.
    [35]Famini, G.R., Penski, C.A., Wilson, L.Y. Using theoretical descriptors in quantitative structure activity relationships:Some physicochemical properties. J. Phys. Org. Chem. 1992,5,395-408.
    [36]Randi, M. On characterization on molecular branching. J. Am. Chem. Soc.1975,97, 6609-6615.
    [37]Holder, J.R., Haskell-Luevano, C. Melanocortin ligands:30 years of structure-activity relationship (SAR) studies. Med. Res. Rev.2004,24,325-356.
    [38]Hruby, V.J., Wilkes, B.C., Hadley, M.E., Al-Obeidi, F., Sawyer, T.K., Staples, D.J., DeVaux, A., Dym, O., Castrucci, A.M., Hintz, M.F., Riehm, J.P., Rao, K.R..alpha.-Melanotropin:the minimal active sequence in the frog skin bioassay. J. Med. Chem.1987,30,2126-2130.
    [39](a) Wikberg, J.E.S. Melanocortin receptors:Perspectives for novel drugs. Eur. J. Pharmacol.1999,375,295-310; (b) Chaki, S., Nakazato, A. The MC4 receptor as a therapeutic target. Drugs future,2004,29,1065-1074; (c) Chaki, S., Okuyama, S. Involvement of melanocortin-4 receptor in anxiety and depression. Peptides,2005,26, 1952-1964.
    [40]van der Ploeg, L.H.T., Martin, W.J., Howard, A.D., Nargund, R.P., Austin, C.P., Guan, X., Drisko, J., Cashen, D., Sebhat, I., Patchett, A.A., Figueroa, D.J., DiLella, A.G., Connolly, B.M., Weinberg, D.H., Tan, C.T., Palyha, O.C., Pong, S., MacNeil, T., Rosenblum, C., Vongs, A., Tang, R., Yu, H., Sailer, A.W., Fong, T.M., Huang,C., Tota, M., Chang, R.S., Stearns, R., Tamvakopoulos, C., Christ, G., Drazen, D.L., Spar, B.D., Nelson, R.J., MacIntyre, D.E.Proc. A role for the melanocortin 4receptor in sexual function. Natl. Acad. Sci. U.S.A.2002,9,11381-11386.
    [41]Vos, T.J., Caracoti, A., Che, J.L., Dai, M., Farrer, C.A., Forsyth, N.E., Drabic, S.V., Horlick, R.A., Lamppu, D., Yowe, D.L., Balani, S., Li, P., Zeng, H., Joseph, I.B.J.K., Rodriguez, L.E., Maguire, M.P., Patane, M.A., Claiborne, C.F. Identification of 2-{2-[2-(5-Bromo-2-methoxyphenyl)-ethyl]-3-fluorophenyl}-4,5-dihydro-1H-imidazole (ML00253764), a Small Molecule Melanocortin 4 Receptor Antagonist That Effectively Reduces Tumor-Induced Weight Loss in a Mouse Model. J. Med. Chem.2004,47,1602-1604.
    [42]Adan, R.A., Szklarczyk, A.W., Oosterom, J., Brakkee, J.H., Nijenhuis, W.A., Schaaper, W.M., Meloen, R.H., Gispen, W.H. Characterization of melanocortin receptor ligands on cloned brain melanocortin receptors and on grooming behavior in the rat. Eur. J. Pharmacol.1999,378,249-258.
    [43]Gonzalez, M.I., Vaziri, S., Wilson C.A. Behavioral effects of alpha-MSH and MCH after central administration in the female rat.Peptides,1996,77,171-177.
    [44]Vergoni, A.V., Bertolini, A., Wikberg, J.E., Schioth H.B. Selective melanocortin MC4 receptor blockage reduces immobilization stress-induced anorexia in rats. Eur. J. Pharmacol.1999,369,11-15.
    [45]Chaki, S., Hirota, S., Funakoshi, T., Suzuki, Y, Suetake, S., Okubo, T., Ishii, T., Nakazato, A., Okuyama S. Anxiolytic-Like and Antidepressant-Like Activities of MCL0129 (1-[(S)-2-(4-Fluorophenyl)-2-(4-isopropylpiperadin-1-yl)ethyl]-4-[4-(2-methoxynapht halen-1-yl)butyl]piperazine), a Novel and Potent Nonpeptide Antagonist of the Melanocortin-4 Receptor. J. Pharmcol. Exp. Ther.2003,304,818-826.
    [46]Chaki, S., Oshida, Y., Ogawa, S., Funakoshi, T., Shimazaki, T., Okubo, T., Nakazato, A., Okuyama, S. MCL0042:A nonpeptidic MC4 receptor antagonist and serotonin reuptake inhibitor with anxiolytic- and antidepressant-like activityPharmacol. Biochem. Behav.2005,82,621-626.
    [47]Chaki, S., Ogawa, S., Toda, Y., Funakoshi, T., Okuyama, S. Involvement of the melanocortin MC4 receptor in stress-related behavior in rodents. Eur. J. Pharmacol. 2003,474,95-101.
    [48]Shimazaki, T., Haki, S. Anxiolytic-like effect of a selective and non-peptidergic melanocortin 4 receptor antagonist, MCL0129, in a social interaction test. Pharmacol. Biochem. Behav.2005,80,395-400.
    [49](a) Todorovic, A., Holder, J.R., Bauzo, R.M., Scott, J.W., Kavanagh, A., Abdel-Malek, Z., Haskell-Luevano, C. N-Terminal Fatty Acylated His-DPhe-Arg-Trp-NH2 Tetrapeptides:Influence of Fatty Acid Chain Length on Potency and Selectivity at the Mouse Melanocortin Receptors and Human Melanocytes. J. Med. Chem.2005,48, 3328-3336; (b) Wilczynski, A., Wilson, K.R., Scott, J.W, Edison, A.S., Haskell-Luevano, C. Structure-Activity Relationships of the Unique and Potent Agouti-Related Protein (AGRP)-Melanocortin Chimeric Tyr-c[β-Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH2 Peptide Template.J. Med. Chem.2005,48,3060-3075; (c) Joseph, C.G., Wang, X.S., Scott, J.W., Bauzo, R.M., Xiang, Z., Richards, N.G., Haskell-Luevano, C. Stereochemical Studies of the Monocyclic Agouti-Related Protein (103-122) Arg-Phe-Phe Residues:Conversion of a Melanocortin-4 Receptor Antagonist into an Agonist and Results in the Discovery of a Potent and Selective Melanocortin-1 Agonist. J. Med. Chem.2004,47, 6702-6710; (d) Wilczynski, A., Wang, X.S., Joseph, C.G, Xiang, Z., Bauzo, R.M., Scott, J.W., Sorensen, N.B., Shaw, A.M., Millard, W.J., Richards, N.G, Haskell-Luevano, C. Identification of Putative Agouti-Related Protein(87-132)-Melanocortin-4 Receptor Interactions by Homology Molecular Modeling and Validation Using Chimeric Peptide Ligands. J. Med. Chem.2004,47, 2194-2207; (e) Han, G, Haskell-Luevano, C., Kendall, L., Bonner, G, Hadley, M.E., Cone, R.D., Hruby, V.J. De Novo Design, Synthesis, and Pharmacology of a-Melanocyte Stimulating Hormone Analogues Derived from Somatostatin by a Hybrid Approach. J. Med. Chem.2004,47,1514-1526; (f) Balse-Srinivasan, P., Grieco, P., Cai, M., Trivedi, D., Hruby, V.J. Structure-Activity Relationships of y-MSH Analogues at the Human Melanocortin MC3, MC4, and MC5 Receptors. Discovery of Highly Selective hMC3R, hMC4R, and hMC5R Analogues. J. Med. Chem.2003,46,4965-4973; (g) Grieco, P., Lavecchia, A., Cai, M., Trivedi, D., Weinberg, D., MacNeil, T., Van der Ploeg, L.H., Hruby, V.J. Structure-Activity Studies of the Melanocortin Peptides:Discovery of Potent and Selective Affinity Antagonists for the hMC3 and hMC4 Receptors. J. Med. Chem.2002,45,5287-5294; (h) Holder, J.R., Bauzo, R.M., Xiang, Z., Haskell-Luevano, C. Structure-Activity Relationships of the Melanocortin Tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the Mouse Melanocortin Receptors:Part 2 Modifications at the Phe Position. J. Med. Chem.2002,45,3073-3081; (i) Holder, J.R., Bauzo, R.M., Xiang, Z., Haskell-Luevano, C. Structure-Activity Relationships of the Melanocortin Tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the Mouse Melanocortin Receptors.1. Modifications at the His Position. J. Med. Chem.2002,45,2801-2810; (j) Kavarana, M.J., Trivedi, D., Cai, M., Ying, J., Hammer, M., Cabello, C., Grieco, P., Han, G.. Hruby, V.J. Novel Cyclic Templates of a-MSH Give Highly Selective and Potent Antagonists/Agonists for Human Melanocortin-3/4 Receptors. J. Med. Chem.2002, 45,2644-2650; (k) Bednarek, M.A., MacNeil, T., Kalyani, R.N., Tang, R., Van der Ploeg, L.H., Weinberg, D.H. Selective, High Affinity Peptide Antagonists of a-Melanotropin Action at Human Melanocortin Receptor 4:Their Synthesis and Biological Evaluation in Vitro. J. Med. Chem.2001,44,3665-3672; (1) Fotsch, C., Smith, D.M., Adams, J.A., Cheetham, J., Croghan, M., Doherty, E.M., Hale, C., Jarosinski, M.A., elly, M.G, orman, M.H., Tomayo, N.A., Xi, N., Baumgartner, J.W. Design of a new peptidomimetic agonist for the melanocortin receptors based on the solution structure of the peptide ligand, Ac-Nle-cyclo [Asp-Pro- D Phe-Arg-Trp-Lys]-NH2. Bioorg. Med. Chem. Lett.2003,13,2337-2340; (m) Haskell-Luevano, C., Hendrata, S., North, C., Sawyer, T.K., Hadley, M.E., Hruby, V.J., Dickinson, C., Gantz, I. Discovery of Prototype Peptidomimetic Agonists at the Human Melanocortin Receptors MC1R and MC4R. J. Med. Chem.1997,40, 2133-2139; (n) Cheung, A.W.-H., Gore, L.Q.V, Chu, X.-J., Bartkovitz, D., Kurylko, G., Swistok, J., Danho, W., Chen, L., Yagaloff, K. Preparation of human Melanocortin-4 receptor agonist libraries:Linear peptides X-Y-DPhe7-Arg8-Trp(or 2-Nal)9-Z-NH2. Bioorg. Med. Chem. Lett.2005,15,5504-5508; (o) Yan, L.Z., Flora, D., Edwards, P., Smiley, D.L., Emmerson, P.J., Hsiung, H.M., Gadski, R., Hertel, J.-A., Heiman, M.L., Husain, S., O'Brien, T. P., Kahl, S.D., Zhang, L., DiMarchi, R.D., Mayer, J. P. Potent and selective MC-4 receptor agonists based on a novel disulfide scaffold. Bioorg. Med. Chem. Lett.2005,15,4611-4614; (p) Odagami, T., Tsuda, Y., Kogami, Y., Kouji, H., Okada, Y. Design of cyclic peptides with agonist activity at melanocortin receptor-4. Bioorg. Med. Chem. Lett.2006,16,3723-3726.
    [50]Nozawa, D., Okubo, T., Ishii, T., Kakinuma, H., Chaki, S., Okuyama, S., Nakazato, A. Structure-activity relationships of novel piperazines as antagonists for the melanocortin-4 receptor. Bioorg. Med. Chem.2007,75,1989-2005.
    [51]Kachigan, S.K. Statistical Analysi. Radius Press, New York,1986.
    [52]Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugenic. 1936,7,179-188.
    [53]Sannigrahi, A.B. Advances in Quantum Chemistry,1992,23, p.301-312.
    [54]Basak, S.C., Balaban, A.T., Grunwald, G.D., Gute, B.D. Topological indices:their nature and mutual relatedness. J. Chem. Inf. Comput. Sci.2000,40,891-898.
    [1]Douali, L., Villemin, D., Zyad, A., Cherqaoui, D. Artificial neural networks:Non-linear QSAR studies of HEPT derivatives as HIV-1 reverse transcriptase inhibitors. Molecular Diversity,2004,8,1-8.
    [2]Jiang, S., Zhao, Q., Debanth, A.K. Peptide and non-peptide HIV fusion inhibitors. Curr. Pharm. Des.2002,8,563-580.
    [3]Sanders, R.W., Dankers, M.M., Busser, E., Caffrey, M., Moore, J.P., Berkhout, B. Evolution of the HIV-1 envelope glycoproteins with a disulfide bond between gp120 and gp41. Retrovirology,2004,1,3-13.
    [4]Campiani, G., Ramunno, A., Maga, G., Nacci, V., Fattorusso, C., Catalanotti, B., Morelli, E., Novellino, E. Non-Nucleoside HIV-1 Reverse Transcriptase (RT) Inhibitors:Past, Present, and Future Perspectives. Curr. Pharm. Des.2002,8, 615-657.
    [5]For reviews, see:(a) Gao, Z., Metz, W.A. Unraveling the chemistry of chemokine receptor ligands. Chem. Rev.2003,103,3733-3752; (b) Onuffer, J.J., Horuk, R. Chemokines, chemokine receptors and small-molecule antagonists:recent developments. Trends Pharmacol. Sci.2002,23,459-467.
    [6]Palani, A., Shapiro, S., Clader, J.W., Greenlee, W.J., Blythin, D., Cox, K., Wagner, N.E., Strizki, J., Baroudy, B.M., Dan, N. Biological evaluation and interconversion studies of rotamers of SCH 351125, an orally bioavailable CCR5 antagonist. Bioorg. Med. Chem. Lett.2003,13,705-708.
    [7]Xu, G, Kannan, A., Hartman, T.L., Wargo, H., Watson, K., Turpin, J.A., Buckheit, R.W., Johnson, A.A., Pommier, Y., Cushman, M. Synthesis of substituted diarylmethylenepiperidines (DAMPs), a novel class of anti-HIV agents. Bioorg. Med. Chem.2002,10,2807-2816.
    [8]Stevens, M., Pannecouque, C., DeClercq, E., Balzarini, J., Antimicrob. Novel human immunodeficiency virus (HIV) inhibitors that have a dual mode of anti-HIV action. Agents Chemother.2003,47,3109-3116.
    [9]Burrows, J.N., Cumming, J.G, Fillery, S.M., Hamlin, GA., Hudson, J.A., Jackson, R.J., McLaughlin, S., Shaw, J.S. Modulators of the human CCR5 receptor. Part 1: Discovery and initial SAR of 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas. Bioorg. Med. Chem. Lett.2005,15,25-28.
    [10]Cumming, J.G, Cooper, A.E., Grime, K., Logan, C.J., McLaughlin, S., Oldfield, J., Shaw, J.S., Tucker, H., Winter, J., Whittaker, D. Modulators of the human CCR5 receptor. Part 2:SAR of substituted 1-(3,3-diphenylpropyl)-piperidinyl phenylacetamides. Bioorg. Med. Chem. Lett.2005,15,5012-5015.
    [11]Wang, L.H., Milford, J.B., Carter, W.P.L. Reactivity estimates for aromatic compounds. Part 1. Uncertainty in chamber-derived parameters. Atmos. Environ.2000,34, 4337-4348.
    [12]Katritzky, A.R., Fara, D.C., Petrukhin, R.O., Tatham, D.B., Maran, U., Lomaka, A., Karelson, M. The present utility and future potential for medicinal chemistry of QSAR/QSPR with whole molecule descriptors. Curr. Top. Med. Chem.2002,2, 1333-1356.
    [13]Katritzky, A.R., Maran, U., Lobanov, V.S., Karelson, M.J. Structurally Diverse Quantitative Structure-Property Relationship Correlations of Technologically Relevant Physical Properties. Chem. Inf. Comput. Sci.2000,40,1-18.
    [14]Borghini, A., Pietra, D., Domenichelli, P., Bianucci, A.M. QSAR study on thiazole and thiadiazole analogues as antagonists for the adenosine A1 and A3 receptors. Bioorg. Med. Chem.2005,13,5330-5337.
    [15]Khlebnikov, A.I., Schepetkin, I.A., Quinn, M.T. Quantitative structure-activity relationships for small non-peptide antagonists of CXCR2:Indirect 3D approach using the frontal polygon method. Bioorg. Med. Chem.2006,14,352-365.
    [16]Li, W., Tang, Y., Zheng, Y.L., Qiu, Z.B. Molecular modeling and 3D-QSAR studies of indolomorphinan derivatives as kappa opioid antagonists. Bioorg. Med. Chem.2006, 14,601-610.
    [17]Thomas Leonard, J., Roy, K. Comparative QSAR modeling of CCR5 receptor binding affinity of substituted 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas. Bioorganic & medicinal Chemistry letters,2006,16,4467-4474.
    [18]Huber, P.J. Projection pursuit. Ann. Stat.1985,13,435-475.
    [19]Friedman, J.H., Tukey, J.W. A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput.1974, C-23,881-889.
    [20]Friedman, J.H. Exploratory Projection Pursuit, Journal of the American Statistical. J. Am. Stat. Assoc.1987,82,249-266.
    [21]Ren, Y.Y., Liu, H.X., Li, S.Y., Yao, X.J., Liu, M.C. Prediction of binding affinities to β1 isoform of human thyroid hormone receptor by genetic algorithm and projection pursuit regression. Bioorganic & Medicinal Chemistry Letters,2007, 17,2474-2482.
    [22]Famini, G.R., Penski, C.A., Wilson, L.Y. Using theoretical descriptors in quantitative structure activity relationships:Some physicochemical properties. J. Phys. Org. Chem.1992,5,395-408.
    [23]Handbook of Chemistry and Physics, CRC Press, Cleveland, OH,1974, pp.112-135.
    [24]Sannigrahi, A.B. Initio molecular orbital calculations of bond index and. valency. Adv. Quant. Chem.1992,23,301-351.
    [25]Fattore, E., Benfenati, E., Mariani, G., Fanelli, R. Patterns and sources of polychlorinated dibenzo-p-dioxins and dibenzofurans in sediments from the Venice Lagoon, Italy. Environ. Sci. Technol.1997,31,1777-1784.
    [26]Chen, J.W., Yang, P., Chen, S., Quan, X., Schramm, K.-W., Kettrup, A. Quantitative structure-property relationships for vapor pressures of polybrominated diphenyl ethers. SAR QSAR Environ. Res.2003,14,97-111.
    [27]Crosby, D.G., Wong, A.S., Plimmer, zj.R., Woolson, E.A. Photodecomposition of chlorinated dibenzopdioxins. Science,1971,173,748-749.
    [28]Crosby, D.G., Wong, A.S. Environmental degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Science,1977,195,1337-1338.
    [29]Choudhary, G., Keith, L.H., Rappe, C. Butterworth, Boston,1983.
    [30]McCrady, J.K., Maggard, S.P. Uptake and photodegradation of 2,3,4,7,8-tetrachlorodibenzo-p-dioxin sorbed to grass foliage. Environ. Sci. Technol.1993,27, 343-350.
    [31]Dulin, D., Drossman, H., Mill, T. Products and quantum yields for photolysis of chloroaromatics in Water. Environ. Sci. Technol.1986,20,72-77.
    [32]Dobbs, A.J., Grant, C. Photolysis of highly chlorinated dibenzo-p-dioxins by sunlight. Nature,1979,275,163-165.
    [33]Dung, M.H., O'Keefe, P.W. Comparative rates of photolysis of polychlorinated dibenzofurans in organic solvents and in aqueous solutions. Environ. Sci. Technol. 1994,28,549-554.
    [34]Schuler, F., Schmid, P., Schlatter, C.H. Photodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in cuticular waxes of laurel cherry (prunus laurocerasus). Chemosphere 1998,36,21-34.
    [35]Niu, J.F., Chen, J.W., Henkelmann, B., Quan, X., Yang, F.L., Kettrup, A., Schramm, K.-W. Photodegradation of PCDD/Fs adsorbed on spruce(picea abies(L) Karst) needles under sunlight irradiation. Chemosphere,2003,50,1217-1225.
    [36]Tysklind, M., Lundgren, K., Rappe, C., Eriksson, L., Jonsson, J., Sjostrom, M., Ahlborg, U.G. Multivariate characterization and modeling of polychlorinated dibenso-p-dioxins and dibensofurans. Envrion. Sci. Technol.1992,26,1023-1030.
    [37]Chen, J.W., Quan, X., Peijinenburg, W.J.G.M., Yang, F.L. Quantitative structure-property relationships(QSPRs)on direct photolysis quantum yields of PCDDs. Chemosphere,2001b,43,235-241.
    [38]Chen, J.W., Quan, X., Peijinenburg, W.J.G.M. Quantitative structure-property relationships on photodegradation of PCDD/Fs in cuticular waxes of laurel cherry (Prunus Laurocerasus). Sci. Total Environ.2001c,269,163-170.
    [39]Niu, J.F., Huang, L.P., Chen, J.W., Yu, G., Schramm, K.W. Quantitative structure-property relationships on photolysis of PCDD/Fs adsorbed to spruce (Picea abies (L.) Karst.) needle surfaces under sunlight irradiation. Chemosphere, 2005,58,917-924.
    [40]Friedman, J.H., Tukey, J.W. Projection pursuit regression. J. Am. Stat. Assoc.1981, 76,817-823.
    [41]HyperChem 4.0, Hypercube,1994.
    [42]Stewart, J.P.P. MOPAC 6.0, Quantum Chemistry Program Exchange. QCPE, No. 455, Indiana University, Bloomington, IN,1989.
    [43]Katritzky, A.R., Lobanov, V.S., Karelson, M. Reference Manual, Version 2.0,1994.
    [44]Katritzky, A.R., Lobanov, V.S., Karelson, M. Comprehensive Descriptors for Structural and Statistical Analysis. Reference Manual, Version 2.0; 1994.
    [1]Keskin, O., Ma, B., Nussinov, R. Hot regions in protein-protein interactions:the organization and contribution of structurally conserved hot spot residues. J. Mol. Biol.2005,345,1281-1294.
    [2]Halilioglu, T., Keskin, O., Ma, B., Nussinov, R. How similar are protein folding and protein binding nuclei? examination of vibrational motions of energy hot spots and conserved residues. Biophys. J.2005,88,1552-1559.
    [3]Li, X., Keskin, O., Ma, B., Nussinov, R., Liang, J. Protein-protein interactions: hot spots and structurally conserved residues often locate in complemented pockets that pre-organized in the unbound states:implications for docking. J. Mol. Biol.2004,344,781-795.
    [4]Neuvirth, H., Raz, R., Schreiber, G ProMate:a structure based prediction program to identify the location of protein-protein binding sites. J. Mol. Biol. 2004,335,181-199.
    [5]Reichmann, D., Cohen, M., Abramovich, R., Dym, O., Lim, D., Strynadka, N.C., Schreiber, G. Binding hot spots in the TEM1-BLIP interface in light of its modular architecture. J. Mol. Biol.2007,365,663-679.
    [6]Reichmann, D., Rahat, O., Albeck, S., Meged, R., Dym, O., Schreiber, G. Rational design of faster associating and tighter binding protein complexes. Proc. Natl. Acad. Sci. U.S.A.2005,102,57-62.
    [7]Adcock, S.A., McCammon, J.A. Molecular dynamics:survey of methods for simulating the activity of proteins. Chem. Rev.2006,106,1589-1615.
    [8]Sagui, C., Darden, T.A. Molecular dynamics simulations of biomolecules: long-range electrostatic effects. Ann. Rev.Biophys. Biomol. Struct.1999,28, 155-179.
    [9]Ponder, J.W., Case, D.A. Force fields for protein simulations. Adv. Protein Chem. 2003,66,27-85.
    [10]Stone, A. J. Distributed multipole analysis, or how to describe a molecular charge distribution. Chem.Phys.Lett.1981,83,233-239.
    [11]Vigne-Maeder, F., Claverie, P. The exact multicenter multipolar part of a molecular charge distribution and its simplified representations. J. Chem. Phys. 1988,88,4934-4948.
    [12]Buckingham, A.D., Fowler, P.W. A model for the geometries of Van der Waals complexes. Can. J. Chem.1985,63,2018-2025.
    [13]Sokalski, W.A., Shibata, M., Ornstein, R.L., Rein, R. Cumulative atomic multipole moments complement any atomic charge model to obtain more accurate electrostatic properties. J. Comput. Chem.1992,13,883-887.
    [14]Saethre, L.J., Siggel, M.R.F., Thomas, D.T. Molecular charge distribution, core-ionization energies, and the point-charge approximation. J. Am. Chem. Soc. 1991,113,5224-5230.
    [15]Chirlian, L.E., Francl, M.M. Atomic charges derived from electrostatic potentials: a detailed study. J. Comput. Chem.1987,8,894-905.
    [16]Kong, J., Yan, J.-M. The effects of atomic multipole moments obtained by the potential-derived method on hydrogen bonding. Int. J. Quant. Chem.1993,46, 239255-239258.
    [17]Price, S.L., Richards, N. G J. On the representation of electrostatic fields around ab initio charge distributions. J. Comput. Aided Mol. Design.1991,5,41-54.
    [18]Kosov, D.S., Popelier, P.L.A. Atomic partitioning of molecular electrostatic potentials. J. Phys. Chem. A.2000,104,7339-7345.
    [19]Popelier, P.L.A. A fast algorithm to compute atomic charges based on the topology of the electron density. Theor. Chem. Accts.2001,105,393-399.
    [20]Popelier, P.L.A., Kosov, D.S. Atom-atom partitioning of intramolecular and intermolecular Coulomb energy. J. Chem. Phys.2001,114,6539-6547.
    [21]Joubert, L., Popelier, P.L.A. The prediction of energies and geometries of hydrogen bonded DNA base-pairs via a topological electrostatic potential. Phys. Chem. Chem. Phys.2002,4,4353-4411.
    [22]Liem, S., Popelier, P.L.A. High rank quantum topological electrostatic potential: molecular dynamics simulation of liquid HF. J.Chem.Phys.2003,119, 4560-4566.
    [23]Liem, S., Popelier, P.L.A., Leslie, M. Simulation of liquid water using a high rank quantum topological electrostatic potential. Int. J. Quant. Chem.2004,99,685-694.
    [24]Rafat, M., Popelier, P.L.A. Long range behavior of high-rank topological multipole moments. J. Comp. Chem.2006,28,832-838.
    [25]Bader, R.F.W., Tal, Y., Anderson, S.G.; Nguyen-Dang, T.T. Quantum topology: theory of molecular structure and its change. Israel Journal of Chemistry,1980, 19,8-29.
    [26]Popelier, P.L.A. Atoms in Molecules. An Introduction.; Pearson Education: London, Great Britain,2000.
    [27]Bader, R.F.W. Atom in Molecules. A Quantum Theory; Oxford Univ. Press,1990.
    [28]Popelier, P.L.A., Rafat, M. The electrostatic potential generated by topological atoms:a continuous multipole method leading to larger convergence regions. Chem.Phys.Lett.2003,376,148-153.
    [29]Rafat, M., Popelier, P.L.A. The electrostatic potential generated by topological atoms. Part Ⅱ:inverse multipole moments. J.Chem.Phys.2005,123, 204101-204107.
    [30]Rafat, M., Popelier, P.L.A. A convergent multipole expansion for 1,3 and 1,4 Coulomb interactions. J.Chem.Phys.2006,124,144102-144107.
    [31]Stone, A.J. The Theory of Intermolecular Forces,1 ed.; Clarendon Press:Oxford, 1996.
    [32]Popelier, P.L.A., Joubert, L., Kosov, D.S. Convergence of the electrostatic interaction based on topological atoms. J. Phys. Chem. A.2001,105,8254-8261.
    [33]Haettig, C. Recurrence relations for the direct calculation of spherical multipole interaction tensors and Coulomb-type interaction energies. Chem.Phys.Lett.1996, 250,341-351.
    [34]Ahn, H.-C., Juranic, N., Macura, S., Markley, J. L. Three-dimensional structure of the water-insoluble protein crambin in dodecylphosphocholine micelles and its mnimal slvent-eposed srface. J. Am. Chem. Soc.2006,128,4398-4404.
    [35]Ritchie, J.P. Some predicted relationships and properties for the charge distribution in crambin. Chem. Phy. Lett.2004,387,243-246.
    [36]Wallace, B.A., Kohl, N., Teeter, M.M. Crambin in phospholipid vesicles:Circular dichroism analysis of crystal structure relevance. Proc. Natl. Acad. Sci. U.S.A. 1984,81,1406-1410.
    [37]Jorgensen, W.L., Tirado-Rives, J. The OPLS potential functions for proteins. energy minimizations for crystals of cyclic peptides and crambin.J. Am. Chem. Soc.1988,110,1657-1666.
    [38]Lobb, L., Stec, B., Kantrowitz, E.K., Yamano, A., Stojanoff, V., Markman, O., Teeter, M.M. Expression, purification and characterization of recombinant crambin. Protein Engineering,1996,9,1233-1239.
    [39]Bang, D., Chopra, N., Kent, S.B.H. Total chemical synthesis of crambin. J. Am. Chem. Soc.2004,126,1377-1383.
    [40]MORPHY01 a program written by PL.A. Popelier with a contribution from R.G.A. Bone, D.S.Kosov and M.in het Panhuis, UMIST, Manchester, England, EU, 2000.
    [41]GAUSSIAN03 Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A.J., Vreven, J.T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev,O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J. B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J. A. In Gaussian, Inc. Pittsburgh PA,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700