用户名: 密码: 验证码:
AML1a在小鼠造血细胞增殖分化异常及恶性转化中的作用及全反式维甲酸处理NB4细胞的微小RNA表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分AML1a在小鼠造血细胞增殖分化异常及恶性转化中的作用
     细胞的增殖分化受到严格调控,转录因子协调细胞中多种基因的表达是其中重要的调控机制。造血细胞的增殖失控、分化能力的丧失将可能导致细胞的恶性转化及白血病的发生。因此,阐明转录因子的功能对于确定细胞增殖分化调控机制以及在细胞恶性转化中的作用具有重要意义。AML1也称之为PEBP2αB、CBFα2或RUNX1,是一种重要的转录调节因子。它在造血细胞中普遍表达,调节造血细胞的分化和增殖。
     RUNX1/AML1通过选择性剪接产生至少三种异构体:AML1a、A.ML1b和AML1c。其中,AML1b与AML1c仅在氨基末端存在27个氨基酸残基的差异,均具有两个主要的功能结构域:DNA结合结构域和转录激活结构域,两者的功能基本相同,即我们通常所说的AML1。AML1a具有DNA结合结构域,但缺少转录激活结构域,因此通常被认为不具有转录激活功能,但由于其具有DNA结合结构域,可以与AML1b/1c竞争结合靶基因的DNA结合位点,导致靶基因不能正常转录,提示AML1a可能干扰AML1的转录调节功能。有证据表明,AML1a在急性髓系白血病(AML)中表达高于正常对照。我们的前期实验也已证实AML1a在急性白血病(AL)中的高表达,而且,AML1a可以抑制由AML1b介导的M-CSF受体(M-CSFR)启动子的转录,提示AML1a对AML1b具有拮抗作用。有学者认为转录激活区的缺失可能引起白血病的发生,但目前尚无此方面的报道。为了进一步研究AML1a在造血及白血病发病中的作用并探讨其作用机制,本文完成了下列研究工作:
     1.AML1a表达载体的构建及病毒的制备
     pMSCV-FLAG-AML1a-IRES-YFP质粒,将此质粒和pMSCV-IRES-YFP分别与辅助质粒pV Pack-Eco(含Env)、pV Pack-GP(含gal-pol)组合,通过磷酸钙沉淀法转染293T细胞,制备逆转录病毒。病毒感染3T3细胞,检测病毒滴度,并测定AML1a的表达情况。结果显示在感染的细胞中证实有AML1a和YFP的表达,所制备的病毒滴度满足后续实验的要求。
     2.AML1a在小鼠造血细胞增殖分化异常及恶性转化中的作用
     1) C57雄性小鼠的骨髓单个核细胞(BMMNC)通过逆转录病毒转导AML1a及空白对照后,置于含mSCF、mIL-3、mIL-6的IMDM培养液中进行培养,分别于感染后11天、23天和35天通过流式细胞仪检测确定各系表面标志的变化,结果显示感染AML1a的BMMNC中Sca-1及Thy1.2的表达均较对照组升高,提示AML1a可能将造血干细胞的分化阻滞于较为早期的淋巴细胞阶段。
     2)将转导AML1a的C57小鼠的骨髓单个核细胞,尾静脉注射至致死剂量照射的C57雌性小鼠体内,单一转导YFP的小鼠作为对照。定期尾静脉取血,查血象及白细胞分类。血象有异常改变后,处死小鼠,观察有无肝、脾、淋巴结肿大,流式细胞术分析细胞表型变化。转导AML1a的12只C57小鼠中,有9只在移植后3-11个月相继死亡,解剖可见肝脾肿大,可伴有胸腺瘤和淋巴结肿大。病理可见骨髓、脾、肺、肾、胸腺或淋巴结可见大量白血病细胞浸润。流式分析显示白血病细胞主要有两个表型:Sca-1~+ cCD3~+和CD3~+CD4~+CD8~+,提示均为T-淋巴细胞白血病。发病小鼠脾细胞接种同类小鼠可再次发生表型相同的T-淋巴细胞白血病。以上结果表明AML1a在白血病的发生中发挥重要的作用,并且可能具备导致白血病的能力。
     3)将AML1a发病小鼠脾细胞传代后取第二代发病鼠的骨髓细胞进行细胞周期测定。与对照组相比,发病小鼠骨髓中G0/G1细胞比例增高,S期细胞比例明显降低,提示AML1a将小鼠骨髓细胞阻滞于G0/G1期。此结果说明AML1a基因可能通过抑制细胞自G0/G1期向S期的转换,改变正常细胞增殖分裂的进程,导致造血细胞的恶性转化。
     综上所述,本研究通过逆转录病毒转导AML1a至小鼠BMMNC中,并将其移植到致死剂量照射的小鼠体内,首次证实了AML1a的可以引起造血细胞恶性转化并导致白血病发生。初步推测AML1a可能在白血病特别是淋巴细胞白血病的发病中起重要作用。此外,我们的实验也为白血病的治疗提供了新的治疗靶点和动物模型。
     第二部分全反式维甲酸处理NB4细胞的微小RNA表达谱分析
     微小RNA(microRNA,miRNA)是一种非编码小分子RNA,可以作为基因的负调控因子调节多种生物进程。每一种微小RNA可以调控数百种靶基因。近来研究显示微小RNA的突变或者异常表达与人类许多肿瘤发生相关,它能够作为肿瘤抑制物或者癌基因发挥作用,因此可能有助于肿瘤的诊断和治疗。我们通过确定全反式维甲酸(ATRA)诱导急性早幼粒细胞白血病(APL)细胞系NB4细胞分化过程中微小RNA表达谱的变化,寻找可能对白血病细胞分化起作用的微小RNA。细胞形态学和流式细胞术验证ATRA处理NB4细胞的分化。利用微小RNA芯片技术,检测和分析NB4经ATRA处理不同时间点的微小RNA表达谱差异,实时定量RT-PCR技术验证微小RNA表达的变化,并对微小RNA进行靶基因预测。ATRA处理后的NB4细胞在形态上出现向粒细胞的分化,分析CD11b等髓系表面抗原的表达,ATRA处理0h及72h时CD11b的表达分别为3%和96%,进一步证实了NB4细胞的分化。基因芯片检测从576个候选的人类微小RNA中,筛选出24个差异表达微小RNA(表达上调的有21个,表达下调的有3个),其中,有16个微小RNA可以进行靶基因预测。这些miRNA的靶基因多涉及与白血病发生有关的同源盒基因家族成员。实时定量RT-PCR验证了2个显著上调微小RNA(miR-210和miR-342)表达的变化,两种微小RNA标准化后的比值分别为2.16和4.61。差异表达微小RNA可能与NB4的分化相关,同时也可能是转录后水平抑制基因表达调控方式的基础。
PartⅠThe role of AML1a in abnormal proliferation and differentiation and its significant function in malignant transformation of murine hematopoietic cells
     Cell proliferation and differentiation are strictly regulated by intrinsic and extrinsic signals,in which coordination of a variety of gene expression by transcription factors is the most important mechanism.Uncontrolled proliferation and impaired differentiation of hematopoietic cells lead to leukemogenesis.Therefore,it is significant to clarify the functions of transcription factors for elucidating the mechanism of abnormal proliferation and differentiation,as well as leukemogenesis.
     AML1,also called RUNX1,PEBP2αB or CBFα2,is a critical transcription factor in hematopoietic cell differentiation and proliferation.Its mutation and translocation lead to hematopoietic malignant.
     From the AML1/RUNX1 gene,at least three isoforms,AML1a,AML1b and AML1c,are produced through alternative splicing.The proteins encoded by AML1b and AML1c have a RHD in the N-terminus and a transactivation domain in the C-terminus,which are often called AML1.In contrast,the protein encoded by AML1a has a RHD but lacks the transactivation domain.As such,the function of AML1 is believed to be mediated by AML1b and AML1c which are considered to have the same function.AML1a interferes with the function of AML1b/1c.It has been proved that AML1a is higher expressed in acute myeloid leukemia(AML) than in normal controls.Our previous study confirmed that AML1a expression in acute leukemia(AL) has a high level.In addition,AML1a can inhibit the transcription of M-CSFR promoter mediated by AML1b,suggesting that AML1a has the effect of antagonism to AML1b.Some scholars believe that loss of the transcription activation domain may cause leukemogenesis,but at present there is no report in this regard.In order to explore the role and mechanism of AML1a in abnormal hematopoesis and leukemogenesis,we completed the following work in this study:
     1.The construction of AML1a expression vector and the production of retrovirus.
     pMSCV-FLAG-AML1a-IRES-YFP was constructed.293T cells were transfected with pMSCV-IRES-YFP,pMSCV-FLAG-AML1a-IRES-YFP,the envelope-encoding plasmid pV Pack-Eco,or the packaging plasmid pV Pack-GP using a method of calcium phosphate precipitation to product retrovirus.The title of virus was measured using a bioassay with the 3T3 cell line.The expression of the fusion proteins in the tranduced cells was confirmed.The title of retrovirus can satisfy the continually experimental demand.
     2.The role of AML1a in abnormal hematopoiesis and leukemogenesis.
     1) Bone marrow mononuclear cells(BMMNCs) were infected with the retroviral vector MSCV expressing a FLAG-AML1a fusion protein and a yellow fluorescent protein(YFP).The cells were cultured in Iscove modified Dulbecco medium(IMDM) supplemented with murine IL-3(mIL-3),murine IL-6(mIL-6) and marine SCF (mSCF).The change of surface marker of each hematopoietic linage was analyzed by FACS in 11d,23d and 35d after transduction.The result showed that the expression of Sca-1 and Thy1.2 in AML1a transduced BMMNC was higher than that of the control,which indicating that AML1a may prone to block the differentiation of hematopoietic stem cell in the relatively early lymphocytic stage 2) BMMNCs from mice were transduced with AML1a and transplanted into lethally irradiated mice, which develop lymphoblastic leukemia after transplantation.Lethally irradiated female C57 mice received BMCs infected with the retroviral vector MSCV expressing a FLAG-AML1a fusion protein and a yellow fluorescent protein(YFP). BMCs infected with the vector expressing YFP only was used as a control,Number of YFP-positive cells in the peripheral blood as well as general health condition of the mice was monitored.9 out a total of 12 mice in the AML1a group developed leukemia at 3-11 months.Autopsy of these mice revealed spleenon(?)agly and hepatomegaly with thymoma and lymph node enlargement.Bone marrow,spleen, lung,liver,kidney and thymus were infiltrated with leukemia cells.A further analysis revealed that the BMCs in mice with leukemia mainly exhibited 2 phenotypes.One was Sca-1~+ cytoplasmic CD3~+(cCD3~+),a common type of T-lymphoblastic leukemia. The other was CD3~+CD4~+CD8~+,a type of T lymphocytic leukemia.All mice received secondary transplantation rapidly developed lymphocytic leukemia.Taken together, these results indicate that overexpression of AML1a may be an important contributing factor to leukemogenesis.
     3) Cell cycle of BMCs from the secondary recipient of leukemia cells was examined.Representative cycle distribution of the BMCs was shown that BMCs in the AML1a group obviously were of higher percentage in G0/G1 phase and lower percentage in S phase in comparison to the control group,which indicated that cell cycle of transduced AML1a hematopoietic cells was arrested in the G0/G1 phase AML1a may alter the process of normal cell proliferation and division and lead to the malignant transformation of hemotopoietic cells.
     In conclusion,we transduced AML1a into BMMNC of mice by retrovirus and transplanted these cells into lethally-irretiated mice.As a result,this study has revealed,for the first time,a new effect of AML1a in leukemogenesis.It indicates that AML1a may play a critical role in leukemogenesis,especially in the development of lymphoid leukemia.In addition,lymphoblastic leukemia model established in this study may serve as a valuable tool for future studies.These results may also have implications in the treatment of leukemia.
     PartⅡAnalysis of microRNAs expression profiles of acute promyelocytic leukemia cell line NB4 treated with all-trans retinoic acid
     MicroRNAs(miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators to regulate diverse biological processes. Each miRNA can control hundreds of gene targets.Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes.Thus, miRNAs might prove useful in the diagnosis and treatment of cancer.To explore the profile of microRNAs in acute promyelocytic leukemia(APL) cell line NB4 treated with all-trans retinoic acid(ATRA) and to look for the microRNAs which affect on cell differentiation.The differentiation of NB4 cell treated with ATRA was verified by cell morphology and flow cytometry.The difference of microRNAs expression profiles of NB4 cells treated with ATRA at different time was analyzed by means of microRNAs array.Real-time RT-PCR was used to testify the change of microRNAs expression,and the target genes of microRNAs were predicted.NB4 cells can be induced to terminal differentiation after 3 days exposure to ATRA and the differentiation antigen CD11b increased significantly from 3%to 96%.Using microRNAs array,24 differentially expressed microRNAs were screened from 576 human microRNAs candidates in which,21 microRNAs were up-regulated and 3 down-regulated.Further more,by microRNA-target gene prediction assay,the predicted target genes of the 16 up-regulated microRNAs were in volved in leukemogenesis related HOX genes.The expression of the two most significantly up-regulated microRNAs(miR-210 and miR-342) was confirmed by real time RT-PCR.The ratio of the two microRNAs after normalization was 2.16 and 4.61 respectively.The differentially expressed microRNAs in ATRA treated NB4 cells may be associated with the differentiation.Furthermore,the change of microRNAs expression may provide basis for the control mode of repressing gene expression at post-transcription level.
引文
1. Miyoshi H, Shimizu K, Kozu T, et al. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene,AML1. Proc Nutl Acud Sci USA 1991; 88:10431-10434.
    
    2. Levanon D, Glusman G, Bangsow T, et al. Architecture and anatomy of the genomic locus encoding the human leukemia-associated transcription factor RUNX1/AML1. Gene 2001; 262:23-33.
    
    3. Meyers S, Downing JR, Hiebert SW. Identification of AML1 and the (8;21) translocation protein (AMLl/ETO) as sequence-specific DNA-binding proteins:the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol. 1993; 13:6336-6345.
    
    4. Yagi R, Chen LF, Shigesada K, et al. A ww domain-containing Yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J 1999;18:2551-2562.
    
    5. Aronson BD, Fisher AL, Blechman K, et al. Groucho-dependent and-independent repression activities of Runt domain proteins. Mol Cell Biol. 1997;17:5581-5587
    
    6. Meyers S, Lenny N, Hiebert SW. The t (8; 21) fusion protein interferes with AML-1B-dependent transcnptional activation. Mol cell Biol 1995;15:1974-1982.
    
    7. Ogawa E, Inuzuka M, Maruyama M, et al. Molecular cloning and characterization of PEBP2b, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2. Virology 1993; 194:314-331.
    
    8. Wang S, Wang Q, Crute BE, et al. Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol Cell Biol 1993; 13:3324-3339.
    
    9. Okuda T, van Deursen J, Hiebert SW, et al. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84:321-330.
    
    10. Wang Q, Stacy T, Binder M, et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 1996; 93: 3444-3449.
    
    11. Lutterbach B, Hiebert SW. Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene 2000; 245: 223-235.
    
    12. Speck NA, Stacy T, Wang Q, et al. Core-binding factor: a central player in hematopoiesis and leukemia. Cancer Res 1999; 59:1789-1793.
    
    13. Prosser H.M, WottonD, Gegonne A., et al. A phorbol ester response element within the human T-cell receptor O-chain enhancer. Proc Natl Acad Sci USA 1992; 89: 9934-9938.
    
    14. Takahashi A, Satake M, Yamaguchi-Iwai Y, et al. Positive and negative regulation of granulocyte-macrophage colony-stimulating factor promoter activity by AML1-related transcription factor, PEBP2. Blood 1995; 86:607-616.
    
    15. Uchida H, Zhang J, Nimer SD. AML1A and AML1B can transactivate the human IL-3 promoter. J Immunol 1997; 158:2251-2258.
    
    16. Britos-Bray M, Friedman AD. Core binding factor cannot synergistically activate the myeloperoxidase proximal enhancer in immature myeloid cells withoutc-Myb. Mol Cell Biol 1997; 17:5127-5135.
    
    17. Nuchprayoon I, Meyers S, Scott LM, et al. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2b/CBFb proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells.Mol Cell Biol 1994; 14:5558-5568.
    
    18. Cockerill PN, Osborne CS, Bert AG, et al. Regulation of GM-CSF gene transcription by core-binding factor. Cell Growth Differ 1996; 7: 917-922.
    
    19. Rhoades KL, Hetherington CJ, Rowley JD, et al. Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AMLl and the t(8;21) fusion protein may contribute to leukemogenesis. Proc Natl Acad Sci USA 1996; 93:11895-11900.
    
    20. Zhang DE, Hetherington CJ, Meyers S, et al. CCAAT enhancer-binding protein (C/EBP) and AMLl (CBFα2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol Cell Biol 1996; 16: 1231-1240.
    
    21. Wotton D, Ghysdael J, Wang S, et al. Cooperative binding of Ets-1 and core binding factor to DNA.Molecular and Cellular Biology 1994; 14:840-850.
    
    22. Zhang DE, Hohaus S, Voso MT, et al. Function of PU. 1 (Spi-1), C/EBP, and AMLl in early myelopoiesis: regulation of multiple myeloid CSF receptor promoters. Current Topics in Microbiology and Immunology 1996; 211:137-147.
    
    23. Lutterbach B, Westendorf JJ, Linggi B, et al. A mechanism of transcriptional repression by AML1, the target of multiple chromosome translocations in leukemia. J Biol Chem 2000; 275:651-656.
    
    24. Miyoshi H, Ohira M, Shimizu K, et al. Alternative splicing and genomic structure of the AMLl gene involved in acute myeloid leukemia. Nucleic Acids Res 1995;23:2762-2769.
    
    25. Nucifora G, Birn DJ, Espinosa R, et al. Involvement of the AMLl gene in therapy-related leukemia and in chronic myeloid leukemia in blast crisis. Blood 1993; 81:2728-2734.
    
    26. Golub TR, Barker GF, Bohlander SK, et al. Fusion of the Tel gene on 12p13 to the AML1 on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 1995; 92:4917-4921.
    
    27. Guidez F, Retrie K, Ford AM, et al. Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL-AML1 oncoprotein. Blood 2000; 96:2557-2561.
    
    28. Uchida H, Downing JR, Miyazaki Y, et al. Three distinct domains in TEL-AML1 are required for transcriptional repression of the IL-3 promoter. Oncogene 1999;18:1015-1022.
    
    29. Loh ML, Rubnitz JE. TEL/AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches. Curr Opin Hematol 2002; 9:345-352.
    
    30. Roumier C, Fenaux P, Lafage M, et al. new mechanisms of AMLl gene alternation in hematological malignancies. Leukemia 2003; 17:9-16.
    
    31. Fujii M, Hayashi K, Niki M, et al. Overexpression of AMLl renders a T hybridoma resistant to T cell receptor mediated apoptosis. Oncogene 1998;17:1813-1820.
    
    32. Tanaka T, Tanaka K, Ogawa S, et al. An acute myeloid leukemia gene, AML1,regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J 1995; 14:341—350.
    
    33. Yuan Y, Zhou L, Miyamoto T, et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA2001; 98:10398-10403.
    
    34. Higuchi M, O'Brian D, Kumaravelu P, et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1:63-74.
    
    35. Fenske TS, Pengue G, Mathews V, et al. Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc Natl Acad Sci USA2004; 101:15184-15189.
    
    36. Westendorf J, Yamamoto CM, Lenny N, et al. The t(8;21) fusion product,AML1-ETO, associates with C/EBPa-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol 1998; 18:322-333.
    
    37. Pabst T, Muller BU, Harakawa N, et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBP alpha in t(8;21) myeloid leukemia.Nat Med 2001; 7:444-451.
    
    38. Linggi B, Muller-Tidow C, van de Locht L, et al. The t(8;21) fusion protein,AML1-ETO, specifically represses the transcription of the p14ARF tumor suppressor in acute myeloid leukemia. Nat Med 2002; 8:743-750.
    
    39. Ichikawa M, Asai T, Saito T, Yamamoto G, et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 2004;10:299-304.
    
    40. Sato T, Ito R, Nunomura S, et al. Requirement of transcription factor AML1 in proliferation of developing thymocytes. Immunol Lett 2003; 89:39-46.
    
    41. Kundu M, Compton S, Garrett-Beal L, et al. RUNX1/AML1 deficiency predisposes mice to T-lymphoblastic. Blood 2005; 106: 3621-3624.
    
    42. Cao W, Britos-Bray M, Claxton DF, et al. CBF (3-SMMHC, expressed in M4Eo AML, reduced CBF DNA-binding and inhibited the Gl to S cell cycle transition at the restriction point in myeloid and lymphoid cells. Oncogene 1997;15:1315-1327.
    
    43. Cao W, Adya N, Britos-Bray M, et al. The core binding factor (CBF) alpha interaction domain and the smooth muscle myosin heavy chain (SMMHC) segment of CBFβ-SMMHC are both required to slow cell proliferation. J Biol Chem 1998;47:31534-31540.
    
    44. Lou J, Cao W, Bernardin F, et al. Exogenous cdk4 overcomes reduced cdk4 RNA and inhibition of Gl progression in hematopoietic cells expressing a dominant-negative CBF - a model for overcoming inhibition of proliferation by CBF oncoproteins. Oncogene 2000; 19:2695-2703.
    45. Bernardin F, Yang Y, Civin CI, et al. c-Myc overcomes cell cycle inhibition by CBFβ-SMMHC, a myeloid leukemia oncoprotein. Cancer Biol Ther 2002;1:494-498
    
    46. Bernardin F, Friedman AD. AML1 stimulates Gl to S progression via its transactivation domain. Oncogene 2002; 21:3247-3252.
    
    47. Strom DK, Nip J, Westendorf JJ, et al. Expression of the AML-1 oncogene shortens the G(1) phase of the cell cycle. J Biol Chem 2000; 275:3438-45.
    
    48. Quelle DE, Ashmun RA, Shurtleff SA, et al. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 1993;7:1559-1571.
    
    49. Ohtsubo M, Roberts JM. Cyclin-dependent regulation of Gl in mammalian fibroblasts. Science 1993; 259:1908-1912.
    
    50. Kato J, Sherr CJ. Inhibition of granulocyte differentiation by Gl cyclins D2 and D3 but not D1.ProcNatl Acad Sci USA 1993; 90:11513-11517.
    
    51. Tsuzuki S, Hong D, Gupta R, et al. Isoform-specific potentiation of stem and progenitor cell engraftment by RUNX1/AML1. PLoS Med 2007; 4:el72.
    1. Melnick A, Licht JD. Deconstructing a disease: RARalpha, its fusion partners,and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999;93:3167-3215.
    
    2. Huang ME, Ye YC, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72: 567-572.
    
    3. Shivdasani RA. MicroRNAs: regulators of gene expression and cell differentiation. Blood 2006; 108: 3646-3653.
    
    4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116:281-297.
    
    5. Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic isletspecific microRNA regulates insulin secretion. Nature 2004; 432:226-230.
    
    6. Cheng AM, Byrom MW, Shelton J, et al.Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis.Nucleic Acids Res 2005; 33: 1290-1297.
    
    7. Dresios J, Aschrafi A, Owens GC, et al. Cold stress induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proc Natl Acad Sci USA 2005; 102:1865-1870.
    
    8. Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303:83-86.
    
    9. Fazi F, Rosa A, Fatica A, et al. A mini-circuitry comprising microRNA-223 and transcription factors NFI-A and C/EBPa regulates human granulopoiesis. Cell 2005; 123: 819-831.
    
    10. Owens BM, Hawley RG. HOX and non-HOX homeobox genes in leukemic hematopoiesis. Stem Cells 2002; 20:364-379.
    
    11. Esquela A, Slack F. Oncomirs-microRNAs with a role in cancer. Nature Cancer Rev 2006; 6:259-269.
    
    12. Thorsteinsdottir U, Sauvageau G, Hough MR, et al. Overexpre ssion of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol 1997;17:495-505.
    
    13. Kroon E, Krosl J, Thorsteinsdottir U, et al. Hoxa9 transforms primary bone marrow cells though specific collaboration with Meisla but not Pbxlb. EMBO J 1998; 17:3714-3725.
    
    14. Moskow JJ, Bullrich F, Huebner K, et al. Meis1, a PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice. Mol Cell Biol 1995;15:5434-5443.
    
    15. Nakamura T, Largaespada DA, Shaughnessy JD, et al. Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid Ieukemias. Nature Genet 1996;12:149-153.
    
    16. Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia.Oncogene 2007; 26:4148-4157.
    1. Miyoshi H, Shimizu, K, Kozu T, et al. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene,AML1.ProcNatAcadSci USA 1991; 88:10431-10434.
    
    2. van Wijnen AJ, Stein GS, Gergen JP, et al. Nomenclature for Runt-related (RUNX) proteins. Oncogene 2004; 23:4209-4210.
    
    3. Levanon D, Glusman G, Bangsow T, et al. Architecture and anatomy of the genomic locus encoding the human leukemia-associated transcription factor RUNX1/AML1/AML1. Gene 2001; 262:23-33.
    
    4. Tahirov TH, Inoue-Bungo T, Morii H, et al. Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFβ.Cell 2001; 104:755-767.
    
    5. Chen LF, Ito K, Murakami Y, et al. The capacity of polyomavims enhancer binding protein 2aB (AML1/Cbfα2) to stimulate polyomavirus DNA replication is related to its affinity for the nuclear matrix. Mol Cell Biol 1998; 18:4165-4176.
    
    6. Aronson BD, Fisher AL, Blechman K, et al. Groucho-dependent and-independent repression activities of Runt domain proteins. Mol Cell Biol 1997;17:5581-5587.
    
    7. Miyoshi H, Ohira M, Shimizu K, et al. Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res 1995;23:2762-2769.
    
    8. Mao S, Frank RC, Zhang J, et al. Functional and physical interactions between AML1 proteins and an ETS protein, MEF: implications for the pathogenesis of t(8;21)-positive leukemias. Mol Cell Biol 1999; 19:3635-44.
    
    9. Uchida H, Zhang J, Nimer SD. AMLIA and AMLIB can transactivate the human IL-3 promoter. J Immunol 1997; 158: 2251-8.
    
    10. Takahashi A, Satake M, Yamaguchi-Iwai Y, et al. Positive and negative regulation of granulocyte-macrophage colony-stimulating factor promoter activity by AML1-related transcription factor, PEBP2. Blood 1995; 86:607-616.
    11. Petrovick MS, Hiebert SW, Friedman AD, et al. Multiple functional domains of AML1: PU.1 and C/EBPalpha synergize with different regions of AML1. Mol Cell Biol 1998; 18:3915-25.
    
    12. Bruhn L, Munnerlyn A, and Grosschedl R. ALY. A context-dependent coactivator of LEF-1 and AML-1, is required for TCR enhancer function. Genes Dev 1997;11:640-653.
    
    13. Kim JH, Lee S, Rho JK, et al. AML1, the target of chromosomal rearrangements in human leukemia, regulates the expression of human complement receptor type 1 (CR1) gene. Int. J. Biochem. Cell Biol 1999; 31:933-940.
    
    14. Ichaso N, Rodriguez RE, Martin-Zanca D,et al. Genomic characterization of the human trkC gene. Oncogene 1998; 17:1871-5.
    
    15. Armesilla AL, Calvo D, Vega MA, et al. Structural and functional characterization of the human CD36 gene promoter: identification of a proximal PEBP2/CBF site. J Biol Chem 1996; 271:7781-7787.
    
    16. Puig-Kroger A, Lopez-Rodriguez C, Relloso M, et al. Polyomavirus enhancer-binding protein 2/core binding factor/acute myeloid leukemia factors contribute to the cell type-specific activity of the CD11a integrin gene promoter. J Biol Chem 2000; 275:28507-28512.
    
    17. Lutterbach B, Sun D, Schuetz J, et al. The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by trie t(8;21) fusion protein. Mol Cell Biol 1998; 18:3604-3611.
    
    18. Libermann TA, Pan Z, Akbarali Y, et al. AML1 (CBFalpha2) cooperates with B cell-specific activating protein (BSAP/PAX5) in activation of the B cell-specific BLK gene promoter. J. Biol. Chem. 1999; 274:4671-24676.
    
    19. Lutterbach B, Westendorf JJ, Linggi B, et al. A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia. J Biol Chem 2000; 275:651-656.
    
    20. Klampfer L, Zhang J, Zelenetz AO, et al. The AML1/ETO fusion protein activates transcription of BCL-2. Proc Natl Acad Sci USA 1996;93:14059-14064.
    21. Denkinger, D.J.; Cushman-Vokoun, A.M.; Kawahara, R.S. Regulation of the vav proto-oncogene by LKLF. Gene 2001; 281:133-142.
    
    22. Hwang ES, Hong JH, Bae SC, et al. Regulation of c-fos gene transcription and myeloid cell differentiation by acute myeloid leukemial and acute myeloid leukemia-MTG8, a chimeric leukemogenic derivative of acute myeloid leukemia 1. FEBS Lett. 1999; 446:86-90.
    
    23. Shi W, Inoue M, Minami M, et al . The genomic structure and chromosomal localization of the mouse STAT3 gene. Int Immunol 1996; 8:1205-1211.
    
    24. Nuchprayoon I, Meyers S, Scott LM, et al. PEBP2/CBF, the murine homolog of the human myeloid AMLl and PEBP2 β/CBFβ proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells.Mol Cell Biol 1994; 14:5558-5568.
    
    25. Westendorf JJ, Yamamoto CM, Lenny N, et al. The t(8;21) fusion product,AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol 1998;18:322-333.
    
    26. Wargnier A, Legros-Maida S, Bosselut R, et al. Identification of human granzyme B promoter regulatory elements interacting with activated T-cell-specific proteins:implication of Ikaros and CBF binding sites in promoter activation. Proc Natl Acad Sci USA 1995; 92:6930-6934.
    
    27. Kitabayashi I, Yokoyama A, Shimizu K, et al. Interaction and functional cooperation of the leukemia-associated factors AMLl and p300 in myeloid cell differentiation. EMBO J 1998; 17:2994-3004.
    
    28. Chen H, Lin RJ, Schiltz RL, et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/ CAF and CBP/p300. Cell 1997; 90:569-580.
    
    29. Pazin MJ, Kadonaga JT. What's up and down with histone deacetylation and transcription? Cell 1997; 89:325-328.
    
    30. Bruhn L, Munnerlyn A, Grosschedl R. ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function. Genes Dev 1997; 11:640-653.
    
    31. Yagi R, Chen LF, Shigesada K, et al. A WW domaincontaining yes-associated protein (YAP) is a novel transcriptional co-activator EMBO J 1999;18:2551-2562.
    
    32. Kitabayashi I, Aikawa Y, Nguyen LA, et al. Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein. EMBO J 2001; 20:7184-7196.
    
    33. Ahn MY, Huang G, Bae SC, et al. Negative regulation of granulocytic differentiation in the myeloid precursor cell line 32Dcl3 by ear-2,a mammalian homolog of Drosophila seven-up, and a chimeric leukemogenic gene,AML1/ETO. Proc Natl Acad Sci USA 1998; 95:1812-1817.
    
    34. Lutterbach B, Westendorf JJ, Linggi B, et al. A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia. J Biol Chem 2000; 275:651-656.
    
    35. Aronson BD, Fisher AL, Blechman K, et al. Grouchodependent and -independent repression activities of Runt domain proteins. Mol Cell Biol 1997; 17:5581-5587.
    
    36. Chakrabarti SR, Sood R, Nandi S, et al. Posttranslational modification of TEL and TEL/AML1 by SUMO-1 and cell-cycle-dependent assembly into nuclear bodies. Proc Natl Acad Sci USA 2000; 97:13281-13285.
    
    37. Tanaka T, Tanaka K, Ogawa S, et al. An acute myeloid leukemia gene, AML1,regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J 1995; 14:341—350.
    
    38. Aziz-Aloya RB, Levanon D, Karn H, et al. Expression of AML1-d, a short human AMLl isoform, in embryonic stem cells suppresses in vivo tumor growth and differentiation. Cell Death Differ 1998; 5:765-773.
    
    39. Yamaguchi Y, Kurokawa M, Imai Y, et al. AMLl is functionally regulated through p300-mediated acetylation on specific lysine residues. J Biol Chem 2004;279:15630-15638.
    
    40. Chakraborty S, Sinha KK, Senyuk V, et al. SUV39H1 interacts with AML1 and abrogates AMLl transactivity. AMLl is methylated in vivo Oncogsne 2003; 22:5229-5237.
    
    41. Huang G, Shigesada K, Ito K, et al. Dimerizationwith PEBP2P protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J 2001;20:723-733.
    
    42. Imai Y, Kurokawa M, Yamaguchi Y, et al. The corepressor mSin3A regulates phosphorylation induced activation, intranuclear location and stability of AML1.Mol Mol Cell Biol 2004; 24:1033-1043.
    
    43. Vradii D, Zaidi SK, Lian JB, et al. Point mutation in AML1 disrupts subnuclear targeting, prevents myeloid differentiation, and effects a transformation-like phenotype. Proc Natl Acad Sci USA 2005; 102:7174-7179.
    
    44. Ogawa E, Inuzuka M, Maruyama M, et al. Molecular cloning and characterization of PEBP2 β, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology 1993; 194:314-331.
    
    45. Pepling ME, Gergen JP. Conservation and function of the transcriptional regulatory protein Runt. Proc Natl Acad Sci USA 1995; 92:9087-9091.
    
    46. Meyers S, Downing JR, Hiebert SW. Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins:The runt homology domain is required for DNA binding and proteinprotein interactions. Mol Cell Biol 1993; 13:6336-6345.
    
    47. Tahirov TH, Inoue-Bungo T, Morii H, et al. Structuralanalyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFβ.Cell 2001; 104:755-767.
    
    48. Ito Y. Molecular basis of tissue-specific gene expression mediated by the runt domain transcription factor PEBP2/CBF. Genes Cells 1999; 4:685-696.
    
    49. Nagata T, Gupta V, Sorce D, et al. Immunoglobulin motif DNA recognition and heterodimerization of the PEBP2/CBF Runt domain. Nat Struct Biol 1999;6:615-619.
    
    50. Warren AJ, Bravo J, Williams RL, et al. Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFp. EMBO J 2000; 19:3004-3015.
    51. Downing JR, Higuchi M, Lenny N, et al. Alterations of the AML1 transcription factor in human leukemia. Semin Cell Dev Biol 2000; 11:347-360.
    
    52. Hernandez-Munain C, Krangel MS. Regulation of the T-cell receptor delta enhancer by functional cooperation between c-Myb and core-binding factors. Mol Cell Biol 1994; 14:473-483.
    
    53. Zhang DE, Hetherington CJ, Meyers S, et al. CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol Cell Biol 1996; 16:1231-1240
    
    54. Petrovick MS, Hiebert SW, Friedman AD, et al. Multiple functional domains of AML1: PU.1 and C/EBPalpha synergize with different regions of AML1. Mol Cell Biol 1998; 18:3915-3925.
    
    55. Medvinsky AL, Samoylina NL, Muller AM, et al. An early preliver intraembryonic source of CFU-S in the developing mouse. Nature 1993;364:64-67.
    
    56. Muller AM, Medvinsky A, Strouboulis J, et al. Development of hematopoietic stem cell activity in the mouse embryo. Immunity 19941:291—301
    
    57. Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 1996; 86:897-906.
    
    58. Wang Q, Stacy T, Miller JD, et al. The CBFβ subunit is essential for CBFalpha2 (AML1) function in vivo. Cell, 1996; 87:697-708.
    
    59. Okada T, van Deursen J, Hiebert SW, et al. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 1996; 84:321-30.
    
    60. Roumier C, Fenaux P, Lafage M, et al. New mechanisms of AML1 gene alteration in hematological malignancies. Leukemia. 2003; 17:9-16.
    
    61. Ichikawa M, Asai T, Saito T, et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 2004; 10:299—304.
    
    62. Sato T, Ito R, Nunomura S, et al. Requirement of transcription factor AML1 in proliferation of developing thymocytes. Immunol Lett 2003; 89:39-46.
    63. Hayashi K, Abe N, Watanabe T, et al. Overexpression of AML1 Transcription Factor Drives Thymocytes into the CD8 Single-Positive Lineage. The Journal of Immunology 2001; 167: 4957-4965.
    
    64. Lorsbach RB, Moore J, Ang SO, et al. Role of RUNX1/AML1 in adult hematopoiesis: analysis of RUNX1/AML1-IRES-GFP knock-in mice reveals differential lineage expression. Blood 2004; 103:2522-2529.
    
    65. Rowley JD. Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann Genet 1973; 16:109-112.
    
    66. Miyoshi H, Kozu T, Shimizu K, et al. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J 1993; 12:2715-2721.
    
    67. Erickson P, Gao J, Chang KS, et al. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AMLl/ETO,with similarity to Drosophila segmentation gene, runt. Blood1992;80:1825-1831.
    
    68. Wolford JK, Prochazka M. Structure and expression of the human MTG8/ETO gene. Gene 1998; 212:103-109.
    
    69. Davis JN, McGhee L, Meyers S. The ETO (MTG8) gene family. Gene 2003;303:1-10.
    
    70. Feinstein PG, Kornfeld K, Hogness DS, et al. Identification of homeotic target genes in Drosophila melanogaster including nervy, a protooncogene hornologue.Geneticsl995; 140:573-586.
    
    71. Calabi F, Pannell R, Pavloska G. Gene targeting reveals a crucial role for MTG8 in the gut. Mol Cell Biol 2001; 21:5658-5666.
    
    72. Gelmetti V, Zhang J, Fanelli M, et al. Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 1998; 18:7185-7191.
    
    73. Meyers S, Downing JR, Hiebert SW. Identification of AML-1 and the (8-21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: The runt homology domain is required for DNA binding and proteinprotein interactions. Mol Cell Biol 1993; 13:6336-6345.
    
    74. Lenny N, Meyers S, Hiebert SW. Functional domains of the t(8;21) fusion protein, AML-1/ET0. Oncogene 1995; 11:1761-1769.
    
    75. Rhoades KL, Hetherington CJ, Rowley JD, et al. Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc Natl Acad Sci USA 1996; 93:11895-11900.
    
    76. Davis JN, McGhee L, Meyers S. The ETO (MTG8) gene family. Gene 2003;303:1-10.
    
    77. Kitabayashi I, Ida K, Morohoshi F, et al. The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family,MTGR1. Mol Cell Biol 1998; 18:846-858.
    
    78. Minucci S, Maccarana M, Cioce M, et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol Cell 2000; 5:811-820.
    
    79. Zhang J, Hug BA, Huang EY, et al. Oligomerization of ETO is obligatory for corepressor interaction. Mol Cell Biol 2001; 21:156-163.
    
    80. Tanaka K, Tanaka T, Kurokawa M, et al. The AML1/ETO (MTO8) and AML1/Evi-1 leukemia-associated chimeric oncoproteins accumulate PEBP2(3(CBFβ) in the nucleus more efficiently than wild-type AML1. Blood 1998;91:1688-1699.
    
    81. Westendorf JJ, Yamamoto CM, Lenny N, et al. The t(8;21) fusion product,AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol 1998;18:322-333.
    
    82. Nucifora G, Larson RA, Rowley JD. Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood 1993; 82:712-715.
    
    83. Wiemels JL, Xiao Z, Buffler PA, et al. In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood 2002; 99:3801-3805.
    
    84. Mori H, Colman SM, Xiao Z, et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA 2002; 99:8242-8247.
    
    85. Yergeau DA, Hetherington CJ, Wang Q, et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet 1997; 15:303-306.
    
    86. Okuda T, Cai Z, Yang S, et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 1998;91:3134-3143.
    
    87. Downing JR. The core-binding factor leukemias: Lessons learned from murine models. Curr Opin Genet Dev 2003; 13:48-54.
    
    88. Rhoades KL, Hetherington CJ, Harakawa N, et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible trans genic mouse model.Blood 2000; 96:2108-2115.
    
    89. de Guzman CG, Warren AJ, Zhang Z, et al. Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol 2002; 22:5506-5517.
    
    90. Mulloy JC, Cammenga J, MacKenzie KL, et al. The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood 2002;99:15-23.
    
    91. Yuan Y, Zhou L, Miyamoto T, et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001; 98:10398-10403.
    
    92. Higuchi M, O'Brien D, Kumaravelu P, et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1:63—74.
    
    93. Kiyoi H, Naoe T, Nakano Y, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93:3074-3080.
    94. Beghini A, Peterlongo P, Ripamonti CB, et al. C-kit mutations in core binding factor leukemias. Blood 2000; 95:726-727.
    
    95. Golub TR, Barker GF, Bohlander SK, et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 1995; 92:4917-4921.
    
    96. Romana SP, Mauchauffe M, Le Coniat M, et al. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 1995;85:3662-3670.
    
    97. Shurtleff SA, Buijs A, Behm FG, et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 1995;9:1985-1989.
    
    98. Mikhail FM, Serry KA, Hatem N, et al. AML1 gene over-expression in childhood acute lymphoblastic leukemia. Leukemia 2002;16:658-668.
    
    99. Bohlander SK. ETV6: A versatile player in leukemogenesis. Semin Cancer Biol 2005; 15:162-174.
    100.Rubnitz JE, Pui C-H, Downing JR. The role of TEL genes in pediatric leukemias. Leukemia, 1999, 13:6-13.
    101.Poirel H, Oury C, Carron C, et al. The TEL gene products: Nuclear phosphoproteins with DNA binding properties. Oncogene 1997; 14:349—357
    102.Chakrabarti SR, Nucifora G. The leukemia-associated gene TEL encodes a transcription repressor which associates with SMRT and mSin3A. Biocrxem Biophys Res Commun 1999; 264:871-877.
    103.Guidez F, Retrie K, Ford AM, et al. Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL-AML1 oncoprotein. Blood 2000; 96:2557-2561.
    104.Golub TR, Barker GF, Lovett M, et al. Fusion of PDGF receptor 3 to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell, 1994, 77:307-316.
    105.Jousset C, Carron C, Boureux A, et al. A domain of TEL conserved in & subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR p oncoprotein. EMBO J 1997;16:69-82.
    106.Mclean TW, Ringold S, Neuberg D, et al. TEL-AML1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia.Blood, 1999, 88:4252-4258.
    107.Chakrabarti SR, Sood R, Nandi S, et al. Posttranslational modification of TEL and TEL/AML1 by SUMO-1 and cell-cycle-dependent assembly into nuclear bodies. Pro Natl Acad Sci USA, 2000, 97(24):13291-13285.
    108.Wang LC, Kuo F, Fujiwara Y, et al. Yolk sac angiogenic defect and intra-embryonic apoptosis in mice lacking the Etsrelated factor TEL. EMBO J 1997; 16:4374-4383.
    109.Fears S, Mathieu C, Zeleznik-Le N, et al. Intergenic splicing of MDS1 and EVI1 occurs in normal tissues as well as in myeloid leukemia and produces a new member of the PR domain family. Proc Natl Acad Sci USA 1996;93:1642-1647.
    110. Fenrick R, Amann JM, Lutterbach B, et al. Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein. Mol Cell Biol 1999;19:6566-6574.
    111.Uchida H, Downing JR, Miyazaki Y, et al. Three distinct domains in TEL-AML1 are required for transcriptional repression of the IL-3 promoter.Oncogene 1999; 18:1015-1022.
    
    112. Lopez RG, Carron C, Oury C, et al. Gardellin P, Bernard O, Ghysdael J. TEL is a sequence-specific transcriptional repressor. J Biol Chem 1999;274:30132-30138.
    
    113. Kim CA, Phillips ML, Kim W, Gingery M, Tran HH, Robinson MA, Faliam S,Bowie JU. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. EMBO J 2001; 20:4173-4182.
    
    114. Raynaud S, Cave H, Baens M, et al. The 12;21 translocation involving TEL and deletion of the other TEL allele: Two frequently associated alterations found in childhood acute lymphoblastic leukemia. Blood 1996; 87:2891-2899.
    
    115. Ford AM, Bennett CA, Price CM, et al. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA 1998;95:4584-4588.
    
    116. Andreasson P, Schwaller J, Anastasiadou E, et al. The expression of ETV6/CBFA2 (TEL/AML1) is not sufficient for the transformation of hematopoietic cell lines in vitro or the induction of hematologic disease in vivo.Cancer Genet Cytogenet 2001; 130:93-104.
    
    117. Mitani K, Ogawa S, Tanaka T, et al. Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J 1994; 13: 504-10.
    
    118. Tanaka T, Nishida J, Mitani K, et al. Evi-1 raises AP-1 activity and stimulates c-fos promoter transactivation with dependence on the second zinc finger domain. J Biol Chem 1994; 269: 24020-6.
    
    119. Kurokawa M, Ogawa S, Tanaka T, et al. The AML1/Evi-1 fusion protein in the t(3;21) translocation exhibits transforming activity on Rat1 fibroblasts with dependence on the Evi-1 sequence. Oncogene 1995; 11: 833-40.
    
    120. Kurokawa M, Mitani K, Irie K, et al.The oncoprotein Evi-1 represses TGF-b signaling by inhibiting Smad3. Nature 1998; 394: 92-6.
    
    121. Kurokawa M, Mitani K, Yamagata T, et al. The evi-1 oncoprotein inhibits c-Jun N-terminal kinase and prevents stress-induced cell death. EMBO J 2000;19: 2958-68.
    
    122. Izutsu K, Kurokawa M, Imai Y, et al. The t(3;21) fusion product, AML1/Evi-1 blocks AML1-induced transactivation by recruiting CtBP. Oncogene 2002; 21:2695-703.
    
    123. Kurokawa M, Mitani K, Imai Y, et al. The t(3;21) fusion product, AMLl/Evi-1,interacts with Smad3 and blocks transforming growth factor-b-mediated growth inhibition of myeloid cells. Blood 1998; 92: 4003-12.
    
    124. Langabeer SE, Gale RE, Rollinson SJ, et al. Mutations of the AML1 gene in acute myeloid leukemia of FAB types M0 and M7. Genes Chromosomes Cancer 2002; 34:24-32.
    
    125. Vegesna V, Takeuchi S, Hofmann WK, et al. C/EBP-β,C/EBP-delta, PU.1,AML1 genes: mutational analysis in 381 samples of hematopoietic and solid malignancies. Leuk Res 2002; 26:451-457.
    
    126. Harada H, Harada Y, Tanaka H, et al. Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood 2003; 101:673-680.
    
    127. Taketani T, Taki T, Takita J, et al. Mutation of the AML1/RUNX1/AML1 gene in a transient myeloproliferative disorder patient with Down syndrome.Leukemia 2002; 16:1866-1867.
    
    128. Rodenhiser DI, Andrews JD, Mancini DN, et al. Homonucleotide tracts, short repeats and CpG/CpNpG motifs are frequent sites for heterogeneous mutations in the neurofibromatosis type 1 (NF1) tumour-suppressor gene. Mutat Res 1997;373:185-195.
    
    129. Yoshida T, Kanegane H, Osato M, et al. Functional analysis of RUNX2 mutations in Japanese patients with cleidocranial dysplasia demonstrates novel genotype-phenotype correlations. Am J Hum Genet 2002; 71:724-738.
    
    130. Nagata T, Gupta V, Sorce D, et al. Immunoglobulin motif DNA recognition and heterodimerization of the PEBP2/CBF Runt domain.Nat Struct Biol 1999;6:615-619.
    
    131. Osato M, Asou N, Abdalla E, et al. Biallelic and heterozygous point mutations in the runt domain of the AMLl/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 1999; 93:1817-1824.
    
    132. Tahirov TH, Inoue-Bungo T, Morii H, et al. Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFβ.Cell 2001; 104:755-767.
    
    133. Imai Y, Kurokawa M, Izutsu K, et al. Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukem ogenesis.Blood 2000; 96:3154-3160.
    
    134. Michaud J, Wu F, Osato M, et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood 2002; 99:1364-1372.
    
    135. Huang G, Shigesada K, Ito K, et al. Dimerization with PEBP2β protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J 2001;20:723-733.
    
    136. Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 1997; 89:73-779.
    
    137. Yoshida T, Kanegane H, Osato M, et al. Functional analysis of R.UNX2 mutations in Japanese patients with cleidocranial dysplasia demonstrates novel genotype-phenotype correlations. Am J Hum Genet 2002; 71:724-738.
    
    138. Song W-J, Sullivan MG, Legare RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23:166-175.
    
    139. Castilla LH, Wijmenga C, Wang Q, et al. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11. Cell 1996; 87:687-696.
    
    140. Yergeau DA, Hetherington CJ, Wang Q, et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AMLl-ETO fusion gene. Nat Genet 1997; 15:303-306.
    
    141. Higuchi M, O'Brien D, Kumaravelu P, et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia.Cancer Cell 2002; 1:63—74.
    
    142. Harada H, Harada Y, Niimi H, et al. High incidence of somatic mutations in the AML1/RUNX1/AML1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 2004; 103:2316-2324.
    
    143. Song WJ, Sullivan MG, Legare RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23: 166-75.
    
    144. Roumier C, Fenaux P, Lafage M, et al. New mechanisms of AMCL1 gene alteration in hematological malignancies. Leukemia 2003; 17: 9-16.
    
    145. Cai Z, de Bruijn M, Ma X, et al. Haploinsufficiency of AMLl affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo.Immunity 2000; 13: 423-31.
    
    146. Imai Y, Kurokawa M, Izutsu K, et al. Mutations of the AMLl gene in myelodysplastic syndrome and their functional implications in leukemogenesis.Blood 2000; 96: 3154-60.
    
    147. Niini T, Kanerva J, Vettenranta K, et al. AMLl gene amplification: A novel finding in childhood acute lymphoblastic leukemia. Haematologica 2000;85:362-366.
    
    148. Busson-Le Coniat M, Nguyen Khac F, Daniel MT, et al.Chromosome 21 abnormalities with AMLl amplification in acute lymphoblastic leukemia. Genes Chromosomes Cancer 2001; 32:244-249.
    
    149. Dal Cin P, Atkins L, Ford C, et al. Amplification of AMLl in childhood acute lymphoblastic leukemias. Genes Chromosomes Cancer 2001; 30:407-449.
    
    150. Mikhail FM, Serry KA, Hatem N, et al. AMLl gene over-expression in childhood acute lymphoblastic leukemia. Leukemia 2002; 16:658-668.
    
    151. Harewood L, Robinson H, Harris R, et al. Amplification of AMLl on a duplicated chromosome 21 in acute lymphoblastic leukemia: A study of 20 cases.Leukemia 2003; 17:547-553.
    
    152. Robinson HM, Broadfield ZJ, Cheung KL, et al. Amplification of AMLl in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia 2003;17:2249-2250.
    
    153. Soulier J, Trakhtenbrot L, Najfeld V, et al. Amplification of band q22 of chromosome 21, including AML1, in older children with acute lymphoblastic leukemia: An emerging molecular cytogenetic subgroup. Leukemia 2003;17:1679-1682.
    
    154. Andersen MK, Christiansen DH, Pedersen-Bjergaard J. Amplification or duplication of chromosome band 21q22 with multiple copies of the AML1 gene and mutation of the TP53 gene in therapy-related MDS and AML. Leukemia 2005; 19:197-200.
    
    155. Kurokawa M, Tanaka T, Tanaka K, et al. Overexpression of the AML1 proto-oncoprotein in NIH3T3 cells leads to neoplastic transformation depending on the DNA-binding and transactivational potencies. Oncogene 1996;12:883-92.
    
    156. Cameron ER, Blyth K, Hanlon L, et al. The Runx genes as dominant oncogenes.Blood Cells Mol Dis 2003; 30:194-200.
    1. Berezikov E, Guryev V, Belt J, et al. Phylogenetic Shadowing and Computational Identification of Human microRNA Genes. Cell 2005; 120:21-24.
    
    2. Bartei DP. MicroRNAs: genomics, biogenesis, mechanis, and function. Cell 2004;116:281-297.
    
    3. Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific microRNAs.Dev Cell 2003; 52:351-358.
    
    4. Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303:83-86.
    
    5. Bagga S, Bracht J, Hunter S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005; 122:553-563.
    
    6. Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002; 21:4663-4670.
    
    7. Basyuk E, Suavet F, Doglio A, et al. Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res 2003; 31:6593-6597.
    
    8. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425:415-419.
    
    9. Zeng Y, Cullen BR. Sequence requirements for microRNA processing and function in human cells. RNA 2003; 9:112-123.
    
    10. Gregory RI, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432:235-240.
    
    11. Lee YS, Nakahara K, Pham JW, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 2004; 117:69-81.
    
    12. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped,polyadenylated transcripts that can also function as mRNAs. RNA 2004;10:1957-1966.
    
    13. Denli AM, Tops BB, Plasterk RH, et al. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432, 231-235.
    
    14. Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science 2004; 303, 95-98.
    
    15. Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17:3011-3016.
    
    16. Bohnsack MT, Czaplinski K, Gorlich D. Exportin5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004;10:185-191.
    
    17. Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of small temporal RNAs that control C. elegans developmental timing. Cell 2001; 106:23-34.
    
    18. Hutvagner G, McLachlan J, Pasquinelli A, et al. A cellular function for the RNAinterference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293:834-838.
    
    19. Ketting RF, Fischer SE, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans.Genes Dev. 2001; 15:2654-2659.
    
    20. Murchison EP, Hannon GJ. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 2004; 16:223-229.
    
    21. Grishok A, Pasquinelli A, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C.elegans developmental timing. Cell 2001; 106:23-24.
    
    22. Esquela A, Slack F. Oncomirs-microRNAs with a role in cancer .Nature cancer reviews 2006; 6:259-269.
    
    23. Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303:83-86.
    
    24. Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation.Proc Natl Acad Sci USA 2005; 102:18081-18086.
    
    25. Calin GA, Sevignani C, Dumitru CD, et al. Human micro RNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101:2999-3004.
    26. Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343:1910-1916.
    
    27. Bullrich F, Fujii H, Calin G, et al. Characterization of the 13ql4 tumor suppressor locus in CLL: identification of ALT1, an alternative splice variant of the LEU2 gene. Cancer Res 2001; 61:6640-6648.
    
    28. Migliazza A, Bosch F, Komatsu H, et al. Nucleotide sequence, transcription map,and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood 2001; 97:2098-2104.
    
    29. Borkhardt A, Fuchs U, Tuschl T. MicroRNA in chronic lymphocytic leukemia. N Engl J Med 2006; 354:524-525.
    
    30. Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse.Curr Biol 2002;12:735-739.
    
    31. Chen CZ, Lodish HF. MicroRNAs as regulators of mammalian hematopoiesis.Sein Immunol 2005; 17:155-165.
    
    32. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2.Proc Natl Acad Sci USA 2005;102:13944-13949.
    
    33. Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004;101:11755-11760.
    
    34. 33Raveche ES, Salerno E, Scaglione BJ, et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 2007;109:5079-5086.
    
    35. Fulci V, Chiaretti S, Goldoni M, et al. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia.Blood 2007;109:4944-4951.
    
    36. Sonoki T, Iwanaga E, Mitsuya H, et al. Insertion of microRNA-125b-1, a human homologue of lin-4, into a rearrangedimmunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia. Leukemia 2005;19:2009-2010.
    
    37. Gauwerky CE, Huebner K, Isobe M, et al. Activation of MYC in a masked t (8; 17) translocation results in an aggressive B-cell leukemia. Proc Natl Acad Sci USA 1989; 86:8867-8871.
    
    38. Venturini L, Battmer K, Castoldi M, et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 2007;109:439-405.
    
    39. Fazi F, Rosa A, Fatica A, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis.Cell 2005; 123: 819-831.
    
    40. Garzon R, Pichiorri F, Palumbo T. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia.Oncogene 2007; 26:4148-4157.
    
    41. Debernardi S, Skoulakis S, Molloy G, et al. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 2007; 21:912-916.
    
    42. Garzon R, Pichiorri F, Palumbo T. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 2006; 103:5078-5083.
    
    43. Cheng AM, Byrom, MW, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005; 33:1290-1297.
    
    44. Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with'antagomirs'. Nature 2005; 438:685-689.
    
    45. Izquierdo M. Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther 2005; 12:217-227.
    
    46. Gleave ME, Monia BP. Antisense therapy for cancer. Nature Rev Cancer 2005;5:468-479

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700